• Filho AM, Laversanne M, Ferlay J, Colombet M, Piñeros M, Znaor A, et al. The GLOBOCAN 2022 cancer estimates: data sources, methods, and a snapshot of the cancer burden worldwide. Int J Cancer. 2025;156(7):1336–46.

    PubMed 

    Google Scholar
     

  • Fahad Ullah M. Breast cancer: current perspectives on the disease status. Breast Cancer Metastasis Drug Resistance: Challenges Progress. 2019;1152:51–64. https://doi.org/10.1007/978-3-030-20301-6_4

  • Liu X, Zhang G, Zhao L. Detection of transmembrane protein 100 in breast cancer: correlation with malignant progression and chemosensitivity. Cytojournal. 2024;21:65.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Britt KL, Cuzick J, Phillips K-A. Key steps for effective breast cancer prevention. Nat Rev Cancer. 2020;20(8):417–36.

    CAS 
    PubMed 

    Google Scholar
     

  • Ye F, Dewanjee S, Li Y, Jha NK, Chen Z-S, Kumar A, et al. Advancements in clinical aspects of targeted therapy and immunotherapy in breast cancer. Mol Cancer. 2023;22(1):105.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ma X, Cheng H, Hou J, Jia Z, Wu G, Lü X, et al. Detection of breast cancer based on novel porous silicon Bragg reflector surface-enhanced Raman spectroscopy-active structure. Chin Opt Lett. 2020;18(5): 051701.


    Google Scholar
     

  • Yuan H, Chen Y, Hu Y, Li Y, Zhang H, Zhang S et al. Disulfide bond-driven nanoassembly of lipophilic epirubicin prodrugs for breast cancer therapy. J Pharm Invest. 2025. https://doi.org/10.1007/s40005-025-00731-z

  • Lee S, Rauch J, Kolch W. Targeting MAPK signaling in cancer: mechanisms of drug resistance and sensitivity. Int J Mol Sci. 2020;21(3): 1102.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Braicu C, Buse M, Busuioc C, Drula R, Gulei D, Raduly L, et al. A comprehensive review on MAPK: a promising therapeutic target in cancer. Cancers (Basel). 2019;11(10):1618.

    CAS 
    PubMed 

    Google Scholar
     

  • Cheng Y, Chen J, Shi Y, Fang X, Tang Z. MAPK signaling pathway in oral squamous cell carcinoma: biological function and targeted therapy. Cancers. 2022. https://doi.org/10.3390/cancers14194625.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bridges MC, Daulagala AC, Kourtidis A. LNCcation: LncRNA localization and function. J Cell Biol. 2021;220(2): e202009045.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guo Z, Guan K, Bao M, He B, Lu J. LINC-PINT plays an anti-tumor role in nasopharyngeal carcinoma by binding to XRCC6 and affecting its function. Pathol Res Pract. 2024;260: 155460.

    CAS 
    PubMed 

    Google Scholar
     

  • Jiang M-C, Ni J-J, Cui W-Y, Wang B-Y, Zhuo W. Emerging roles of LncRNA in cancer and therapeutic opportunities. Am J Cancer Res. 2019;9(7):1354.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu S, Li X, Xie Q, Zhang S, Liang X, Li S, et al. Identification of a lncRNA/circRNA-miRNA-mRNA network in nasopharyngeal carcinoma by deep sequencing and bioinformatics analysis. J Cancer. 2024;15(7):1916–28.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang Y, Zhang M, Wang Z, Guo W, Yang D. MYC-binding lncRNA EPIC1 promotes AKT-mTORC1 signaling and Rapamycin resistance in breast and ovarian cancer. Mol Carcinog. 2020;59(10):1188–98.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shi G, Cheng Y, Zhang Y, Guo R, Li S, Hong X. Long non-coding RNA LINC00511/miR-150/MMP13 axis promotes breast cancer proliferation, migration and invasion. Biochim Biophys Acta Mol Basis Dis. 2021;1867(3): 165957.

    CAS 
    PubMed 

    Google Scholar
     

  • Ouyang J, Liu Z, Yuan X, Long C, Chen X, Wang Y, et al. Lncrna PRNCR1 promotes breast cancer proliferation and inhibits apoptosis by modulating microRNA-377/CCND2/MEK/MAPK axis. Arch Med Res. 2021;52(5):471–82.

    CAS 
    PubMed 

    Google Scholar
     

  • Yang G, Lu X, Yuan L. LncRNA: a link between RNA and cancer. Biochim Biophys Acta Mol Basis Dis. 2014;1839(11):1097–109.

    CAS 
    PubMed 

    Google Scholar
     

  • Zhou Y, Li Q, Pan R, Wang Q, Zhu X, Yuan C, et al. Regulatory roles of three MiRNAs on allergen mRNA expression in Tyrophagus putrescentiae. Allergy. 2022;77(2):469–82.

  • Jathar S, Kumar V, Srivastava J, Tripathi V. Technological developments in LncRNA biology. Long Non Coding RNA Biology. 2017;1008:283–323.

  • Ebrahimnezhad M, Asl SH, Rezaie M, Molavand M, Yousefi B, Majidinia M, lncRNAs. New players of cancer drug resistance via targeting ABC transporters. IUBMB Life. 2024;76(11):883–921.

    CAS 
    PubMed 

    Google Scholar
     

  • Khorkova O, Hsiao J, Wahlestedt C. Basic biology and therapeutic implications of LncRNA. Adv Drug Deliv Rev. 2015;87:15–24.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mattick JS, Amaral PP, Carninci P, Carpenter S, Chang HY, Chen L-L, et al. Long non-coding rnas: definitions, functions, challenges and recommendations. Nat Rev Mol Cell Biol. 2023;24(6):430–47.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kung JT, Colognori D, Lee JT. Long noncoding rnas: past, present, and future. Genetics. 2013;193(3):651–69.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rinn JL, Kertesz M, Wang JK, Squazzo SL, Xu X, Brugmann SA, et al. Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs. Cell. 2007;129(7):1311–23.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hung T, Wang Y, Lin MF, Koegel AK, Kotake Y, Grant GD, et al. Extensive and coordinated transcription of noncoding RNAs within cell-cycle promoters. Nat Genet. 2011;43(7):621–9.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lanz RB, McKenna NJ, Onate SA, Albrecht U, Wong J, Tsai SY, et al. A steroid receptor coactivator, SRA, functions as an RNA and is present in an SRC-1 complex. Cell. 1999;97(1):17–27.

