Wilby, R. L. & Harris, I. A framework for assessing uncertainties in climate change impacts: Low-flow scenarios for the river thames, UK. Water Resour. Res. 42, 1 (2006).
Marx, A. et al. Climate change alters low flows in Europe under global warming of 1.5, 2, and 3°C. Hydrol. Earth Syst. Sci. 22, 1017–1032 (2018).
Smakhtin, V. U. Low flow hydrology: a review. J. Hydrol. 240, 147–186 (2001).
Diaz-Nieto, J. & Wilby, R. L. A comparison of statistical downscaling and climate change factor methods: impacts on low flows in the river thames, united Kingdom. Clim. Change. 69, 245–268 (2005).
Novotny, E. V. & Stefan, H. G. Stream flow in minnesota: indicator of climate change. J. Hydrol. 334, 319–333 (2007).
Staudinger, M., Stahl, K., Seibert, J., Clark, M. P. & Tallaksen, L. M. Comparison of hydrological model structures based on recession and low flow simulations. Hydrol. Earth Syst. Sci. 15, 3447–3459 (2011).
Tegegne, G., Park, D. K. & Kim, Y. O. Comparison of hydrological models for the assessment of water resources in a data-scarce region, the upper blue nile river basin. J. Hydrology Reg. Stud. 14, 49–66 (2017).
Lee, J., Kim, Y. & Wang, D. Assessing the characteristics of recent drought events in South Korea using WRF-Hydro. J. Hydrol. 607, 127459 (2022).
Lee, J. W. et al. Evaluation of agricultural drought in South Korea using socio-economic drought information. Int. J. Disaster Risk Reduct. 74, 102936 (2022).
Jung, H. C. et al. Towards a soil moisture drought monitoring system for South Korea. J. Hydrol. 589, 125176 (2020).
Moazzam, M. F. U., Rahman, G., Munawar, S., Farid, N. & Lee, B. G. Spatiotemporal rainfall variability and drought assessment during past five decades in South Korea using SPI and SPEI. Atmosphere 13, 292 (2022).
Kim, S. J. et al. Developing Spatial agricultural drought risk index with controllable geo-spatial indicators: A case study for South Korea and Kazakhstan. Int. J. Disaster Risk Reduct. 54, 102056 (2021).
Park, C. K., Lee, S., Yoon, H. & Kam, J. Sub-seasonal to seasonal outlook of the 2022–23 Southwestern Korea meteorological drought. Environ. Res. Lett. 18, 104039 (2023).
Lee, S., Lee, T. & Lee, J. H. Development of alarm grit ratio for drought forecasting and its application to the 2021–2023 drought. J. Korean Soc. Hazard. Mitig. 23, 23–30 (2023).
National Drought Information-Analysis Center. 2013–2018 Sustained Drought Analysis & Assessment Report (2018).
Ministry of Environment and K-water. White Paper on Drought in Seomjingang River Basin of Yeongsan River Basin (2022–2023) (2023).
Perrin, C., Michel, C. & Andréassian, V. Improvement of a parsimonious model for streamflow simulation. J. Hydrol. 279, 275–289 (2003).
Le Moine, N. Le bassin versant de surface vu par le souterrain: une voie d’amélioration des performances et du réalisme des modèles pluie-débit? (2008).
Pushpalatha, R., Perrin, C., Le Moine, N., Mathevet, T. & Andréassian V. A downward structural sensitivity analysis of hydrological models to improve low-flow simulation. J. Hydrol. 411, 66–76 (2011).
Lemaitre-Basset, T. et al. Climate change impact and uncertainty analysis on hydrological extremes in a French mediterranean catchment. Hydrol. Sci. J. 66, 888–903 (2021).
Sauquet, E., Beaufort, A., Sarremejane, R. & Thirel, G. Predicting flow intermittence in France under climate change. Hydrol. Sci. J. 66, 2046–2059 (2021).
