Feng, L. et al. Ultra-compact dual-channel integrated CO2 infrared gas sensor. Microsyst. Nanoeng. 10, 151 (2024).


Google Scholar
 

Pan, Y. et al. A passive wireless surface acoustic wave (SAW) sensor system for detecting warfare agents based on fluoroalcohol polysiloxane film. Microsyst. Nanoeng. 10, 4 (2024).


Google Scholar
 

Yuan, Y. et al. Analysis of the acoustoelectric response of SAW gas sensors using a COM model. Microsyst. Nanoeng. 10, 69 (2024).


Google Scholar
 

Li, Y., Wei, X., Zhou, Y., Wang, J. & You, R. Research progress of electronic nose technology in exhaled breath disease analysis. Microsyst. Nanoeng. 9, 129 (2023).


Google Scholar
 

Jung, G. et al. Reconfigurable Manipulation of Oxygen Content on Metal Oxide Surfaces and Applications to Gas Sensing. ACS Nano 17, 17790–17798 (2023).


Google Scholar
 

Zegebreal, L. T., Tegegne, N. A. & Hone, F. G. Recent progress in hybrid conducting polymers and metal oxide nanocomposite for room-temperature gas sensor applications: a review. Sens. Actuators A 359, 114472 (2023).


Google Scholar
 

Zhou, Y., Xu, K., Zheng, Z., He, X. & Zhang, C. Quartz crystal microbalance sensor based on ZnO nanofilm for methanol detection. IEEE Sens. J. 24, 204–214 (2024).


Google Scholar
 

Tang, Y., Zhao, Y. & Liu, H. Room-temperature semiconductor gas sensors: challenges and opportunities. ACS Sens. 7, 3582–3597 (2022).


Google Scholar
 

Su, Y.-D. et al. Multiparameter optical fiber sensing for energy infrastructure through nanoscale light-matter interactions: From hardware to software, science to commercial opportunities. APL Photonics 9, 120902 (2024).


Google Scholar
 

Huma, H., Shabbir, M., Seo, S. E. & Kwon, O. S. Frontiers in point-of-care testing: a comprehensive review. Appl. Sci. Convergence Technol. 33, 117–125 (2024).


Google Scholar
 

Yuan, H., Li, N., Fan, W., Cai, H. & Zhao, D. Metal-organic framework based gas sensors. Adv. Sci. 9, e2104374 (2022).


Google Scholar
 

Zhao, X. et al. Integrated near-infrared fiber-optic photoacoustic sensing demodulator for ultra-high sensitivity gas detection. Photoacoustics 33, 100560 (2023). 100560.


Google Scholar
 

Zhou, H., Li, D., Hui, X. & Mu, X. Infrared metamaterial for surface-enhanced infrared absorption spectroscopy: pushing the frontier of ultrasensitive on-chip sensing. Int. J. Optomechatronics 15, 97–119 (2021).


Google Scholar
 

Paterova, A. V., Toa, Z. S. D., Yang, H. Z. & Krivitsky, L. A. Broadband quantum spectroscopy at the fingerprint mid-infrared region. ACS Photonics 9, 2151–2159 (2022).


Google Scholar
 

Trieu-Vuong, D., Choi, I.-Y., Son, Y.-S. & Kim, J.-C. A review on non-dispersive infrared gas sensors: Improvement of sensor detection limit and interference correction. Sens. Actuators B 231, 529–538 (2016).


Google Scholar
 

Wang, C., He, T., Zhou, H., Zhang, Z. & Lee, C. Artificial intelligence enhanced sensors – enabling technologies to next-generation healthcare and biomedical platform. Bioelectron. Med. 9, 17 (2023).


Google Scholar
 

Zhou, J. et al. Artificial-intelligence-enhanced mid-infrared lab-on-a-chip for mixture spectroscopy analysis. Laser Photonics Rev. 19, 2400754 (2024).


Google Scholar
 

Yan, Y., Feng, H., Wang, C. & Ren, W. On-chip photothermal gas sensor based on a lithium niobate rib waveguide. Sens. Actuators B 405, 135392 (2024).


Google Scholar
 

Consani, C. et al. Mid-infrared photonic gas sensing using a silicon waveguide and an integrated emitter. Sens. Actuators B 274, 60–65 (2018).


Google Scholar
 

Zhou, H. et al. Surface plasmons-phonons for mid-infrared hyperspectral imaging. Sci. Adv. 10, eado3179 (2024).


Google Scholar
 

Zhou, H. et al. Dynamic construction of refractive index-dependent vibrations using surface plasmon-phonon polaritons. Nat. Commun. 14, 7316 (2023).


Google Scholar
 

Li, D. et al. Ultrasensitive molecular fingerprint retrieval using strongly detuned overcoupled plasmonic nanoantennas. Adv. Mater. 35, e2301787 (2023).


Google Scholar
 

Zhou, H., Li, D. & Lee, C. Technology landscape review of in-sensor photonic intelligence from optical sensors to smart devices. AI Sens. 1, 5 (2025).


Google Scholar
 

Kozmin, A. et al. Wavelet-based machine learning algorithms for photoacoustic gas sensing. Optics 5, 207–222 (2024).


Google Scholar
 

Zhou, H. et al. Bionic ultra-sensitive self-powered electromechanical sensor for muscle-triggered communication application. Adv. Sci. 8, 2101020 (2021). e2101020.


Google Scholar
 

Russell, B. J., Meng, J. & Crozier, K. B. Mid-infrared gas classification using a bound state in the continuum metasurface and machine learning. IEEE Sens. J. 23, 22389–22398 (2023).


Google Scholar
 

Pareek, V., Chaudhury, S. & Singh, S. Hybrid 3DCNN-RBM network for gas mixture concentration estimation with sensor array. IEEE Sens. J. 21, 24263–24273 (2021).


Google Scholar
 

Yang, J., Caruso, A., Li, J. & Lin, P. T. Mid-infrared spectrum sensing algorithm applying micro-resonator arrays. IEEE Sens. J. 22, 13387–13394 (2022).


Google Scholar
 

Torrisi, F., Amato, E., Corradino, C., Mangiagli, S. & Del Negro, C. Characterization of volcanic cloud components using machine learning techniques and SEVIRI infrared images. Sensors 22, 7712 (2022).


Google Scholar
 

Sonkar, S. K., Kumar, P., George, R. C., Philip, D. & Ghosh, A. K. Detection and estimation of natural gas leakage using UAV by machine learning algorithms. IEEE Sens. J. 22, 8041–8049 (2022).


Google Scholar
 

Ramou, E., Palma, S. I. C. J. & Roque, A. C. A. Nanoscale events on cyanobiphenyl-based self-assembled droplets triggered by gas analytes. ACS Appl. Mater. Interfaces 14, 6261–6273 (2022).


Google Scholar
 

Mansouri, T. S., Wang, H., Mariotti, D. & Maguire, P. Methane detection to 1 ppm using machine learning analysis of atmospheric pressure plasma optical emission spectra. J. Phys. D: Appl. Phys. 55, 225205 (2022).


Google Scholar
 

Yu, J., Wang, D., Tipparaju, V. V., Tsow, F. & Xian, X. Mitigation of humidity interference in colorimetric sensing of gases. ACS Sens 6, 303–320 (2021).


Google Scholar
 

Yu, J., Tsow, F., Mora, S. J., Tipparaju, V. V. & Xian, X. Hydrogel-incorporated colorimetric sensors with high humidity tolerance for environmental gases sensing. Sens Actuators B Chem. 345, 130404 (2021).


Google Scholar
 

Galstyan, V. Quantum dots: Perspectives in next-generation chemical gas sensors—a review. Anal. Chim. Acta 1152, 238192 (2021).


Google Scholar
 

Chen, Z. et al. Real-time, noise and drift resilient formaldehyde sensing at room temperature with aerogel filaments. Sci. Adv. 10, eadk6856 (2024).


Google Scholar
 

Li, D., Zhou, H., Ren, Z. & Lee, C. Advances in MEMS, optical MEMS, and nanophotonics technologies for volatile organic compound detection and applications. Small Sci. 5, 202400250 (2024).


Google Scholar
 

Zhou, H., Li, D., Lv, Q. & Lee, C. Integrative plasmonics: optical multi-effects and acousto-electric-thermal fusion for biosensing, energy conversion, and photonic circuits. Chem. Soc. Rev. 54, 5342–5432 (2025).