    CAS 
    PubMed 

    Google Scholar
     

  • Lanz RB, Razani B, Goldberg AD, O’Malley BW. Distinct RNA motifs are important for coactivation of steroid hormone receptors by steroid receptor RNA activator (SRA). Proc Natl Acad Sci U S A. 2002;99(25):16081–6.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu X, Sun M, Nie F, Ge Y, Zhang E, Yin D, Wang,Z. Lnc RNA HOTAIR functions as a competing endogenous RNA to regulate HER2 expression by sponging miR-331‐3p in gastric cancer. Mol Cancer. 2014;13:92.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Keniry A, Oxley D, Monnier P, Kyba M, Dandolo L, Smits G, et al. The H19 lincRNA is a developmental reservoir of miR-675 that suppresses growth and Igf1r. Nat Cell Biol. 2012;14(7):659–65.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim EK, Choi E-J. Pathological roles of MAPK signaling pathways in human diseases. Biochim Biophys Acta Mol Basis Dis. 2010;1802(4):396–405.

    CAS 
    PubMed 

    Google Scholar
     

  • Urosevic J, Nebreda AR, Gomis RR. MAPK signaling control of colon cancer metastasis. Cell Cycle. 2014;13(17):2641–2.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim EK, Choi E-J. Compromised MAPK signaling in human diseases: an update. Arch Toxicol. 2015;89:867–82.

    CAS 
    PubMed 

    Google Scholar
     

  • Shapiro P. Ras-MAP kinase signaling pathways and control of cell proliferation: relevance to cancer therapy. Crit Rev Clin Lab Sci. 2002;39(4–5):285–330.

    CAS 
    PubMed 

    Google Scholar
     

  • Wang H, Hao R, Liu W, Zhang Y, Ma S, Lu Y, et al. Identification of transcription factors associated with the disease-free survival of triple-negative breast cancer through weighted gene co-expression network analysis. Cytojournal. 2024;21:71.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Morales-Martínez M, Vega MI. P38 molecular targeting for next-generation multiple myeloma therapy. Cancers (Basel). 2024;16(2):256.

    PubMed 

    Google Scholar
     

  • Canovas B, Nebreda AR. Diversity and versatility of p38 kinase signalling in health and disease. Nat Rev Mol Cell Biol. 2021;22(5):346–66.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sarg NH, Zaher DM, Abu Jayab NN, Mostafa SH, Ismail HH, Omar HA. The interplay of p38 MAPK signaling and mitochondrial metabolism, a dynamic target in cancer and pathological contexts. Biochem Pharmacol. 2024;225: 116307.

    CAS 
    PubMed 

    Google Scholar
     

  • Maik-Rachline G, Lifshits L, Seger R. Nuclear P38: roles in physiological and pathological processes and regulation of nuclear translocation. Int J Mol Sci. 2020;21(17):6102. https://doi.org/10.3390/ijms21176102

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Astolfi A, Manfroni G, Cecchetti V, Barreca ML. A comprehensive structural overview of p38α mitogen-activated protein kinase in complex with ATP-site and non-ATP-site binders. ChemMedChem. 2018;13(1):7–14.

    CAS 
    PubMed 

    Google Scholar
     

  • Brennan CM, Emerson CP Jr., Owens J, Christoforou N. P38 MAPKs – roles in skeletal muscle physiology, disease mechanisms, and as potential therapeutic targets. JCI Insight. 2021;6(12):e149915. https://doi.org/10.1172/jci.insight.149915

  • Falcicchia C, Tozzi F, Arancio O, Watterson DM, Origlia N. Involvement of p38 MAPK in synaptic function and dysfunction. Int J Mol Sci. 2020;21(16): 5624.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Anton DB, Ducati RG, Timmers LFSM, Laufer S, Goettert MI. A special view of what was almost forgotten: p38δ MAPK. Cancers. 2021;13(9):2077.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • García-Hernández L, García-Ortega MB, Ruiz-Alcalá G, Carrillo E, Marchal JA, García M. The p38 MAPK components and modulators as biomarkers and molecular targets in cancer. Int J Mol Sci. 2021;23(1):370. https://doi.org/10.3390/ijms23010370

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Maik-Rachline G, Lifshits L, Seger R. Nuclear P38: roles in physiological and pathological processes and regulation of nuclear translocation. Int J Mol Sci. 2020;21(17): 6102.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Alharbi HO, Sugden PH, Clerk A. Mitogen-activated protein kinase signalling in rat hearts during postnatal development: mapks, MAP3Ks, MAP4Ks and DUSPs. Cell Signal. 2024;124: 111397.

    CAS 
    PubMed 

    Google Scholar
     

  • Zhang X, Zhang Z, Zou X, Wang Y, Qi J, Han S et al. Unraveling the mechanisms of intervertebral disc degeneration: an exploration of the p38 MAPK signaling pathway. Front Cell Dev Biology. 2024;11:1324561.

  • Chen L, Gong X, Huang M. YY1-activated long noncoding RNA SNHG5 promotes glioblastoma cell proliferation through p38/MAPK signaling pathway. Cancer Biotherapy Radiopharmaceuticals. 2019;34(9):589–96.

    CAS 
    PubMed 

    Google Scholar
     

  • Gan X, Zhao H, Wei Y, Jiang Q, Wen C, Ying Y. Role of miR-92a-3p, oxidative stress, and p38MAPK/NF-κB pathway in rats with central venous catheter related thrombosis. BMC Cardiovasc Disord. 2020;20(1):150.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang S, Ren Y, Li J, Li H, Li J, Lan X, et al. Microrna-671-5p regulates the inflammatory response of periodontal ligament stem cells via the DUSP8/p38 MAPK pathway. Mol Biol Rep. 2024;51(1):644.

    CAS 
    PubMed 

    Google Scholar
     

  • Meister M, Tomasovic A, Banning A, Tikkanen R. Mitogen-activated protein (MAP) kinase scaffolding proteins: a recount. Int J Mol Sci. 2013;14(3):4854–84.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Phan T, Zhang XH, Rosen S, Melstrom LG. P38 kinase in gastrointestinal cancers. Cancer Gene Ther. 2023;30(9):1181–9.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guo YJ, Pan WW, Liu SB, Shen ZF, Xu Y, Hu LL. ERK/MAPK signalling pathway and tumorigenesis. Exp Ther Med. 2020;19(3):1997–2007.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Song Y, Bi Z, Liu Y, Qin F, Wei Y, Wei X. Targeting RAS–RAF–MEK–ERK signaling pathway in human cancer: current status in clinical trials. Genes Dis. 2023;10(1):76–88.