Tyralis, H. & Papacharalampous, G. Hydrological post-processing for predicting extreme quantiles. J. Hydrol. 617, 129082 (2023).
Tyralis, H., Papacharalampous, G. & Khatami, S. Expectile-based hydrological modelling for uncertainty estimation: life after mean. J. Hydrol. 617, 128986 (2023).
Ndiaye, P. M., Bodian, A., Dezetter, A., Ogilvie, A. & Goudiaby, O. Sensitivity of global hydrological models to potential evapotranspiration Estimation methods in the Senegal river basin (West Africa). J. Hydrology: Reg. Stud. 53, 101823 (2024).
Im, S. S., Yoo, D. G. & Kim, J. H. Improvement of GR4J model applying soil moisture accounting process and its application in Korea basin. J. Korean Soc. Hazard. Mitigation. 12, 255–262 (2012).
Ajmal, M., Waseem, M., Wi, S. & Kim, T. W. Evolution of a parsimonious rainfall–runoff model using soil moisture proxies. J. Hydrol. 530, 623–633 (2015).
Kim, D., Jung, I. W. & Chun, J. A. A comparative assessment of rainfall–runoff modelling against regional flow duration curves for ungauged catchments. Hydrol. Earth Syst. Sci. 21, 5647–5661 (2017).
Seo, S. B., Kim, Y. O., Kim, Y. & Eum, H. I. Selecting climate change scenarios for regional hydrologic impact studies based on climate extremes indices. Clim. Dyn. 52, 1595–1611 (2019).
Yu, J. U., Park, M. H., Kim, J. G. & Kwon, H. H. Evaluation of conceptual rainfall-runoff models for different flow regimes and development of ensemble model. J. Korea Water Resour. Association. 54, 105–119 (2021).
Noh, S. J., Lee, G., Kim, B., Jo, J. & Woo, D. K. Climate change impact analysis on water supply reliability and flood risk using combined rainfall-runoff and reservoir operation modeling: Hapcheon-Dam catchment case. J. Korea Water Resour. Association. 56, 765–774 (2023).
Shin, M. J. & Kim, C. S. Assessment of the suitability of rainfall–runoff models by coupling performance statistics and sensitivity analysis. Hydrol. Res. 48, 1192–1213 (2016).
Shin, M. J. & Jung, Y. Using a global sensitivity analysis to estimate the appropriate length of calibration period in the presence of high hydrological model uncertainty. J. Hydrol. 607, 127546 (2022).
Lee, M. H., Qiu, L., Ha, S., Im, E. S. & Bae, D. H. Future projection of low flows in the Chungju basin, Korea and their uncertainty decomposition. Int. J. Climatol. 42, 157–174 (2022).
Kim, D., Kim, E., Lee, S. C., Kim, E. & Shin, J. A decision-centric impact assessment of operational performance of the Yongdam dam, South Korea. J. Korea Water Resour. Association. 55, 205–215 (2022).
Oudin, L., Michel, C. & Anctil, F. Which potential evapotranspiration input for a lumped rainfall-runoff model? Part 1—Can rainfall-runoff models effectively handle detailed potential evapotranspiration inputs? J. Hydrol. 303, 275–289 (2005).
Oudin, L. et al. Which potential evapotranspiration input for a lumped rainfall–runoff model? Part 2—Towards a simple and efficient potential evapotranspiration model for rainfall–runoff modelling. J. Hydrol. 303, 290–306 (2005).
Abdallah, M. et al. Hydrological insights: comparative analysis of gridded potential evapotranspiration products for hydrological simulations and drought assessment. J. Hydrology: Reg. Stud. 57, 102113 (2025).
Birhanu, D., Kim, H., Jang, C. & Park, S. Does the complexity of evapotranspiration and hydrological models enhance robustness? Sustainability 10, 2837 (2018).
Birhanu, D., Kim, H. & Jang, C. Effectiveness of introducing crop coefficient and leaf area index to enhance evapotranspiration simulations in hydrologic models. Hydrol. Process. 33, 2206–2226 (2019).