Google Scholar
 

Hu, J. et al. Ultra-high sensitivity gas pressure sensor based on cascaded Mach-Zehnder interferometer and Sagnac interferometer. Optik 276, 170655 (2023).


Google Scholar
 

Tan, X. et al. Non-dispersive infrared multi-gas sensing via nanoantenna integrated narrowband detectors. Nat. Commun. 11, 5245 (2020).


Google Scholar
 

Bi, X., Czajkowsky, D. M., Shao, Z. & Ye, J. Digital colloid-enhanced Raman spectroscopy by single-molecule counting. Nature 628, 771–775 (2024).


Google Scholar
 

Li, D. et al. Multifunctional chemical sensing platform based on dual-resonant infrared plasmonic perfect absorber for on-chip detection of poly(ethyl cyanoacrylate). Adv. Sci. 8, e2101879 (2021).


Google Scholar
 

Hui, X. et al. Infrared plasmonic biosensor with tetrahedral DNA nanostructure as carriers for label-free and ultrasensitive detection of miR-155. Adv. Sci. 8, e2100583 (2021).


Google Scholar
 

Zhou, H. et al. Metal-organic framework-surface-enhanced infrared absorption platform enables simultaneous on-chip sensing of greenhouse gases. Adv. Sci. 7, 2001173 (2020).


Google Scholar
 

Zhou, H. et al. Terahertz biosensing based on bi-layer metamaterial absorbers toward ultra-high sensitivity and simple fabrication. Appl. Phys. Lett. 115, 143507 (2019).


Google Scholar
 

Zhou, H. et al. Integrating a microwave resonator and a microchannel with an immunochromatographic strip for stable and quantitative biodetection. ACS Appl. Mater. Interfaces 11, 14630–14639 (2019).


Google Scholar
 

Zhou, H. et al. Multi-band sensing for dielectric property of chemicals using metamaterial integrated microfluidic sensor. Sci. Rep. 8, 14801 (2018).


Google Scholar
 

Zhou, H., Xu, L., Ren, Z., Zhu, J. & Lee, C. Machine learning-augmented surface-enhanced spectroscopy toward next-generation molecular diagnostics. Nanoscale Adv. 5, 538–570 (2023).


Google Scholar
 

Wijesinghe, D. R., Zobair, M. A. & Esmaeelpour, M. A review on photoacoustic spectroscopy techniques for gas sensing. Sensors 24, 6577 (2024).


Google Scholar
 

Zhou, H., Ren, Z., Xu, C., Xu, L. & Lee, C. MOF/polymer-integrated multi-hotspot mid-infrared nanoantennas for sensitive detection of CO2 gas. Nano-Micro Lett. 14, 207 (2022).


Google Scholar
 

Zhou, H., Li, D., Ren, Z., Mu, X. & Lee, C. Loss-induced phase transition in mid-infrared plasmonic metamaterials for ultrasensitive vibrational spectroscopy. InfoMat 4, e12349 (2022).


Google Scholar
 

Li, D. et al. Advances and applications of metal-organic frameworks (MOFs) in emerging technologies: a comprehensive review. Glob. Chall. 8, 2300244 (2024).


Google Scholar
 

Ghosal, P. S. & Gupta, A. K. Determination of thermodynamic parameters from Langmuir isotherm constant-revisited. J. Mol. Liq. 225, 137–146 (2017).


Google Scholar
 

Ramanathan, A. et al. Light-driven nanonetwork assembly of gold nanoparticles via 3d printing for optical sensors. ACS Appl. Nano Mater. 7, 27998–28007 (2024).


Google Scholar
 

Gu, S., Chen, B., Xu, X., Han, F. & Chen, S.-C. 3D nanofabrication via directed material assembly: mechanism, method, and future. Adv. Mater. 37, e2312915 (2025).


Google Scholar
 

Matsuo, T., Tanikubo, H. & Hayashi, S. Facile wet-process to free-standing whispering gallery mode resonators mixed with spherical silica gel and π-conjugated molecules. Adv. Opt. Mater. 12, 2401119 (2024).


Google Scholar
 

Chawla, A. et al. Recent advances in synthesis methods and surface structure manipulating strategies of copper selenide (CuSe) nanoparticles for photocatalytic environmental and energy applications. J. Environ. Chem. Eng. 12, 113125 (2024).


Google Scholar
 

Wang, Y., Yu, Z., Smith, C. S. & Caneva, S. Site-specific integration of hexagonal boron nitride quantum emitters on 2d dna origami nanopores. Nano Lett. 24, 8510–8517 (2024).


Google Scholar
 

Kilic, U. et al. Controlling the broadband enhanced light chirality with L-shaped dielectric metamaterials. Nat. Commun. 15, 3757 (2024).


Google Scholar
 

Zhang, J. et al. Plateau-Rayleigh instability enhanced electrohydrodynamic jet printing for direct-writing of micro/nano optical device arrays. Opt. Express 33, 12012–12025 (2025).


Google Scholar
 

Kim, H.-M., Yang, S.-C., Park, J.-H. & Lee, S.-K. Fabrication of top-down-based optical fiber nanoprobes and their diagnostic application for pancreatic cancer. IEEE Sens. J. 24, 11966–11973 (2024).


Google Scholar
 

Raub, A. A. M., Bahru, R., Nashruddin, S. N. A. M. & Yunas, J. A review on vertical aligned zinc oxide nanorods: Synthesis methods, properties, and applications. J. Nanopart. Res. 26, 186 (2024).


Google Scholar
 

Pillanagrovi, J. & Dutta-Gupta, S. Controlling and monitoring laser-mediated localized synthesis of silver nanoparticles within gold nanoapertures. Nano Futures 8, 045001 (2024).


Google Scholar
 

Zhang, Y., Liu, B., Liu, Z. & Li, J. Research progress in the synthesis and biological application of quantum dots. N. J. Chem. 46, 20515–20539 (2022).


Google Scholar
 

Wang, N. et al. Highly tunable 2D silicon quantum dot array with coupling beyond nearest neighbors. Nano Lett. 24, 13126–13133 (2024).


Google Scholar
 

Xia, H. et al. A RGB-type quantum dot-based sensor array for sensitive visual detection of trace formaldehyde in air. Sci. Rep. 6, 36794 (2016).


Google Scholar
 

Zhang, X. et al. Conductive colloidal perovskite quantum dot inks towards fast printing of solar cells. Nat. Energy 9, 1378–1387 (2024).


Google Scholar
 

Lv, W., Song, Y., Pei, H. & Mo, Z. Synthesis strategies and applications of metal–organic framework-quantum dot (MOF@QD) functional composites. J. Ind. Eng. Chem. 128, 17–54 (2023).


Google Scholar
 

Boroviks, S. et al. Extremely confined gap plasmon modes: when nonlocality matters. Nat. Commun. 13, 3105 (2022).


Google Scholar
 

Yue, X. et al. Composite metamaterial of hyperbolic nanoridges and gold nanoparticles for biosensing. Nanoscale 17, 7271–7280 (2025).


Google Scholar
 

Chen, C., Liu, Z., Cai, C. & Qi, Z. -m. Facile fabrication of nanoporous gold films for surface plasmon resonance (SPR) sensing and SPR-based SERS. J. Mater. Chem. C. 9, 6815–6822 (2021).


Google Scholar
 

Barelli, M., Giordano, M. C., Gucciardi, P. G. & Buatier de Mongeot, F. Self-organized nanogratings for large-area surface plasmon polariton excitation and surface-enhanced raman spectroscopy sensing. ACS Appl. Nano Mater. 3, 8784–8793 (2020).


Google Scholar
 

Jaworski, P. et al. Antiresonant hollow-core fiber-based dual gas sensor for detection of methane and carbon dioxide in the near- and mid-infrared regions. Sensors 20, 3813 (2020).


Google Scholar
 

Kim, K. J. et al. Sorption-induced fiber optic plasmonic gas sensing via small grazing angle of incidence. Adv. Mater. 35, 2301293 (2023).


Google Scholar
 

Wang, Z. et al. Ethanol sensor based on cascaded tapered optical fiber with surface modification of ZIF-8. Sens. Actuators B 402, 135084 (2024).