    CAS 
    PubMed 

    Google Scholar
     

  • Tanimura S, Takeda K. ERK signalling as a regulator of cell motility. J Biochem. 2017;162(3):145–54.

    CAS 
    PubMed 

    Google Scholar
     

  • de la Fuente-Vivas D, Cappitelli V, García-Gómez R, Valero-Díaz S, Amato C, Rodriguéz J et al. ERK1/2 mitogen-activated protein kinase dimerization is essential for the regulation of cell motility. Mol Oncol. 2025;19(2):452-473.

  • Asl ER, Amini M, Najafi S, Mansoori B, Mokhtarzadeh A, Mohammadi A, et al. Interplay between MAPK/ERK signaling pathway and micrornas: a crucial mechanism regulating cancer cell metabolism and tumor progression. Life Sci. 2021;278: 119499.

    CAS 
    PubMed 

    Google Scholar
     

  • Lavoie H, Gagnon J, Therrien M. ERK signalling: a master regulator of cell behaviour, life and fate. Nat Rev Mol Cell Biol. 2020;21(10):607–32.

    CAS 
    PubMed 

    Google Scholar
     

  • Barbosa R, Acevedo LA, Marmorstein R. The MEK/ERK network as a therapeutic target in human cancer. Mol Cancer Res. 2021;19(3):361–74.

    CAS 
    PubMed 

    Google Scholar
     

  • Roskoski R Jr. ERK1/2 MAP kinases: structure, function, and regulation. Pharmacol Res. 2012;66(2):105–43.

    CAS 
    PubMed 

    Google Scholar
     

  • Novak L, Petrosino M, Pasquo A, Chaikuad A, Chiaraluce R, Knapp S, et al. Mutation in the common docking domain affects MAP kinase ERK2 catalysis and stability. Cancers (Basel). 2023;15(11):2938. https://doi.org/10.3390/cancers15112938

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Piserchio A, Ramakrishan V, Wang H, Kaoud TS, Arshava B, Dutta K, et al. Structural and dynamic features of F-recruitment site driven substrate phosphorylation by ERK2. Sci Rep. 2015;5(1):11127.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lake D, Corrêa SA, Müller J. Negative feedback regulation of the ERK1/2 MAPK pathway. Cell Mol Life Sci. 2016;73(23):4397–413.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Edwin F, Anderson K, Ying C, Patel TB. Intermolecular interactions of sprouty proteins and their implications in development and disease. Mol Pharmacol. 2009;76(4):679–91.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huang Y, Zhen Y, Chen Y, Sui S, Zhang L. Unraveling the interplay between RAS/RAF/MEK/ERK signaling pathway and autophagy in cancer: from molecular mechanisms to targeted therapy. Biochem Pharmacol. 2023;217: 115842.

    CAS 
    PubMed 

    Google Scholar
     

  • Yan H, He L, Lv D, Yang J, Yuan Z. The role of the dysregulated JNK signaling pathway in the pathogenesis of human diseases and its potential therapeutic strategies: a comprehensive review. Biomolecules. 2024;14(2):243.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Castro-Torres RD, Olloquequi J, Parcerisas A, Ureña J, Ettcheto M, Beas-Zarate C, et al. JNK signaling and its impact on neural cell maturation and differentiation. Life Sci. 2024;350: 122750.

    CAS 
    PubMed 

    Google Scholar
     

  • Kumar M, Kaur S, Kaur S. C-Jun N-terminal kinase (JNK), p38, and caspases: promising therapeutic targets for the regulation of apoptosis in cancer cells by phytochemicals. Curr Cancer Ther Rev. 2024;20(2):200–11.

    CAS 

    Google Scholar
     

  • Alkafaas SS, Khedr SA, ElKafas SS, Hafez W, Loutfy SA, Sakran M, et al. Targeting JNK kinase inhibitors via molecular docking: A promising strategy to address tumorigenesis and drug resistance. Bioorg Chem. 2024;153:107776.

    CAS 
    PubMed 

    Google Scholar
     

  • Li K, Chai D, Ren S, Lian X, Shi X, Xu Y, et al. Β2-microglobulin induced apoptosis of tumor cells via the ERK signaling pathway by directly interacting with HFE in HER2-overexpressing breast cancer. BMC Cancer. 2024;24(1):991.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ren W, Liang H, Sun J, Cheng Z, Liu W, Wu Y, et al. Tnfaip2 promotes Hif1α transcription and breast cancer angiogenesis by activating the Rac1-ERK-AP1 signaling axis. Cell Death Dis. 2024;15(11):821.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Garg R, Kumariya S, Katekar R, Verma S, Goand UK, Gayen JR. JNK signaling pathway in metabolic disorders: an emerging therapeutic target. Eur J Pharmacol. 2021;901: 174079.

    CAS 
    PubMed 

    Google Scholar
     

  • Duong MTH, Lee JH, Ahn HC. C-jun n-terminal kinase inhibitors: structural insight into kinase-inhibitor complexes. Comput Struct Biotechnol J. 2020;18:1440–57.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu R, Hu J. The role of JNK in prostate cancer progression and therapeutic strategies. Biomed Pharmacother. 2020;121: 109679.

    CAS 
    PubMed 

    Google Scholar
     

  • Nadel G, Maik-Rachline G, Seger R. JNK cascade-induced apoptosis—a unique role in GqPCR signaling. Int J Mol Sci. 2023;24(17): 13527.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pua LJW, Mai C-W, Chung FF-L, Khoo AS-B, Leong C-O, Lim W-M, et al. Functional roles of JNK and p38 MAPK signaling in nasopharyngeal carcinoma. Int J Mol Sci. 2022;23(3):1108.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zinatizadeh MR, Momeni SA, Zarandi PK, Chalbatani GM, Dana H, Mirzaei HR, et al. The role and function of Ras-association domain family in cancer: a review. Genes Dis. 2019;6(4):378–84.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rezatabar S, Karimian A, Rameshknia V, Parsian H, Majidinia M, Kopi TA, et al. RAS/MAPK signaling functions in oxidative stress, DNA damage response and cancer progression. J Cell Physiol. 2019;234(9):14951–65.

    CAS 
    PubMed 

    Google Scholar
     

  • Sumimoto H, Imabayashi F, Iwata T, Kawakami Y. The BRAF–MAPK signaling pathway is essential for cancer-immune evasion in human melanoma cells. J Exp Med. 2006;203(7):1651–6.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cerami E, Gao J, Dogrusoz U, Gross BE, Sumer SO, Aksoy BA, et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2012;2(5):401–4.