Thiessen, A. H. Precipitation averages for large areas. Mon. Weather Rev. 39, 1082–1089 (1911).
Gupta, H. V., Kling, H., Yilmaz, K. K. & Martinez, G. F. Decomposition of the mean squared error and NSE performance criteria: implications for improving hydrological modelling. J. Hydrol. 377, 80–91 (2009).
Kling, H., Fuchs, M. & Paulin, M. Runoff conditions in the upper Danube basin under an ensemble of climate change scenarios. J. Hydrol. 424–425, 264–277 (2012).
Sorooshian, S., Duan, Q. & Gupta, V. K. Calibration of rainfall-runoff models: application of global optimization to the Sacramento soil moisture accounting model. Water Resour. Res. 29, 1185–1194 (1993).
Yapo, P. O., Gupta, H. V. & Sorooshian, S. Automatic calibration of conceptual rainfall-runoff models: sensitivity to calibration data. J. Hydrol. 181, 23–48 (1996).
Song, J. H., Her, Y., Park, J. & Kang, M. S. Exploring parsimonious daily rainfall-runoff model structure using the hyperbolic tangent function and tank model. J. Hydrol. 574, 574–587 (2019).
Riley, S. J., DeGloria, S. D. & Elliot, R. Index that quantifies topographic heterogeneity. Intermt. J. Sci. 5, 23–27 (1999).
Horton, R. E. Drainage-basin characteristics. Eos Trans. Am. Geophys. Union. 13, 350–361 (1932).
Atkinson, S. E., Woods, R. A. & Sivapalan, M. Climate and landscape controls on water balance model complexity over changing timescales. Water Resour. Res. 38 (1-), 50 (2002).
Vremec, M., Collenteur, R. A. & Birk, S. Technical note: improved handling of potential evapotranspiration in hydrological studies with PyEt. Hydrol. Earth Syst. Sci. Dis. 1–23. https://doi.org/10.5194/hess-2022-417 (2023).
Linacre, E. T. A simple formula for estimating evaporation rates in various climates, using temperature data alone. Agric. Meteorol. 18, 409–424 (1977).
Romanenko, V. A. Computation of the autumn soil moisture using a universal relationship for a large area. In Proc. of Ukrainian Hydrometeorological Research Institute, vol. 3, 12–25 (Kiev, 1961).
Hargreaves, G. H. & Samani, Z. A. Estimating potential evapotranspiration. J. Irrig. Drain. Div. 108, 225–230 (1982).
Jensen, M. E. & Haise, H. R. Estimating evapotranspiration from solar radiation. J. Irrig. Drain. Div. 89, 15–41 (1963).
Jensen, M. E., Burman, R. D. & Allen, R. G. Evapotranspiration and Irrigation Water Requirements (ASCE, 1990).
Allen, R. G., Pereira, L. S., Raes, D. & Smith, M. Crop Evapotranspiration. Guidelines for Computing Crop Water Requirements 300. https://www.fao.org/4/X0490E/X0490E00.htm (1998).
Priestley, C. H. B. & Taylor, R. J. On the assessment of surface heat flux and evaporation using large-scale parameters. Mon. Weather Rev. 100, 81–92 (1972).
Chen, T. C., Wang, S. Y., Huang, W. R. & Yen, M. C. Variation of the East Asian summer monsoon rainfall. J. Clim. 17, 744–762 (2004).
Park, C. et al. Record-breaking summer rainfall in South Korea in 2020: synoptic characteristics and the role of large-scale circulations. Mon. Weather Rev. 149, 3085–3100 (2021).
Coron, L., Thirel, G., Delaigue, O., Perrin, C. & Andréassian, V. The suite of lumped GR hydrological models in an R package. Environ. Model. Softw. 94, 166–171 (2017).