Google Scholar
 

Liu, H. et al. A highly sensitive sensor of methane and hydrogen in tellurite photonic crystal fiber based on four-wave mixing. Opt. Quantum Electron. 54, 215 (2022).


Google Scholar
 

Strutynski, C. et al. Stack-and-draw applied to the engineering of multi-material fibers with non-cylindrical profiles. Adv. Funct. Mater. 31, 2011063 (2021).


Google Scholar
 

Islam, M. S. et al. Single-step tabletop fabrication for low-attenuation terahertz special optical fibers. Adv. Photonics Res. 2, 2100165 (2021).


Google Scholar
 

Cai, S. et al. Fast-response oxygen optical fiber sensor based on PEA2SnI4 perovskite with extremely low limit of detection. Adv. Sci. 9, 2104708 (2022).

Kelly, T. W. et al. Gas-induced differential refractive index enhanced guidance in hollow-core optical fibers. Optica 8, 916–920 (2021).


Google Scholar
 

Seguin, A., Becerra-Deana, R. I., Virally, S., Boudoux, C. & Godbout, N. Fabrication and characterization of indium fluoride multimode fused fiber couplers for the mid-infrared. Opt. Express 31, 33670–33678 (2023).


Google Scholar
 

Horikawa, S., Yang, S., Tanaka, T., Aoki, T. & Kato, S. High-finesse nanofiber Fabry-Pérot resonator in a portable storage container. Rev. Sci. Instrum. 95, 073103 (2024).


Google Scholar
 

Xu, M., Tian, W., Lin, Y., Xu, Y. & Tao, J. Development of a compact NDIR CO2 gas sensor for a portable gas analyzer. Micromachines 15, 1203 (2024).

Jha, R. K. Non-dispersive infrared gas sensing technology: a review. IEEE Sens. J. 22, 6–15 (2022).


Google Scholar
 

Teng, G. et al. Extracting mechanical quality factor and eliminating feedthrough using harmonics of thermal-piezoresistive micromechanical resonators. Microsyst. Nanoeng. 11, 30 (2025).


Google Scholar
 

Li, E., Zhong, J., Jian, J., Hao, Y. & Chang, H. On enhancing the accuracy of inclinometer based on multiple dual-axis MEMS accelerometers fusion. J. Mech. Sci. Technol. 39, 1329–1337 (2025).


Google Scholar
 

Tian, L., Zhao, H., Shen, Q. & Chang, H. A toroidal SAW gyroscope with focused IDTs for sensitivity enhancement. Microsyst. Nanoeng. 10, 37 (2024).


Google Scholar
 

Hao, Y., Wang, Y., Liu, Y., Yuan, W. & Chang, H. An SOI-based post-fabrication process for compliant MEMS devices. J. Micromech. Microeng. 34, 045005 (2024).


Google Scholar
 

Xue, L. et al. Design of optimal estimation algorithm for multi-sensor fusion of a redundant MEMS gyro system. IEEE Sens. J. 23, 4577–4588 (2023).


Google Scholar
 

Chang, H. Serial and Parallel Connections of Micromechanical Resonators for Sensing: Theories and Applications. J. Microelectromech. Syst. 32, 213–228 (2023).


Google Scholar
 

Zhang, P. et al. A MEMS inertial switch with large scale bi-directional adjustable threshold function. J. Microelectromech. Syst. 31, 124–133 (2022).


Google Scholar
 

Tao, K. et al. Investigation of multimodal electret-based MEMS energy harvester with impact-induced nonlinearity. J. Microelectromech. Syst. 27, 276–288 (2018).


Google Scholar
 

Lai, L. et al. Rapidly modulated wide-spectrum infrared source made of super aligned carbon nanotube film for greenhouse gas monitoring. Adv. Funct. Mater. 33, 2208891 (2022).


Google Scholar
 

Thakkar, P. et al. Coupled strip-array waveguides for integrated mid-IR gas sensing. Photonics 10, 55 (2023).


Google Scholar
 

Yao, C., Yan, W., Dong, R., Dou, S. & Yang, L. Superlattice assembly strategy of small noble metal nanoparticles for surface-enhanced Raman scattering. Commun. Mater. 5, 65 (2024).


Google Scholar
 

Zhao, Y., Kumar, A. & Yang, Y. Unveiling practical considerations for reliable and standardized SERS measurements: lessons from a comprehensive review of oblique angle deposition-fabricated silver nanorod array substrates. Chem. Soc. Rev. 53, 1004–1057 (2024).


Google Scholar
 

Zheng, X. et al. Recent progress in SERS monitoring of photocatalytic reactions. Chem. Soc. Rev. 53, 656–683 (2024).


Google Scholar
 

Che, Y. et al. A strategy for accurate SERS gas detection: skillful integration of mass-productive wafer-scale SERS substrate and machine learning-assisted multifeature profiling. ACS Photonics 11, 3331–3342 (2024).


Google Scholar
 

Shin, H. et al. Single test-based diagnosis of multiple cancer types using Exosome-SERS-AI for early stage cancers. Nat. Commun. 14, 1644 (2023).


Google Scholar
 

Zhu, K. et al. Wearable SERS sensor based on omnidirectional plasmonic nanovoids array with ultra-high sensitivity and stability. Small 18, 2201508 (2022). e2201508.


Google Scholar
 

Senica, U. et al. Planarized THz quantum cascade lasers for broadband coherent photonics. Light Sci. Appl. 11, 347 (2022).


Google Scholar
 

Lee, S. et al. SERS-based microdevices for use as in vitro diagnostic biosensors. Chem. Soc. Rev. 53, 5394–5427 (2024).


Google Scholar
 

Zhang, L. et al. Emerging metasurfaces for refractometric sensing: fundamental and applications. J. Phys. D: Appl. Phys. 57, 393001 (2024).


Google Scholar
 

Yun, T. G. et al. Extrinsic and intrinsic factors governing the electrochemical oxidation of propylene in aqueous solutions. J. Am. Chem. Soc. 147, 12318–12330 (2025).


Google Scholar
 

Bylinkin, A. et al. On-chip phonon-enhanced IR near-field detection of molecular vibrations. Nat. Commun. 15, 8907 (2024).


Google Scholar
 

Ye, K. et al. Molecular level insights on the pulsed electrochemical CO2 reduction. Nat. Commun. 15, 9781 (2024).


Google Scholar
 

Luo, S. et al. Broadband multiple resonant metasurface for mixture surface-enhanced infrared absorption based on polarization-sensitive folded nanoantennas. Opt. Laser Technol. 181, 111685 (2025).


Google Scholar
 

Wei, J., Yang, J., Qin, M., Yang, L. & Cao, S. Designing a one-dimensional photonic crystal sensor for dimethyl methylphosphonate detection leveraging a hydrogen-bonding-based acidic strategy. Sens. Actuators B: Chem. 423, 136722 (2025).


Google Scholar
 

Zhang, R. et al. Electrochemical synthesis of urea: co-reduction of nitrite and carbon dioxide on binuclear cobalt phthalocyanine. Small 20, e2403285 (2024).


Google Scholar
 

Li, D., Zhou, H., Ren, Z., Xu, C. & Lee, C. Tailoring light-matter interactions in overcoupled resonator for biomolecule recognition and detection. Nano-Micro Lett. 17, 10 (2025).


Google Scholar
 

Li, D., Wu, X., Chen, Z., Liu, T. & Mu, X. Surface-enhanced spectroscopy technology based on metamaterials. Microsyst. Nanoeng. 11, 60 (2025).


Google Scholar
 

Ren, Z., Zhang, Z., Wei, J., Dong, B. & Lee, C. Wavelength-multiplexed hook nanoantennas for machine learning enabled mid-infrared spectroscopy. Nat. Commun. 13, 3859 (2022).


Google Scholar
 

Zhang, Z., Liu, X., Zhou, H., Xu, S. & Lee, C. Advances in machine-learning enhanced nanosensors: from cloud artificial intelligence toward future edge computing at chip level. Small Struct. 5, 2300325 (2023).


Google Scholar
 

Xu, C. et al. Near-field coupling induced less chiral responses in chiral metamaterials for surface-enhanced vibrational circular dichroism. Adv. Funct. Mater. 34, 202314482 (2023).


Google Scholar
 

Xu, C. et al. Expanding chiral metamaterials for retrieving fingerprints via vibrational circular dichroism. Light Sci. Appl. 12, 154 (2023).