    PubMed 

    Google Scholar
     

  • Grob TJ, Heilenkötter U, Geist S, Paluchowski P, Wilke C, Jaenicke F, et al. Rare oncogenic mutations of predictive markers for targeted therapy in triple-negative breast cancer. Breast Cancer Res Treat. 2012;134:561–7.

    CAS 
    PubMed 

    Google Scholar
     

  • Sánchez-Muñoz A, Gallego E, de Luque V, Pérez-Rivas LG, Vicioso L, Ribelles N, et al. Lack of evidence for KRAS oncogenic mutations in triple-negative breast cancer. BMC Cancer. 2010;10(1):1–9.


    Google Scholar
     

  • Shah SP, Roth A, Goya R, Oloumi A, Ha G, Zhao Y, et al. The clonal and mutational evolution spectrum of primary triple-negative breast cancers. Nature. 2012;486(7403):395–9.

    CAS 
    PubMed 

    Google Scholar
     

  • Tilch E, Seidens T, Cocciardi S, Reid L, Byrne D, Simpson P, et al. Mutations in EGFR, BRAF and RAS are rare in triple-negative and basal-like breast cancers from Caucasian women. Breast Cancer Res Treat. 2014;143:385–92.

    CAS 
    PubMed 

    Google Scholar
     

  • Pereira CBL, Leal MF, de Souza CRT, Montenegro RC, Rey JA, Carvalho AA, et al. Prognostic and predictive significance of MYC and KRAS alterations in breast cancer from women treated with neoadjuvant chemotherapy. PLoS One. 2013;8(3):e60576.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sivaraman VS, Wang H, Nuovo G, Malbon C. Hyperexpression of mitogen-activated protein kinase in human breast cancer. J Clin Invest. 1997;99(7):1478–83.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Adeyinka A, Nui Y, Cherlet T, Snell L, Watson PH, Murphy LC. Activated mitogen-activated protein kinase expression during human breast tumorigenesis and breast cancer progression. Clin Cancer Res. 2002;8(6):1747–53.

    CAS 
    PubMed 

    Google Scholar
     

  • Pratilas CA, Taylor BS, Ye Q, Viale A, Sander C, Solit DB, et al. V600EBRAF is associated with disabled feedback inhibition of RAF–MEK signaling and elevated transcriptional output of the pathway. Proc Natl Acad Sci U S A. 2009;106(11):4519–24.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hoeflich KP, O’Brien C, Boyd Z, Cavet G, Guerrero S, Jung K, et al. In vivo antitumor activity of MEK and phosphatidylinositol 3-kinase inhibitors in basal-like breast cancer models. Clin Cancer Res. 2009;15(14):4649–64.

    CAS 
    PubMed 

    Google Scholar
     

  • Giltnane JM, Balko JM. Rationale for targeting the ras/mapk pathway in triple-negative breast cancer. Discov Med. 2014;17(95):275–83.

    PubMed 

    Google Scholar
     

  • Nisar MA, Zheng Q, Saleem MZ, Ahmmed B, Ramzan MN, Ud Din SR et al. IL-1β promotes vasculogenic mimicry of breast cancer cells through p38/MAPK and PI3K/Akt signaling pathways. Front Oncol. 2021;11:618839.

  • Xia W, Gong E-s, Lin Y, Zheng B, Yang W, Li T, et al. Wild pink bayberry free phenolic extract induces mitochondria-dependent apoptosis and G0/G1 cell cycle arrest through p38/MAPK and PI3K/Akt pathway in MDA-MB-231 cancer cells. Food Sci Hum Wellness. 2023;12(5):1510–8.

    CAS 

    Google Scholar
     

  • Chen Y, Li P, Peng Y, Xie X, Zhang Y, Jiang Y, et al. Protective autophagy attenuates soft substrate-induced apoptosis through ROS/JNK signaling pathway in breast cancer cells. Free Radic Biol Med. 2021;172:590–603.

    CAS 
    PubMed 

    Google Scholar
     

  • Zhang H, Wang Y, Liu C, Li W, Zhou F, Wang X, et al. The apolipoprotein C1 is involved in breast cancer progression via EMT and MAPK/JNK pathway. Pathology. 2022;229: 153746.

    CAS 

    Google Scholar
     

  • Soleimani M, Somma A, Kaoud T, Goyal R, Bustamante J, Wylie DC, et al. Covalent JNK inhibitor, JNK-IN-8, suppresses tumor growth in triple-negative breast cancer by activating TFEB- and TFE3-mediated lysosome biogenesis and autophagy. Mol Cancer Ther. 2022;21(10):1547–60.

    CAS 
    PubMed 

    Google Scholar
     

  • Kuang W, Deng Q, Deng C, Li W, Shu S, Zhou M. Hepatocyte growth factor induces breast cancer cell invasion via the PI3K/Akt and p38 MAPK signaling pathways to up-regulate the expression of COX2. Am J Transl Res. 2017;9(8):3816–26.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang J, Liu X, Zheng H, Liu Q, Zhang H, Wang X, et al. Morusin induces apoptosis and autophagy via JNK, ERK and PI3K/Akt signaling in human lung carcinoma cells. Chemico-Biological Interactions. 2020;331: 109279.

    CAS 
    PubMed 

    Google Scholar
     

  • Tang Z, Song H, Qin S, Tian Z, Zhang C, Zhou Y, et al. D-arabinose induces cell cycle arrest by promoting autophagy via p38 MAPK signaling pathway in breast cancer. Sci Rep. 2024;14(1):11219.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yu S, Yue Z, Liu Q. Pectinose induces cell cycle arrest in luminal A and triple-negative breast cancer cells by promoting autophagy through activation of the p38 MAPK signaling pathway. BMC Cancer. 2024;24(1):639.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sriaishwarya S, Lakshmi BS. RAD23B mediated proteasomal degradation occurs through p38 MAPK/ATF-2/RAD23B axis under nutrient-deprived conditions in breast cancer. Cell Biol Int. 2024;48(7):973–83.

  • Deng Y, Hou Z, Li Y, Yi M, Wu Y, Zheng Y, et al. Superbinder based phosphoproteomic landscape revealed PRKCD_pY313 mediates the activation of Src and p38 MAPK to promote TNBC progression. Cell Commun Signal. 2024;22(1): 115.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen X, Zhu J, Li X, Chen J, Zhou Z, Fan X, et al. ARHGAP6 suppresses breast cancer tumor growth by promoting ferroptosis via RhoA-ROCK1-p38 MAPK signaling. FBL. 2024;29(1):6–null.