Kennedy, J. & Eberhart, R. Particle swarm optimization. In Proceedings of ICNN’95—International Conference on Neural Networks, vol. 4, 1942–1948 (1995).
Jakubcová, M., Máca, P. & Pech, P. Parameter estimation in rainfall-runoff modelling using distributed versions of particle swarm optimization algorithm. Math. Probl. Eng. 2015, 968067 (2015).
Shi, Y. & Eberhart, R. C. Empirical study of particle swarm optimization. In Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406), vol. 3, 1945–1950 (1999).
Nash, J. E. & Sutcliffe, J. V. River flow forecasting through conceptual models part I—A discussion of principles. J. Hydrol. 10, 282–290 (1970).
Knoben, W. J. M., Freer, J. E. & Woods, R. A. Technical note: inherent benchmark or not? Comparing Nash–Sutcliffe and Kling–Gupta efficiency scores. Hydrol. Earth Syst. Sci. 23, 4323–4331 (2019).
Rogelis, M. C., Werner, M., Obregón, N. & Wright, N. Hydrological model assessment for flood early warning in a tropical high mountain basin. Hydrol. Earth Syst. Sci. Dis. 1–36. https://doi.org/10.5194/hess-2016-30 (2016).
Seabold, S. & Perktold, J. Econometric and statistical modeling with python. In 9th Python in Science Conference (2010).
Virtanen, P. et al. SciPy 1.0: fundamental algorithms for scientific computing in python. Nat. Methods. 17, 261–272 (2020).
Tada, T. & Beven, K. J. Hydrological model calibration using a short period of observations. Hydrol. Process. 26, 883–892 (2012).
Razavi, S. & Tolson, B. A. An efficient framework for hydrologic model calibration on long data periods. Water Resour. Res. 49, 8418–8431 (2013).
Liu, D. et al. Entropy of hydrological systems under small samples: uncertainty and variability. J. Hydrol. 532, 163–176 (2016).
Arsenault, R., Brissette, F. & Martel, J. L. The hazards of split-sample validation in hydrological model calibration. J. Hydrol. 566, 346–362 (2018).
Myers, D. T. et al. Choosing an arbitrary calibration period for hydrologic models: how much does it influence water balance simulations? Hydrol. Process. 35, e14045 (2021).
Merz, R., Parajka, J. & Blöschl, G. Scale effects in conceptual hydrological modeling. Water Resour. Res. 45, 1 (2009).
Parajka, J. et al. Comparative assessment of predictions in ungauged basins—Part 1: Runoff-hydrograph studies. Hydrol. Earth Syst. Sci. 17, 1783–1795 (2013).
van Esse, W. R. et al. The influence of conceptual model structure on model performance: a comparative study for 237 French catchments. Hydrol. Earth Syst. Sci. 17, 4227–4239 (2013).
Poncelet, C. et al. Process-based interpretation of conceptual hydrological model performance using a multinational catchment set. Water Resour. Res. 53, 7247–7268 (2017).
Kan, G. et al. Computer aided numerical methods for hydrological model calibration: an overview and recent development. Arch. Comput. Methods Eng. 26, 35–59 (2019).
Beven, K. & Binley, A. The future of distributed models: model calibration and uncertainty prediction. Hydrol. Process. 6, 279–298 (1992).
Mirzaei, M., Huang, Y. F., El-Shafie, A. & Shatirah, A. Application of the generalized likelihood uncertainty Estimation (GLUE) approach for assessing uncertainty in hydrological models: a review. Stoch. Environ. Res. Risk Assess. 29, 1265–1273 (2015).
Kim, R., Won, J., Choi, J., Lee, O. & Kim, S. Application of bayesian approach to parameter Estimation of TANK model: comparison of MCMC and GLUE methods. J. Korean Soc. Water Environ. 36, 300–313 (2020).
Tolson, B. A. & Shoemaker, C. A. Dynamically dimensioned search algorithm for computationally efficient watershed model calibration. Water Resour. Res. 43, 1 (2007).