Google Scholar
 

Li, D., Xu, C., Xie, J. & Lee, C. Research progress in surface-enhanced infrared absorption spectroscopy: from performance optimization, sensing applications, to system integration. Nanomaterials 13, 2377 (2023).


Google Scholar
 

Xu, C., Ren, Z., Wei, J. & Lee, C. Reconfigurable terahertz metamaterials: From fundamental principles to advanced 6G applications. iScience 25, 103799 (2022).


Google Scholar
 

Otto, A. Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection. Z. Phys. A: Hadrons Nucl. 216, 398–410 (1968).


Google Scholar
 

Altug, H., Oh, S. H., Maier, S. A. & Homola, J. Advances and applications of nanophotonic biosensors. Nat. Nanotechnol. 17, 5–16 (2022).


Google Scholar
 

Oh, S. H. et al. Nanophotonic biosensors harnessing van der Waals materials. Nat. Commun. 12, 3824 (2021).


Google Scholar
 

Jahani, Y. et al. Imaging-based spectrometer-less optofluidic biosensors based on dielectric metasurfaces for detecting extracellular vesicles. Nat. Commun. 12, 3246 (2021).


Google Scholar
 

Aigner, A., Weber, T., Wester, A., Maier, S. A. & Tittl, A. Continuous spectral and coupling-strength encoding with dual-gradient metasurfaces. Nat. Nanotechnol. 19, 1804–1812 (2024).


Google Scholar
 

Pavlov, D. et al. Coaxial hole array fabricated by ultrafast femtosecond-laser processing with spatially multiplexed vortex beams for surface enhanced infrared absorption. Appl. Surf. Sci. 541, 148602 (2021).


Google Scholar
 

Gopalan, K. K. et al. Scalable and Tunable Periodic Graphene Nanohole Arrays for Mid-Infrared Plasmonics. Nano Lett. 18, 5913–5918 (2018).


Google Scholar
 

Liu, W. et al. Suspended silicon waveguide platform with subwavelength grating metamaterial cladding for long-wave infrared sensing applications. Nanophotonics 10, 1861–1870 (2021).


Google Scholar
 

Liu, W. et al. Larger-Than-unity external optical field confinement enabled by metamaterial-assisted comb waveguide for ultrasensitive long-wave infrared gas spectroscopy. Nano Lett. 22, 6112–6120 (2022).


Google Scholar
 

Pi, M. Q. et al. Surface-enhanced infrared absorption spectroscopic chalcogenide waveguide sensor using a silver island film. ACS Appl. Mater. Interfaces 13, 32555–32563 (2021).


Google Scholar
 

Ma, Y. et al. Heterogeneously integrated graphene/silicon/halide waveguide photodetectors toward chip-scale zero-bias long-wave infrared spectroscopic sensing. ACS Nano 15, 10084–10094 (2021).


Google Scholar
 

Dong, B. W. et al. Compact low loss mid-infrared wavelength-flattened directional coupler (WFDC) for arbitrary power splitting ratio enabled by rib waveguide dispersion engineering. IEEE J. Sel. Top. Quantum Electron. 24, 1–8 (2018).


Google Scholar
 

Fu, M. et al. Slot waveguides with silicon-rich materials for nonlinear applications. IEEE Photonics J. 13, 1–9 (2021).


Google Scholar
 

Wang, C. et al. Optical waveguide sensors for measuring human temperature and humidity with gel polymer electrolytes. ACS Appl. Mater. Interfaces 13, 60384–60392 (2021).


Google Scholar
 

Lialiou, P. & Maglogiannis, I. Students’ burnout symptoms detection using smartwatch wearable devices: a systematic literature review. AI Sens. 1, 2 (2025).


Google Scholar
 

He, T. et al. Epidermal electronic-tattoo for plant immune response monitoring. Nat. Commun. 16, 3244 (2025).


Google Scholar
 

Zhou, J. et al. Denoising-autoencoder-facilitated MEMS computational spectrometer with enhanced resolution on a silicon photonic chip. Nat. Commun. 15, 10260 (2024).


Google Scholar
 

Zhang, Z., Guo, X. & Lee, C. Advances in olfactory augmented virtual reality towards future metaverse applications. Nat. Commun. 15, 6465 (2024).


Google Scholar
 

Cho, S. et al. Advances in 3D-printed triboelectric nanogenerators and supercapacitors for self-sustainable energy systems. Mater. Today 85, 189–211 (2025).


Google Scholar
 

Wang, L. et al. Sensing technologies for outdoor/indoor farming. Biosensors 14, 629 (2024).


Google Scholar
 

Zhang, Z., Zhao, Z., Chen, C. & Wu, L. Chemiresistive gas sensors made with PtRu@SnO2 nanoparticles for machine learning-assisted discrimination of multiple volatile organic compounds. ACS Appl. Mater. Interfaces 16, 67944–67958 (2024).


Google Scholar
 

Huang, W., Dong, Z. & Lin, L. Density functional theory and machine learning of transition metals in Mo2C for gas sensors. ACS Appl. Nano Mater. 7, 22189–22199 (2024).

Harun-Or-Rashid, M., Mirzaei, S. & Nasiri, N. Nanomaterial innovations and machine learning in gas sensing technologies for real-time health diagnostics. ACS Sens. 10, 1620–1640 (2025).


Google Scholar
 

Moon, D.-B., Bag, A., Chouhdry, H. H., Hong, S. J. & Lee, N.-E. Selective identification of hazardous gases using flexible, room-temperature operable sensor array based on reduced graphene oxide and metal oxide nanoparticles via machine learning. ACS Sens. 9, 6071–6081 (2024).


Google Scholar
 

Wang, Z., Hu, X. & Zhou, Y. Accelerated screening of highly sensitive gas sensor materials for greenhouse gases based on DFT and machine learning methods. ACS Sens 10, 563–572 (2025).


Google Scholar
 

Yang, Z. et al. General model for predicting response of gas-sensitive materials to target gas based on machine learning. ACS Sens 9, 2509–2519 (2024).


Google Scholar
 

Yuan, Z., Luo, X. & Meng, F. Machine learning-assisted research and development of chemiresistive gas sensors. Adv. Eng. Mater. 26 (2024).

Lee, S. W., Yoon, J. A., Kim, M. D., Kim, B. H. & Seo, Y. H. A machine learning-based electronic nose system using numerous low-cost gas sensors for real-time alcoholic beverage classification. Anal. Methods 16, 5909–5919 (2024).


Google Scholar
 

Itoh, T. et al. Discrimination ability and concentration measurement accuracy of effective components in aroma essential oils using gas sensor arrays with machine learning. Appl. Sci. -Basel 14, 8859 (2024).


Google Scholar
 

Kwon, Y. M. et al. Enhancing selectivity and sensitivity in gas sensors through noble metal-decorated ZnO and machine learning. Appl. Surf. Sci. 693, 162750 (2025).


Google Scholar
 

Guo, Y., Yang, M., Huang, G. & Zheng, Y. Machine-learning-enabled exploitation of gas-sensing descriptors: a case study of five pristine metal oxides. Chem. Eng. J. 492, 152280 (2024).


Google Scholar
 

Han, D. et al. Machine-learning-assisted n-GaN-Au/PANI gas sensor array for intelligent and ultra-accurate ammonia recognition. Chem. Eng. J. 495, 153705 (2024).


Google Scholar
 

Khandakar, A. et al. Compost maturity prediction and gas emissions monitoring: A sensor-based and interpretable machine learning approach. Comput. Electr. Eng. 123 (2025).

Parlak, I. H., Milli, M. & Milli, N. S. Machine learning-based detection of olive oil adulteration using BME688 gas sensor matrix. Food Anal. Methods 9, 74–1464 (2025).


Google Scholar
 

Acharyya, S., Ghosh, A., Nag, S., Majumder, S. B. & Guha, P. K. Smart and selective gas sensor system empowered with machine learning over IoT platform. IEEE Internet Things J. 11, 4218–4226 (2024).


Google Scholar
 

Wang, J., Parra, L., Lacuesta, R., Lloret, J. & Lorenz, P. Wearable low-cost and low-energy consumption gas sensor with machine learning to recognize outdoor areas. IEEE Sens. J. 24, 30845–30852 (2024).