    CAS 
    PubMed 

    Google Scholar
     

  • Li X, Tang Q, Li W, Zhan D, Fang X, Huang S, et al. Baicalin promotes apoptosis of human medullary breast cancer via the ERK/p38 MAPK pathway. Pharmacogn Mag. 2024;20(2):563–71.

    CAS 

    Google Scholar
     

  • Tang X, Gong J, Ren L, Wang Z, Yang B, Wang W, et al. Tanshinone I improves TNBC chemosensitivity by suppressing late-phase autophagy through AKT/p38 MAPK signaling pathway. Biomed Pharmacother. 2024;177: 117037.

    CAS 
    PubMed 

    Google Scholar
     

  • Wang F, Liao R, Wang X, Xiong G, Zhang B, Li J, et al. N-3, a novel synthetic derivative of bifendate, inhibits metastasis of triple-negative breast cancer via decreasing p38-regulated FOXC1 protein stability. Biochem Pharmacol. 2023;215: 115729.

    CAS 
    PubMed 

    Google Scholar
     

  • Wang L, Mi D, Hu J, Liu W, Zhang Y, Wang C, et al. A novel methuosis inducer DZ-514 possesses antitumor activity via activation of ROS-MKK4-p38 axis in triple negative breast cancer. Cancer Lett. 2023;555: 216049.

    CAS 
    PubMed 

    Google Scholar
     

  • Jeong D-H, Jung D-W, Kim J-W, Lee H-S. Beauvericin, produced by fusarium oxysporum inhibits bisphenol a-induced proliferation of human breast cancer cell line by regulating ERα/p38 pathway. J Steroid Biochem Mol Biol. 2024;239: 106483.

    CAS 
    PubMed 

    Google Scholar
     

  • Żołnowska B, Sławiński J, Chojnacki J, Petreni A, Supuran CT, Kawiak A. Novel benzenesulfonamide-aroylhydrazone conjugates as carbonic anhydrase inhibitors that induce MAPK/ERK-mediated cell cycle arrest and mitochondrial-associated apoptosis in MCF-7 breast cancer cells. Bioorg Med Chem. 2024;114: 117958.

    PubMed 

    Google Scholar
     

  • Abdulmalek SA, Saleh AM, Shahin YR, El Azab EF. Functionalized siRNA-chitosan nanoformulations promote triple-negative breast cancer cell death via blocking the miRNA-21/AKT/ERK signaling axis: in-silico and in vitro studies. Naunyn Schmiedebergs Arch Pharmacol. 2024;397(9):6941–62.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chua P-J, Ow S-H, Ng C-T, Huang W-H, Low J-T, Tan PH, et al. Peroxiredoxin 3 regulates breast cancer progression via ERK-mediated MMP-1 expression. Cancer Cell Int. 2024;24(1):59.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zheng C, Pan Y, Lin B, Li J, Chen Q, Zheng Z. NRF3 suppresses the metastasis of triple-negative breast cancer cells by inhibiting ERK activation in a ROS-dependent manner. Histol Histopathol. 2025;40(1):123-131 .

  • Jiang G, Zhou X, Hu Y, Tan X, Wang D, Yang L, et al. The antipsychotic drug Pimozide promotes apoptosis through the RAF/ERK pathway and enhances autophagy in breast cancer cells. Cancer Biol Ther. 2024;25(1): 2302413.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang Y, Wei S, Zhang Q, Zhang Y, Sun C. Paris saponin VII inhibits triple-negative breast cancer by targeting the MEK/ERK/STMN1 signaling axis. Phytomedicine. 2024;130:155746.

    CAS 
    PubMed 

    Google Scholar
     

  • Liu A, Li Y, Lu S, Cai C, Zou F, Meng X. Stanniocalcin 1 promotes lung metastasis of breast cancer by enhancing EGFR–ERK–S100A4 signaling. Cell Death Dis. 2023;14(7):395.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhan X-J, Wang R, Kuang X-R, Zhou J-Y, Hu X-L. Elevated expression of myosin VI contributes to breast cancer progression via MAPK/ERK signaling pathway. Cell Signal. 2023;106: 110633.

    CAS 
    PubMed 

    Google Scholar
     

  • Wu Y, Li Q, Lv L-l, Chen J-x, Ying H-f, Ruan M, et al. Nobiletin inhibits breast cancer cell migration and invasion by suppressing the IL-6-induced ERK-STAT and JNK-c-JUN pathways. Phytomedicine. 2023;110:154610.

    CAS 
    PubMed 

    Google Scholar
     

  • Huang L, Li G, Zhang Y, Zhuge R, Qin S, Qian J et al. Small-molecule targeting BCAT1-mediated BCAA metabolism inhibits the activation of SHOC2-RAS-ERK to induce apoptosis of Triple-negative breast cancer cells. J Adv Res.2025;75:723-738.

  • Han H, Yang M, Wen Z, Mei F, Chen Q, Ma Y, et al. Trametinib and M17, a novel small molecule inhibitor of AKT, display a synergistic antitumor effect in triple negative breast cancer cells through the AKT/MTOR and MEK/ERK pathways. Bioorg Chem. 2025;154: 107981.

    CAS 
    PubMed 

    Google Scholar
     

  • Tao J, Xue C, Cao M, Ye J, Sun Y, Chen H, et al. Protein disulfide isomerase family member 4 promotes triple-negative breast cancer tumorigenesis and radiotherapy resistance through JNK pathway. Breast Cancer Res. 2024;26(1):1.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Qu N, Wu Z, Meng Q, Bi M, Liu H, Cao X, et al. Low-intensity pulsed ultrasound combined with microbubble mediated JNK/c-Jun pathway to reverse multidrug resistance in triple-negative breast cancer. Sci Rep. 2024;14(1):27250.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu C, Qian X, Yu C, Xia X, Li J, Li Y, et al. Inhibition of ATM promotes PD-L1 expression by activating JNK/c-Jun/TNF-α signaling axis in triple-negative breast cancer. Cancer Lett. 2024;586: 216642.

    CAS 
    PubMed 

    Google Scholar
     

  • Ye S, Hu X, Sun S, Su B, Cai J, Jiang J. Oridonin promotes RSL3-induced ferroptosis in breast cancer cells by regulating the oxidative stress signaling pathway JNK/Nrf2/HO-1. Eur J Pharmacol. 2024;974: 176620.

    CAS 
    PubMed 

    Google Scholar
     

  • Shi W, Wang J, Chen J, Jin X, Wang Y, Yang L. Abrogating PDK4 activates autophagy-dependent ferroptosis in breast cancer via ASK1/JNK pathway. J Cancer Res Clin Oncol. 2024;150(4):218.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gao S, Zhang X, Liu J, Ji F, Zhang Z, Meng Q et al. Icariin Induces Triple-Negative Breast Cancer Cell Apoptosis and Suppresses Invasion by Inhibiting the JNK/c-Jun Signaling Pathway. Drug Design, Development and Therapy. 2023;17(null):821 – 36.

  • Cirillo F, Talia M, Santolla MF, Pellegrino M, Scordamaglia D, Spinelli A, et al. GPER deletion triggers inhibitory effects in triple negative breast cancer (TNBC) cells through the JNK/c-Jun/p53/Noxa transduction pathway. Cell Death Discov. 2023;9(1):353.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pan Q-F, Ouyang W-W, Zhang M-Q, He S, Yang S-Y, Zhang J. Chondroitin polymerizing factor predicts a poor prognosis and promotes breast cancer progression via the upstream TGF-β1/SMAD3 and JNK axis activation. J Cell Commun Signal. 2023;17(1):89–102.

    CAS 
    PubMed 

    Google Scholar
     

  • Cheng Y, Zhong X, Nie X, Gu H, Wu X, Li R, et al. Glycyrrhetinic acid suppresses breast cancer metastasis by inhibiting M2-like macrophage polarization via activating JNK1/2 signaling. Phytomedicine. 2023;114:154757.

    CAS 
    PubMed 

    Google Scholar
     

  • Zhang Z, Zhang H, Li D, Zhou X, Qin Q, Zhang Q. Caspase-3-mediated GSDME induced pyroptosis in breast cancer cells through the ROS/JNK signalling pathway. J Cell Mol Med. 2021;25(17):8159–68.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang P, Liu Y, Lian C, Cao X, Wang Y, Li X, et al. SH3rf3 promotes breast cancer stem-like properties via JNK activation and PTX3 upregulation. Nat Commun. 2020;11(1):2487.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Keren A, Tamir Y, Bengal E. The p38 MAPK signaling pathway: a major regulator of skeletal muscle development. Mol Cell Endocrinol. 2006;252(1–2):224–30.

    CAS 
    PubMed 

    Google Scholar
     

  • Thouverey C, Caverzasio J. Focus on the p38 MAPK signaling pathway in bone development and maintenance. BoneKEy Rep. 2015;4:711. https://doi.org/10.1038/bonekey.2015.80

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zeng H, Hou Y, Zhou X, Lang L, Luo H, Sun Y, et al. Cancer-associated fibroblasts facilitate premetastatic niche formation through lncRNA SNHG5-mediated angiogenesis and vascular permeability in breast cancer. Theranostics. 2022;12(17):7351.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pang J, Ding N, Liu X, He X, Zhou W, Xie H, et al. Prognostic value of the baseline systemic Immune-Inflammation index in HER2-positive metastatic breast cancer: exploratory analysis of two prospective trials. Ann Surg Oncol. 2025;32(2):750–9.

    PubMed 

    Google Scholar
     

  • Fang K, Hu C, Zhang X, Hou Y, Gao D, Guo Z, et al. LncRNA ST8SIA6-AS1 promotes proliferation, migration and invasion in breast cancer through the p38 MAPK signalling pathway. Carcinogenesis. 2020;41(9):1273–81.

    CAS 
    PubMed 

    Google Scholar
     

  • Chen S, Wang Y, Zhang J-H, Xia Q-J, Sun Q, Li Z-K, et al. Long non-coding RNA PTENP1 inhibits proliferation and migration of breast cancer cells via AKT and MAPK signaling pathways. Oncol Lett. 2017;14(4):4659–62.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cedro-Tanda A, Ríos-Romero M, Romero-Córdoba S, Cisneros-Villanueva M, Rebollar-Vega RG, Alfaro-Ruiz LA, et al. A lncrna landscape in breast cancer reveals a potential role for AC009283.1 in proliferation and apoptosis in HER2-enriched subtype. Sci Rep. 2020;10(1):13146.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhou J, Guo Z, Peng X, Wu B, Meng Q, Lu X, et al. Chrysotoxine regulates ferroptosis and the PI3K/AKT/mTOR pathway to prevent cervical cancer. J Ethnopharmacol. 2025;338(Pt 3):119126.

    CAS 
    PubMed 

    Google Scholar
     

  • Baba SK, Baba SK, Mir R, Elfaki I, Algehainy N, Ullah MF, et al. Long non-coding RNAs modulate tumor microenvironment to promote metastasis: novel avenue for therapeutic intervention. Front Cell Dev Biol. 2023;11:1164301.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zeng Q, Chen C, Chen C, Song H, Li M, Yan J, et al. Serum raman spectroscopy combined with convolutional neural network for rapid diagnosis of HER2-positive and triple-negative breast cancer. Spectrochim Acta A Mol Biomol Spectrosc. 2023;286: 122000.

    CAS 
    PubMed 

    Google Scholar
     

  • Yu X, Qian F, Zhang X, Zhu Y, He G, Yang J, et al. Promotion effect of FOXCUT as a MicroRNA sponge for miR-24-3p on progression in triple-negative breast cancer through the p38 MAPK signaling pathway. Chin Med J. 2024;137(01):105–14.

    CAS 
    PubMed 

    Google Scholar
     

  • McCubrey JA, Steelman LS, Chappell WH, Abrams SL, Wong EW, Chang F, et al. Roles of the raf/mek/erk pathway in cell growth, malignant transformation and drug resistance. Biochimica et Biophysica Acta (BBA). 2007;1773(8):1263–84.

    CAS 
    PubMed 

    Google Scholar
     

  • Degirmenci U, Wang M, Hu J. Targeting aberrant RAS/RAF/MEK/ERK signaling for cancer therapy. Cells. 2020;9(1):198.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nickols NG, Nazarian R, Zhao SG, Tan V, Uzunangelov V, Xia Z, et al. MEK-ERK signaling is a therapeutic target in metastatic castration resistant prostate cancer. Prostate Cancer Prostatic Dis. 2019;22(4):531–8.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang Q, Li T, Wang Z, Kuang X, Shao N, Lin Y. LncRNA NR2F1-AS1 promotes breast cancer angiogenesis through activating IGF‐1/IGF‐1R/ERK pathway. J Cell Mol Med. 2020;24(14):8236–47.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Niu L, Zhou Y, Zhang W, Ren Y. Long noncoding RNA LINC00473 functions as a competing endogenous RNA to regulate MAPK1 expression by sponging miR-198 in breast cancer. Pathology. 2019;215(8): 152470.