Google Scholar
 

Sarkar, L., Paul, S., Sett, A., Kumari, A. & Bhattacharyya, T. K. Classification of gases with single FET-based gas sensor through gate voltage sweeping and machine learning. IEEE Trans. Electron Devices 72, 376–382 (2025).


Google Scholar
 

Sun, R. et al. A NDIR CO sensor enhanced by machine learning algorithm applying in gas outburst Early warning. Infrared Phys. Technol. 147, 105801 (2025).


Google Scholar
 

Ku, W. et al. Rational design of hybrid sensor arrays combined synergistically with machine learning for rapid response to a hazardous gas leak environment in chemical plants. J. Hazard. Mater. 466, 133649 (2024).


Google Scholar
 

Mahmood, L., Ghommem, M. & Bahroun, Z. Smart gas sensors: materials, technologies, practical applications, and use of machine learning—a review. J. Appl. Computational Mech. 9, 775–803 (2023).


Google Scholar
 

Chen, Q. et al. Optical frequency comb-based aerostatic micro pressure sensor aided by machine learning. IEEE Sens. J. 23, 21078–21083 (2023).


Google Scholar
 

Armas, D., Zubiate, P., Zamarreno, C. R. & Matias, I. R. Ammonia gas optical sensor based on lossy mode resonances. IEEE Sens. Lett. 7, 1–4 (2023).


Google Scholar
 

Zhao, Z., Xie, F., Ren, T. & Zhao, C. Atmospheric CO2 retrieval from satellite spectral measurements by a two-step machine learning approach. J. Quant. Spectrosc. Radiat. Transf. 278, 108006 (2022).


Google Scholar
 

Han, J., Li, H., Cheng, J., Ma, X. & Fu, Y. Advances in metal oxide semiconductor gas sensor arrays based on machine learning algorithms. J. Mater. Chem. C 13, 4285–4303 (2025).


Google Scholar
 

Zeng, Q. et al. Machine learning-assisted development of TMDs-type gas-sensitive materials for dissolved gases in oil-immersed transformer oils. Mater. Today Chem. 44, 102583 (2025).


Google Scholar
 

Naganaboina, V. R., Jana, S. & Singh, S. G. Chemiresistive sensor array for quantitative prediction of CO and NO2 gas concentrations in their mixture using machine learning algorithms. Microchim. Acta 191, 756 (2024).


Google Scholar
 

Singh, S. et al. Metal oxide-based gas sensor array for VOCs determination in complex mixtures using machine learning. Microchim. Acta 191, 196 (2024).


Google Scholar
 

Luo, W., Dai, F., Liu, Y., Wang, X. & Li, M. Pulse-driven MEMS gas sensor combined with machine learning for selective gas identification. Microsyst. Nanoeng. 11, 72 (2025).


Google Scholar
 

Wekalao, J. High-sensitivity terahertz gas sensor using graphene-enhanced metasurfaces with machine learning optimization. Plasmonics https://doi.org/10.1007/s11468-025-03079-0 (2025).

Wekalao, J. & Elamri, O. Dual-resonator mxene metasurface-based gas sensor with machine learning-enhanced surface plasmon resonance detection. Plasmonics https://doi.org/10.1007/s11468-025-02936-2 (2025).

Borozdin, P. et al. Temperature-based long-term stabilization of photoacoustic gas sensors using machine learning. Sensors 24, 7518 (2024).


Google Scholar
 

Li, P., Lin, G., Chen, J. & Wang, J. Off-axis integral cavity carbon dioxide gas sensor based on machine-learning-based optimization. Sensors 24, 5226 (2024).


Google Scholar
 

Hu, D., Yang, Z. & Huang, S. Machine learning prediction of perovskite sensors for monitoring the gas in lithium-ion battery. Sens. Actuators A: Phys. 369, 143835 (2024).


Google Scholar
 

Karami, H. et al. Advanced evaluation techniques: gas sensor networks, machine learning, and chemometrics for fraud detection in plant and animal products. Sens. Actuators A—Phys. 370, 115192 (2024).


Google Scholar
 

Mahdavi, H., Rahbarpour, S., Hosseini-Golgoo, S. M. & Jamaati, H. A single gas sensor assisted by machine learning algorithms for breath-based detection of COPD: A pilot study. Sens. Actuators A-Phys. 376, 115650 (2024).


Google Scholar
 

Viet, N. N., Phuoc, P. H., Thong, L. V., Chien, N. V. & Van Hieu, N. A comparative study of machine learning models for identifying noxious gases through thermal fingerprint measurements and MOS sensors. Sens. Actuators A: Phys. 375, 115510 (2024).


Google Scholar
 

Zhang, A. et al. Dual-gas sensing via SnO2-TiO2 heterojunction on MXene: Machine learning-enhanced selectivity and sensitivity for hydrogen and ammonia detection. Sens. Actuators B: Chem. 429, 137340 (2025).


Google Scholar
 

Zhang, H., Zhao, Z., Chen, C. & Wu, L. PtRu nanoalloys decorated In2O3 nanoparticles: gas sensing performance, mechanism study and machine learning-assisted discrimination of multiple volatile organic compounds. Sens. Actuators B: Chem. 425, 136973 (2025).


Google Scholar
 

Su, M., Guo, Y., Hong, X. & Zheng, Y. Machine-learning for discovery of descriptors for gas-sensing: a case study of doped metal oxides. Talanta 287, 127594 (2025).


Google Scholar
 

Wang, Q., Xing, M., Sun, Y., Pan, X. & Jing, Y. Optical gas imaging for leak detection based on improved deeplabv3+model. Opt. Lasers Eng. 175, 108058 (2024).


Google Scholar
 

Wang, J., Huang, Z., Xu, Y. & Xie, D. Gas-liquid two-phase flow measurement based on optical flow method with machine learning optimization model. Appl. Sci.: Basel 14, 3717 (2024).


Google Scholar
 

Mansouri, T. S., Wang, H., Mariotti, D. & Maguire, P. Distinguishing methane from other hydrocarbons using machine learning and atmospheric pressure plasma optical emission spectroscopy. J. Phys. D: Appl. Phys. 57, 345202 (2024).


Google Scholar
 

Kang, M., Son, J., Lee, B. & Nam, H. Reconstruction of the chemical gas concentration distribution using partial convolution-based image inpainting. Sensors 24, 4470 (2024).


Google Scholar
 

Hu, J., Qian, H., Han, S., Zhang, P. & Lu, Y. Light-activated virtual sensor array with machine learning for non-invasive diagnosis of coronary heart disease. Nano-Micro Lett. 16, 274 (2024).


Google Scholar
 

Guan, G. et al. Near-infrared off-axis cavity-enhanced optical frequency comb spectroscopy for CO2/CO dual-gas detection assisted by machine learning. ACS Sens 9, 820–829 (2024).


Google Scholar
 

Golyak, I. S. et al. A hybrid learning approach to better classify exhaled breath’s infrared spectra: a noninvasive optical diagnosis for socially significant diseases. J. Biophotonics 17, 202400151 (2024).


Google Scholar
 

Leng, T., Li, L. & Lee, C. Journal editorial: welcome to the new era of AI-enabled sensing. AI Sens. 1, 1361945 (2025).


Google Scholar
 

Cho, I. et al. Deep-learning-based gas identification by time-variant illumination of a single micro-LED-embedded gas sensor. Light Sci. Appl. 12, 95 (2023).


Google Scholar
 

Zeng, X. et al. An enhanced gas sensor data classification method using principal component analysis and synthetic minority over-sampling technique algorithms. Micromachines 15, 1501 (2024).


Google Scholar
 

Wang, Y. et al. An artificial optical nose integrated by metal-organic frameworks three-dimensional photonic crystal array for identification of trace hazardous gases through machine learning integration. J. Environ. Chem. Eng. 13, 117043 (2025).


Google Scholar
 

Tariq, A. et al. Modelling, mapping and monitoring of forest cover changes, using support vector machine, kernel logistic regression and naive bayes tree models with optical remote sensing data. Heliyon 9, e13212 (2023).


Google Scholar
 

Liu, H., Li, Q. & Gu, Y. A multi-task learning framework for gas detection and concentration estimation. Neurocomputing 416, 28–37 (2020).


Google Scholar
 

Fan, H., Schaffernicht, E. & Lilienthal, A. J. Ensemble learning-based approach for gas detection using an electronic nose in robotic applications. Front. Chem. 10, 863838 (2022).