    CAS 

    Google Scholar
     

  • Lv P, Qiu X, Gu Y, Yang X, Xu X, Yang Y. Long non-coding RNA SNHG6 enhances cell proliferation, migration and invasion by regulating miR-26a-5p/MAPK6 in breast cancer. Biomed Pharmacother. 2019;110:294–301.

    CAS 
    PubMed 

    Google Scholar
     

  • Shi C, Ren S, Zhao X, Li Q. LncRNA MALAT1 regulates the resistance of breast cancer cells to Paclitaxel via the miR-497-5p/ SHOC2 axis. Pharmacogenomics. 2022;23(18):973–85.

    CAS 
    PubMed 

    Google Scholar
     

  • Chen F-Y, Zhou Z-Y, Zhang K-J, Pang J, Wang S-M. Long non-coding RNA MIR100HG promotes the migration, invasion and proliferation of triple-negative breast cancer cells by targeting the miR-5590-3p/OTX1 axis. Cancer Cell Int. 2020;20(1):1–15.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nyati KK, Hashimoto S, Singh SK, Tekguc M, Metwally H, Liu Y-C, et al. The novel long noncoding RNA AU021063, induced by IL-6/Arid5a signaling, exacerbates breast cancer invasion and metastasis by stabilizing Trib3 and activating the mek/erk pathway. Cancer Lett. 2021;520:295–306.

    CAS 
    PubMed 

    Google Scholar
     

  • Peng W-x, Huang J-g, Yang L, Gong A-h, Mo Y-Y. Linc-RoR promotes MAPK/ERK signaling and confers estrogen-independent growth of breast cancer. Mol Cancer. 2017;16(1):1–11.

    CAS 

    Google Scholar
     

  • Jiang M, Huang O, Xie Z, Wu S, Zhang X, Shen A, et al. A novel long non-coding RNA-ARA: adriamycin resistance associated. Biochem Pharmacol. 2014;87(2):254–83.

    CAS 
    PubMed 

    Google Scholar
     

  • Liu Y, Li M, Yu H, Piao H. LncRNA CYTOR promotes tamoxifen resistance in breast cancer cells via sponging miR–125a–5p. Int J Mol Med. 2020;45(2):497–509.

    CAS 
    PubMed 

    Google Scholar
     

  • Hu H, Zhang H, Xing Y, Zhou Y, Chen J, Li C, et al. The lncRNA THOR interacts with and stabilizes HnRNPD to promote cell proliferation and metastasis in breast cancer. Oncogene. 2022;41(49):5298–314.

    CAS 
    PubMed 

    Google Scholar
     

  • Sas-Chen A, Aure MR, Leibovich L, Carvalho S, Enuka Y, Körner C, et al. LIMT is a novel metastasis inhibiting LncRNA suppressed by EGF and downregulated in aggressive breast cancer. EMBO Mol Med. 2016;8(9):1052–64.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sun L, Chu H, Li H, Liu Y. LncRNA SNHG1 correlates with higher T stage and worse overall survival, and promotes cell proliferation while reduces cell apoptosis in breast cancer. Transl Cancer Res. 2019;8(2):603–13.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Peng W-x, Huang J-g, Yang L, Gong A-h, Mo Y-Y. Linc-RoR promotes MAPK/ERK signaling and confers estrogen-independent growth of breast cancer. Mol Cancer. 2017;16(1):161.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang Q, Li T, Wang Z, Kuang X, Shao N, Lin Y. LncRNA NR2F1-AS1 promotes breast cancer angiogenesis through activating IGF-1/IGF-1R/ERK pathway. J Cell Mol Med. 2020;24(14):8236–47.

  • Yuan H, Yan L, Wu M, Shang Y, Guo Q, Ma X, et al. Analysis of the estrogen receptor-associated LncRNA landscape identifies a role for ERLC1 in breast cancer progression. Cancer Res. 2022;82(3):391–405.

    CAS 
    PubMed 

    Google Scholar
     

  • Shao G, Fan X, Zhang P, Liu X, Huang L, Ji S. Methylation-dependent MCM6 repression induced by LINC00472 inhibits triple-negative breast cancer metastasis by disturbing the MEK/ERK signaling pathway. Aging. 2021;13(4):4962.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cairns J, Ingle JN, Kalari KR, Shepherd LE, Kubo M, Goetz MP, et al. The lncRNA MIR2052HG regulates ERα levels and aromatase inhibitor resistance through LMTK3 by recruiting EGR1. Breast Cancer Res. 2019;21(1):47.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xing JN, Shang YN, Yu ZL, Zhou SH, Chen WY, Wang LH. LncRNA HCP5-encoded protein contributes to adriamycin resistance through erk/mtor pathway-mediated autophagy in breast cancer cells. Genes Dis. 2024;11(4): 101024.

    CAS 
    PubMed 

    Google Scholar
     

  • Caia Y, He J, Zhang D. Suppression of long non-coding RNA CCAT2 improves Tamoxifen-resistant breast cancer cells’ response to Tamoxifen. Mol Biol. 2016;50(5):725–30.

    CAS 

    Google Scholar
     

  • Wang B, Xing A-Y, Li G-X, Liu L, Xing C. SNHG14 promotes triple-negative breast cancer cell proliferation, invasion, and chemoresistance by regulating the ERK/MAPK signaling pathway. IUBMB Life.n/a(n/a).

  • Li M, Lin C, Cai Z. Downregulation of the long noncoding RNA DSCR9 (down syndrome critical region 9) delays breast cancer progression by modulating microRNA-504-5p-dependent G protein-coupled receptor 65. Hum Cell. 2023;36(4):1516–34.

    CAS 
    PubMed 

    Google Scholar
     

  • Ma HN, Chen HJ, Liu JQ, Li WT. Long non-coding RNA DLEU1 promotes malignancy of breast cancer by acting as an indispensable coactivator for HIF-1α-induced transcription of CKAP2. Cell Death Dis. 2022;13(7):625.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang X, Tao Y, Xu Y, Cai W, Shao Q. Slc35a2 expression drives breast cancer progression via ERK pathway activation. FEBS J. 2024;291(7):1483–505.