Google Scholar
 

Yuan, X. et al. A cloud-edge collaborative framework for adaptive quality prediction modeling in IIoT. IEEE Sens. J. 24, 33656–33668 (2024).


Google Scholar
 

Kumar, M., Walia, G. K., Shingare, H., Singh, S. & Gill, S. S. AI-based sustainable and intelligent offloading framework for IIoT in collaborative cloud-fog environments. IEEE Trans. Consum. Electron. 70, 1414–1422 (2024).


Google Scholar
 

Haji-Aghajany, S., Rohm, W., Kryza, M. & Smolak, K. Machine learning-based wet refractivity prediction through GNSS troposphere tomography for ensemble troposphere conditions forecasting. IEEE Trans. Geosci. Remote Sens. 62, 1–18 (2024).


Google Scholar
 

Zhao, D., Zhou, J., Zhai, J. & Li, K. A reinforcement learning based framework for holistic energy optimization of sustainable cloud data centers. IEEE Trans. Serv. Comput. 18, 15–28 (2025).


Google Scholar
 

Nagnure, H. M., Prasad, T. & Kundu, D. Selective gas adsorption using graphitic carbon nitride: Exploring the role of molecular descriptors by artificial intelligence frameworks. J. Environ. Manag. 376, 124432 (2025).


Google Scholar
 

Corradino, C., Jouve, P., La Spina, A. & Del Negro, C. Monitoring earth’s atmosphere with sentinel-5 TROPOMI and artificial intelligence: quantifying volcanic SO2 emissions. Remote Sens. Environ. 315, 114463 (2024).


Google Scholar
 

Merenda, M., Porcaro, C. & Iero, D. Edge machine learning for AI-enabled IoT devices: a review. Sensors 20, 2533 (2020).


Google Scholar
 

Sethi, P. & Sarangi, S. R. Internet of things: architectures, protocols, and applications. J. Electr. Comput. Eng. 2017, 1–25 (2017).


Google Scholar
 

Gonzalez, E. et al. LoRa sensor network development for air quality monitoring or detecting gas leakage events. Sensors 20, 6225 (2020).


Google Scholar
 

Edje, A. E., Abd Latiff, M. S. & Chan, W. H. IoT data analytic algorithms on edge-cloud infrastructure: a review. Digital Commun. Netw. 9, 1486–1515 (2023).


Google Scholar
 

Zhang, L. et al. Near-infrared mobile cloud OA-ICOS sensor system for atmospheric carbon dioxide monitoring. Anal. Chem. 97, 4021–4030 (2025).


Google Scholar
 

Hu, K. et al. A review of satellite-based CO2 data reconstruction studies: methodologies, challenges, and advances. Remote Sens 16, 3818 (2024).

Xue, C. et al. Smartphone case-based gas sensing platform for on-site acetone tracking. ACS Sens 7, 1581–1592 (2022).


Google Scholar
 

Olawade, D. B. et al. Artificial intelligence in environmental monitoring: Advancements, challenges, and future directions. Hyg. Environ. Health Adv. 12, 1417568 (2024).


Google Scholar
 

Cao, J. et al. Recent development of gas sensing platforms based on 2D atomic crystals. Research 2021, 9863038 (2021).

Wu, X. et al. Bionic olfactory neuron with in-sensor reservoir computing for intelligent gas recognition. Adv. Mater. 37, 2419159 (2025).


Google Scholar
 

Cho, J. et al. A mixture-gas edge-computing multisensor device with generative learning framework. IEEE Sens. J. 24, 15023–15032 (2024).


Google Scholar
 

Van Quang, T. et al. AI management platform for privacy-preserving indoor air quality control: Review and future directions. J. Build. Eng. 100, 111712 (2025).


Google Scholar
 

Yuan, H., Yang, H., Li, R., Wang, J. & Tian, L. Personal safety monitoring system of electric power construction site based on AIoT Technology. J. Intell. Fuzzy Syst. 46, 493–504 (2024).


Google Scholar
 

Winkler, N. P. et al. Super-resolution for gas distribution mapping. Sens. Actuators B: Chem. 419, 136267 (2024).


Google Scholar
 

Liu, X. et al. Artificial intelligence-enhanced waveguide “photonic nose”- augmented sensing platform for VOC gases in mid-infrared. Small 20 (2024).

Xiao, Z. et al. Multimodal in-sensor computing system using integrated silicon photonic convolutional processor. Adv. Sci. 11, e2408597 (2024).


Google Scholar
 

Wu, C. et al. Freeform direct-write and rewritable photonic integrated circuits in phase-change thin films. Sci. Adv. 10, 1361 (2024).


Google Scholar
 

Xiao, Z. et al. Recent progress in silicon-based photonic integrated circuits and emerging applications. Adv. Opt. Mater. 11, 2301028 (2023).


Google Scholar
 

Dong, B. et al. Higher-dimensional processing using a photonic tensor core with continuous-time data. Nat. Photonics 17, 1080–1088 (2023).


Google Scholar
 

Huang, C. et al. Prospects and applications of photonic neural networks. Adv. Phys.: X 7 (2021).

Zhang, Y. et al. Reconfigurable electro-optic FET based on ferroelectric electrostatic doping toward optical field programmable gate arrays. ACS Photonics 11, 4761–4768 (2024).


Google Scholar
 

Dong, Z. et al. Monolithic barium titanate modulators on silicon-on-insulator substrates. ACS Photonics 10, 4367–4376 (2023).


Google Scholar
 

Wang, C. et al. Lithium tantalate photonic integrated circuits for volume manufacturing. Nature 629, 784–790 (2024).


Google Scholar
 

Xu, S., Liu, W., Le, X. & Lee, C. Unveiling efficient acousto-optic modulation in silicon photonic devices via lithium niobate using transfer printing. Nano Lett. 24, 12964–12972 (2024).


Google Scholar
 

Gao, L., Kou, D., Lin, R., Ma, W. & Zhang, S. Visual recognition of volatile organic compounds by photonic nose integrated with multiple metal-organic frameworks. Small 20, 2308641 (2024).


Google Scholar
 

Yoon, M. et al. Scalable photonic nose development through corona phase molecular recognition. ACS Sens 9, 6311–6319 (2024).


Google Scholar
 

Phan-Quang, G. C. et al. Tracking airborne molecules from afar: three-dimensional metal-organic framework-surface-enhanced raman scattering platform for stand-off and real-time atmospheric monitoring. ACS Nano 13, 12090–12099 (2019).


Google Scholar
 

Meng, J., Balendhran, S., Sabri, Y., Bhargava, S. K. & Crozier, K. B. Smart mid-infrared metasurface microspectrometer gas sensing system. Microsyst. Nanoeng. 10, 74 (2024).


Google Scholar
 

Kwon, S., Park, J.-H., Jang, H.-D., Nam, H. & Chang, D. E. A Sensor drift compensation method with a masked autoencoder module. Appl. Sci. 14, 2604 (2024).


Google Scholar
 

Heng, Y., Zhou, Y., Nguyen, D. H., Nguyen, V. D. & Jiao, M. An electronic nose drift compensation algorithm based on semi-supervised adversarial domain adaptive convolutional neural network. Sens. Actuators B 422, 136642 (2025).


Google Scholar
 

Se, H. et al. Online drift compensation framework based on active learning for gas classification and concentration prediction. Sens. Actuators B 398, 134716 (2024).


Google Scholar
 

Xie, X. et al. SERS-based AI diagnosis of lung and gastric cancer via exhaled breath. Spectrochim. Acta A: Mol. Biomol. Spectrosc. 314, 124181 (2024).


Google Scholar
 

SharathKumar, M., Heuvelink, E. & Marcelis, L. F. M. Vertical farming: moving from genetic to environmental modification. Trends Plant Sci. 25, 724–727 (2020).


Google Scholar
 

Lochbaum, A. et al. Compact mid-infrared gas sensing enabled by an all-metamaterial design. Nano Lett. 20, 4169–4176 (2020).


Google Scholar
 

Damdam, A. N. et al. IoT-enabled electronic nose system for beef quality monitoring and spoilage detection. Foods 12, 2227 (2023).


Google Scholar
 

Butt, M. A. & Piramidowicz, R. Integrated photonic sensors for the detection of toxic gasses—a review. Chemosensors 12, 143 (2024).