    CAS 
    PubMed 

    Google Scholar
     

  • Lv X, Zhang Q. LncRNA RP11-214F16.8 drives breast cancer tumorigenesis via a post-translational repression on NISCH expression. Cell Signal. 2022;92: 110271.

    CAS 
    PubMed 

    Google Scholar
     

  • Li XY, Zhou LY, Luo H, Zhu Q, Zuo L, Liu GY, et al. The long noncoding RNA MIR210HG promotes tumor metastasis by acting as a CeRNA of miR-1226-3p to regulate mucin-1c expression in invasive breast cancer. Aging. 2019;11(15):5646–65.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dan Z, Xiujing H, Ting L, Xiaorong Z, Hong Z, Jiqiao Y et al. Long Non-coding RNA BTG3-7:1 and JUND Co-regulate C21ORF91 to promote Triple-Negative breast cancer progress. Front Mol Biosci. 2021;7:605623.

  • Sun D, Zhong J, Wei W, Liu L, Liu J, Lin X. Long non–coding RNAs lnc–ANGPTL1–3:3 and lnc–GJA10–12:1 present as regulators of Sentinel lymph node metastasis in breast cancer. Oncol Lett. 2020;20(5):188.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang M, Wang Y, Jiang L, Song X, Zheng A, Gao H, et al. LncRNA CBR3-AS1 regulates of breast cancer drug sensitivity as a competing endogenous RNA through the JNK1/MEK4-mediated MAPK signal pathway. J Experimental Clin Cancer Res. 2021;40(1):1–14.


    Google Scholar
     

  • Yu Y, Lv F, Liang D, Yang Q, Zhang B, Lin H, et al. HOTAIR may regulate proliferation, apoptosis, migration and invasion of MCF-7 cells through regulating the P53/Akt/JNK signaling pathway. Biomed Pharmacother. 2017;90:555–61.

    CAS 
    PubMed 

    Google Scholar
     

  • Kumar V, Sabaté-Cadenas X, Soni I, Stern E, Vias C, Ginsberg D, et al. The LincRNA JUNI regulates the stress-dependent induction of c-Jun, cellular migration and survival through the modulation of the DUSP14-JNK axis. Oncogene. 2024;43(21):1608–19.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • De Troyer L, Zhao P, Pastor T, Baietti MF, Barra J, Vendramin R, et al. Stress-induced lncRNA LASTR fosters cancer cell fitness by regulating the activity of the U4/U6 recycling factor SART3. Nucleic Acids Res. 2020;48(5):2502–17.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen Q, Shen H, Zhu X, Liu Y, Yang H, Chen H, et al. A nuclear LncRNA Linc00839 as a Myc target to promote breast cancer chemoresistance via PI3K/AKT signaling pathway. Cancer Sci. 2020;111(9):3279–91.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gu P, Ding W, Zhu W, Shen L, Zhang L, Wang W et al. MIR4435-2HG: A novel biomarker for triple-negative breast cancer diagnosis and prognosis, activating cancer-associated fibroblasts and driving tumor invasion through EMT associated with JNK/c-Jun and p38 MAPK signaling pathway activation. Int Immunopharmacol. 2024;142 :113191.

  • Gooding AJ, Zhang B, Jahanbani FK, Gilmore HL, Chang JC, Valadkhan S, et al. The lncRNA BORG drives breast cancer metastasis and disease recurrence. Sci Rep. 2017;7(1):12698.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li S, Hu J, Li G, Mai H, Gao Y, Liang B, et al. Epigenetic regulation of LINC01270 in breast cancer progression by mediating LAMA2 promoter methylation and MAPK signaling pathway. Cell Biol Toxicol. 2023;39(4):1359–75.

    CAS 
    PubMed 

    Google Scholar
     

  • Li F, Xian D, Huang J, Nie L, Xie T, Sun Q, et al. SP1-induced upregulation of LncRNA AFAP1-AS1 promotes tumor progression in triple-negative breast cancer by regulating mTOR pathway. Int J Mol Sci. 2023;24(17): 13401.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang Y-L, Liu L-C, Hung Y, Chen C-J, Lin Y-Z, Wu W-R, et al. Long non-coding RNA HOTAIR in circulatory exosomes is correlated with ErbB2/HER2 positivity in breast cancer. Breast. 2019;46:64–9.

    PubMed 

    Google Scholar
     

  • Xia Z, Dickens M, Raingeaud J, Davis RJ, Greenberg ME. Opposing effects of ERK and JNK-p38 MAP kinases on apoptosis. Science. 1995;270(5240):1326–31.

    CAS 
    PubMed 

    Google Scholar
     

  • Hamdi M, Kool J, Cornelissen-Steijger P, Carlotti F, Popeijus HE, Van Der Burgt C, et al. DNA damage in transcribed genes induces apoptosis via the JNK pathway and the JNK-phosphatase MKP-1. Oncogene. 2005;24(48):7135–44.

    CAS 
    PubMed 

    Google Scholar
     

  • Deng R, Li W, Guan Z, Zhou J, Wang Y, Mei Y, et al. Acetylcholinesterase expression mediated by c-Jun-NH2-terminal kinase pathway during anticancer drug-induced apoptosis. Oncogene. 2006;25(53):7070–7.

    CAS 
    PubMed 

    Google Scholar
     

  • Krishna M, Narang H. The complexity of mitogen-activated protein kinases (MAPKs) made simple. Cell Mol Life Sci. 2008;65:3525–44.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mizukami Y, Yoshioka K, Morimoto S, Yoshida K. A novel mechanism of JNK1 activation: nuclear translocation and activation of JNK1 during ischemia and reperfusion. J Biol Chem. 1997;272(26):16657–62.

    CAS 
    PubMed 

    Google Scholar
     

  • Zhang P, Miller BS, Rosenzweig SA, Bhat NR. Activation of c-jun N‐terminal kinase/stress‐activated protein kinase in primary glial cultures. J Neurosci Res. 1996;46(1):114–21.

    CAS 
    PubMed 

    Google Scholar
     

  • Kops GJ, Dansen TB, Polderman PE, Saarloos I, Wirtz KW, Coffer PJ, et al. Forkhead transcription factor FOXO3a protects quiescent cells from oxidative stress. Nature. 2002;419(6904):316–21.

    CAS 
    PubMed 

    Google Scholar
     

  • Wu Q, Wu W, Fu B, Shi L, Wang X, Kuca K. JNK signaling in cancer cell survival. Med Res Rev. 2019;39(6):2082–104.

    CAS 
    PubMed 

    Google Scholar