Google Scholar
 

Xie, J. et al. Artificial intelligence-enhanced “photonic nose” for mid-infrared spectroscopic analysis of trace volatile organic compound mixtures. Adv. Opt. Mater. 12, 2401582 (2024).


Google Scholar
 

Zong, B. et al. Smart gas sensors: recent developments and future prospective. Nanomicro Lett. 17, 54 (2024).


Google Scholar
 

Guo, S. et al. Development of a cloud-based epidermal MoSe2 device for hazardous gas sensing. Adv. Funct. Mater. 29 (2019).

Ren, Z. et al. Near-sensor edge computing system enabled by a CMOS compatible photonic integrated circuit platform using bilayer AlN/Si waveguides. Nanomicro Lett. 17, 261 (2025).


Google Scholar
 

Shu, H. et al. Microcomb-driven silicon photonic systems. Nature 605, 457–463 (2022).


Google Scholar
 

Liu, X. et al. Development of photonic in-sensor computing based on a mid-infrared silicon waveguide platform. ACS Nano 18, 22938–22948 (2024).


Google Scholar
 

Liu, X. et al. Artificial intelligence-enhanced waveguide “photonic nose”-augmented sensing platform for VOC gases in mid-infrared. Small 20, e2400035 (2024).


Google Scholar
 

Zhuge, Y. et al. Photonic Bayesian neural networks: leveraging programmable noise for robust and uncertainty-aware computing. Adv. Sci. 12, e2500525 (2025).


Google Scholar
 

Pai, S. et al. Experimentally realized in situ backpropagation for deep learning in photonic neural networks. Science 380, 398–404 (2023).


Google Scholar
 

Dong, B. et al. Partial coherence enhances parallelized photonic computing. Nature 632, 55–62 (2024).


Google Scholar
 

Kim, S. et al. Nanoengineering approaches toward artificial nose. Front. Chem. 9, 629329 (2021).


Google Scholar
 

Perkins, J. & Gholipour, B. Optoelectronic gas sensing platforms: from metal oxide lambda sensors to nanophotonic metamaterials. Adv. Photonics Res. 2, 2000141 (2021).


Google Scholar
 

Nasrollah Gavgani, J., Tavakoli, N., Heidari, H. & Mahyari, M. Graphene-based nanocomposites sensors for detection of ammonia. Int. J. Environ. Anal. Chem. 104, 2834–2858 (2022).


Google Scholar
 

Miah, M. R. et al. Polypyrrole-based sensors for volatile organic compounds (VOCs) sensing and capturing: a comprehensive review. Sens. Actuators A: Phys. 347, 113933 (2022).


Google Scholar
 

Chowdhury, S. J. et al. On-chip hybrid integration of swept frequency distributed-feedback laser with silicon photonic circuits using photonic wire bonding. Opt. Express 32, 3085–3099 (2024).


Google Scholar
 

Xie, Y. et al. Towards large-scale programmable silicon photonic chip for signal processing. Nanophotonics 13, 2051–2073 (2024).


Google Scholar
 

Epping, R. & Koch, M. On-site detection of volatile organic compounds (VOCs). Molecules 28, 1598 (2023).


Google Scholar
 

Alseekh, S. et al. Mass spectrometry-based metabolomics: a guide for annotation, quantification and best reporting practices. Nat. Methods 18, 747–756 (2021).


Google Scholar
 

Bajo-Fernandez, M., Souza-Silva, E. A., Barbas, C., Rey-Stolle, M. F. & Garcia, A. GC-MS-based metabolomics of volatile organic compounds in exhaled breath: applications in health and disease. A review. Front. Mol. Biosci. 10, 1295955 (2023).


Google Scholar
 

Le, T. & Priefer, R. Detection technologies of volatile organic compounds in the breath for cancer diagnoses. Talanta 265, 124767 (2023).


Google Scholar
 

Chen, X., Wreyford, R. & Nasiri, N. Recent advances in ethylene gas detection. Materials 15, 5813 (2022).


Google Scholar
 

Lan, K., Liu, S., Wang, Z., Long, L. & Qin, G. High-performance pyramid-SiNWs biosensor for NH(3)gas detection. Nanotechnology 35, 105501 (2023).


Google Scholar
 

Choi, D. et al. Bioelectrical nose platform using odorant-binding protein as a molecular transporter mimicking human mucosa for direct gas sensing. ACS Sens 7, 3399–3408 (2022).


Google Scholar
 

Xiang, C. et al. 3D integration enables ultralow-noise isolator-free lasers in silicon photonics. Nature 620, 78–85 (2023).


Google Scholar
 

Murtaza Rind, Y. et al. Broadband multifunctional metasurfaces enabling polarization multiplexed focused vortex array generation. Mater. Today Commun. 38, 107648 (2024).


Google Scholar
 

Kacmoli, S. & Gmachl, C. F. Quantum cascade disk and ring lasers. Appl. Phys. Lett. 124 (2024).

Piotrowski, M. et al. Direct measurement of current-dependent optical losses in interband cascade lasers. Appl. Phys. Lett. 125 (2024).

Rodrigo, P. J. et al. Fast horizontal radial plume mapping of N2O using open-path absorption spectroscopy with a quantum-cascade laser. Atmos. Environ. 328, 120510 (2024).


Google Scholar
 

Zhang, K., Mayer, R., Burghart, D., Boehm, G. & Belkin, M. A. Mid-infrared wavelength multiplexers on an InP platform. Nanophotonics https://doi.org/10.1038/s41598-017-07164-1 (2025).

Huang, W. et al. Simultaneous measurement of 13C-, 18O-, and 17O- isotopes of CO2 using a compact mid-infrared hollow waveguide gas sensor. Sensors Actuators B: Chem. 417 (2024).

Zhao, Y., Liu, Y., Liu, Q., Zhao, J. & Zhang, Y. -n Room-temperature operated fast reversible ammonia sensor based on hybrid optical fiber structure with temperature compensated function. Sens. Actuators B: -Chem. 408, 135472 (2024).


Google Scholar
 

Matuck, L. et al. Towards smart and secure batteries: Linking pressure and temperature profiles with electrochemical behavior through hybrid optical fiber sensors. Chem. Eng. J. 500, 156806 (2024).


Google Scholar
 

Dong, L. et al. Highly promising 2D/1D BP-C/CNT bionic opto-olfactory co-sensory artificial synapses for multisensory integration. Adv. Sci. 11 (2024).

Krochin-Yepez, P.-A., Scholz, U. & Zimmermann, A. CMOS-compatible measures for thermal management of phase-sensitive silicon photonic systems. Photonics 7, 6 (2020).


Google Scholar
 

Ren, X. et al. Photorefractive and pyroelectric photonic memory and long-term stability in thin-film lithium niobate microresonators. npj Nanophotonics 2, 1 (2025).


Google Scholar
 

Xie, W. et al. A versatile synthesis platform based on polymer cubosomes for a library of highly ordered nanoporous metal oxides particles. Adv. Mater. 36 (2024).

Solomatin, M. A. et al. Bottom-up designing nanostructured oxide libraries under a lab-on-chip paradigm towards a low-cost highly-selective E-nose. Anal. Chim. Acta 1333, 343387 (2025).


Google Scholar
 

Gohel, V. R. et al. Multioxide combinatorial libraries: fusing synthetic approaches and additive technologies for highly orthogonal electronic noses. Lab Chip 24, 3810–3825 (2024).


Google Scholar
 

Gong, X. et al. Size selective corona interactions from self-assembled rosette and single-walled carbon nanotubes. Small 18, e2104951 (2022).


Google Scholar
 

Zheng, J. X. et al. Arbitrary fabrication of complex lithium niobate three-dimensional microstructures for second harmonic generation enhancement. Opt. Lett. 49, 850–853 (2024).


Google Scholar
 

Tao, C., Xiao, R., Wang, Y., Qi, J. & Li, H. A general transitive transfer learning framework for cross-optical sensor remote sensing image scene understanding. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 16, 4248–4260 (2023).


Google Scholar
 

Mena, M. d. C. R., Munoz, A., Sanz-Bobi, M. A., Gonzalez-Calvo, D. & Alvarez-Tejedor, T. Application of ensemble machine learning techniques to the diagnosis of the combustion in a gas turbine. Appl. Therm. Eng. 249 (2024).

Marvin, M. K. et al. Review of progress and implication of machine learning in geological carbon dioxide storage. Geosyst. Eng. https://doi.org/10.1080/12269328.2025.2499267 (2025).

Amorim, M. L. M. et al. Open-source data logger system for real-time monitoring and fault detection in bench testing. Inventions 9, 120 (2024).


Google Scholar
 

Tang, C. et al. A comparative study on hydrocarbon detection using cepstrum-based methods. J. Appl. Geophys. 226, 105412 (2024).


Google Scholar
 

Yu, L. & Zhang, M. Unsupervised gas pipeline network leakage detection method based on improved graph deviation network. J. Loss Prev. Process Ind. 91, 105396 (2024).


Google Scholar
 

Zheng, X., Cheng, W., Xue, S. & Liao, R. Adaptive prediction and correction of low-concentration gas mixture concentration and abnormal concentration. Measurement 253, 117442 (2025).


Google Scholar
 

Pereira, M. E., Deuermeier, J., Martins, R., Barquinha, P. & Kiazadeh, A. Unlocking neuromorphic vision: advancements in IGZO-based optoelectronic memristors with visible range sensitivity. ACS Appl. Electron. Mater. 6, 5230–5243 (2024).


Google Scholar
 

Li, D., Zhou, H., Hui, X., He, X. & Mu, X. Plasmonic biosensor augmented by a genetic algorithm for ultra-rapid, label-free, and multi-functional detection of COVID-19. Anal. Chem. 93, 9437–9444 (2021).


Google Scholar
 

Lemes, E. M. Raman spectroscopy—a visit to the literature on plant, food, and agricultural studies. J. Sci. Food Agric. 105, 2128–2133 (2025).


Google Scholar
 

Kneipp, J., Seifert, S. & Garber, F. SERS microscopy as a tool for comprehensive biochemical characterization in complex samples. Chem. Soc. Rev. 53, 7641–7656 (2024).


Google Scholar
 

Liu, Y. et al. Intelligent point-of-care biosensing platform based on luminescent nanoparticles and microfluidic biochip with machine vision algorithm analysis. Nanomicro Lett. 17, 215 (2025).


Google Scholar
 

Ren, S. et al. A microchip based Z-cell absorbance detector integrating micro-lenses and slits for portable liquid chromatography. J. Chromatogr. A 1730, 465099 (2024).


Google Scholar
 

Jiao, D. et al. Rapid detection of glycosylated hemoglobin levels by a microchip liquid chromatography system in gradient elution mode. Anal. Chim. Acta 1288, 342186 (2024).


Google Scholar
 

Jiao, D. et al. Performance evaluation of a 3D split-and-recombination micromixer with asymmetric structures. J. Micromech. Microeng. 32, 075007 (2022).


Google Scholar
 

Jiao, D. et al. Compact photometric detector integrated with separation microchip for potential portable liquid chromatography system. J. Chromatogr. A 1731, 465175 (2024).


Google Scholar
 

Kumar, V., Raghuwanshi, S. K. & Kumar, S. Advances in nanocomposite thin-film-based optical fiber sensors for environmental health monitoring—a review. IEEE Sens. J. 22, 14696–14707 (2022).


Google Scholar
 

Chowdhury, M. A. Z. & Oehlschlaeger, M. A. Deep learning for gas sensing via infrared spectroscopy. Sensors 24, 20240314 (2024).


Google Scholar
 

Hashemitaheri, M., Ebrahimi, E., de Silva, G. & Attariani, H. Optical sensor for BTEX detection: Integrating machine learning for enhanced sensing. Adv. Sens. Energy Mater. 3, 100114 (2024).


Google Scholar
 

Chowdhury, M. A. Z., Rice, T. E. & Oehlschlaeger, M. A. TSMC-Net: deep-learning multigas classification using THz absorption spectra. ACS Sens 8, 1230–1240 (2023).


Google Scholar
 

Bae, G. et al. Impact of a diverse combination of metal oxide gas sensors on machine learning-based gas recognition in mixed gases. ACS Omega 6, 23155–23162 (2021).


Google Scholar
 

Cho, S. Y. et al. Finding hidden signals in chemical sensors using deep learning. Anal. Chem. 92, 6529–6537 (2020).


Google Scholar
 

Ma, N., Halley, S., Ramaiyan, K., Garzon, F. & Tsui, L.-k Comparison of machine learning algorithms for natural gas identification with mixed potential electrochemical sensor arrays. ECS Sens. 2, 011402 (2023).


Google Scholar
 

Aliramezani, M., Norouzi, A. & Koch, C. R. A grey-box machine learning based model of an electrochemical gas sensor. Sens. Actuators B 321, 536–551 (2020).


Google Scholar
 

Smith, K. R. et al. An improved low-power measurement of ambient NO2 and O3 combining electrochemical sensor clusters and machine learning. Atmos. Meas. Tech. 12, 1325–1336 (2019).


Google Scholar
 

Tian, L. et al. Analysis of gas mixtures with broadband dual frequency comb spectroscopy and unsupervised learning neural network. Adv. Intell. Syst. 5 (2023).

Sun, Q., Liu, T., Xu, J., Li, H. & Huang, M. Rapid recognition and concentration prediction of gas mixtures based on SMLP. IEEE Trans. Instrum. Meas. 73, 1–9 (2024).


Google Scholar
 

Ni, J., Yang, H., Yao, J., Li, Z. & Qin, P. Toxic gas dispersion prediction for point source emission using deep learning method. Hum. Ecol. Risk Assess.: Int. J. 26, 557–570 (2019).


Google Scholar
 

Bao, N. et al. Sensing gas mixtures by analyzing the spatiotemporal optical responses of liquid crystals using 3d convolutional neural networks. ACS Sens 7, 2545–2555 (2022).


Google Scholar
 

Sun, J. et al. Dual gas sensor with innovative signal analysis based on neural network. Sens. Actuators B 373, 132697 (2022).


Google Scholar
 

Chowdhury, M. A. Z., Rice, T. E. & Oehlschlaeger, M. A. VOC-Net: a deep learning model for the automated classification of rotational THz spectra of volatile organic compounds. Appl. Sci. 12, 8447–1240 (2022).


Google Scholar
 

Tian, L. et al. Retrieval of gas concentrations in optical spectroscopy with deep learning. Measurement 182, 109739 (2021).


Google Scholar
 

Kornienko, V. V. et al. Machine learning for optical gas sensing: a leaky-mode humidity sensor as example. IEEE Sens. J. 20, 6954–6963 (2020).


Google Scholar
 

Eo, M., Han, J. & Rhee, W. Deep learning framework with essential pre-processing techniques for improving mixed-gas concentration prediction. IEEE Access 11, 25467–25479 (2023).


Google Scholar
 

Oh, J. et al. Machine learning-based discrimination of indoor pollutants using an oxide gas sensor array: High endurance against ambient humidity and temperature. Sens. Actuators B 364, 131894 (2022).


Google Scholar
 

Djeziri, M. A. et al. A temporal-based SVM approach for the detection and identification of pollutant gases in a gas mixture. Appl. Intell. 52, 6065–6078 (2021).


Google Scholar
 

Kang, M. et al. High accuracy real-time multi-gas identification by a batch-uniform gas sensor array and deep learning algorithm. ACS Sens 7, 430–440 (2022).


Google Scholar
 

Narkhede, P. et al. Gas detection and identification using multimodal artificial intelligence based sensor fusion. Appl. Syst. Innov. 4, 3 (2021).


Google Scholar
 

Kwon, D. et al. Low-power and reliable gas sensing system based on recurrent neural networks. Sens. Actuators B 340, 129258 (2021).


Google Scholar
 

Qiao, Q. et al. MEMS-enabled on-chip computational mid-infrared spectrometer using silicon photonics. ACS Photonics 9, 2367–2377 (2022).


Google Scholar
 

Yaqoob, U. & Younis, M. I. Chemical gas sensors: recent developments, challenges, and the potential of machine learning—a review. Sensors 21 (2021).

Seesaard, T., Goel, N., Kumar, M. & Wongchoosuk, C. Advances in gas sensors and electronic nose technologies for agricultural cycle applications. Comput. Electron. Agric. 193, 106673 (2022).


Google Scholar
 

Hayasaka, T. et al. An electronic nose using a single graphene FET and machine learning for water, methanol, and ethanol. Microsyst. Nanoeng. 6, 50 (2020).


Google Scholar