• Bernstein E, Caudy AA, Hammond SM, Hannon GJ. Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature [Internet]. 2001;409(6818):363–6. Available from: http://www.ncbi.nlm.nih.gov/pubmed/11201747

  • Denli AM, Hannon GJ. RNAi: an ever-growing puzzle. Trends Biochem Sci [Internet]. 2003;28(4):196–201. Available from: https://www.sciencedirect.com/science/article/pii/S0968000403000586

  • Sidahmed A, Abdalla S, Mahmud S, Wilkie B. Antiviral innate immune response of RNA interference. The Journal of Infection in Developing Countries [Internet]. 2014;8(07):804–10. Available from: https://jidc.org/index.php/journal/article/view/25022288

  • Heigwer F, Port F, Boutros M. RNA Interference (RNAi) Screening in Drosophila. Genetics [Internet]. 2018;208(3):853–74. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5844339/

  • Shabalina SA, Koonin EV. Origins and evolution of eukaryotic RNA interference. Trends Ecol Evol [Internet]. 2008;23(10):578–87. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2695246/

  • Ding SW, Han Q, Wang J, Li WX. Antiviral RNA interference in mammals. Curr Opin Immunol [Internet]. 2018;54:109–14. Available from: https://www.sciencedirect.com/science/article/pii/S0952791518300803

  • de Jong D, Eitel M, Jakob W, Osigus HJ, Hadrys H, DeSalle R, et al. Multiple dicer genes in the early-diverging Metazoa. Mol Biol Evol. 2009;26(6):1333–40. https://doi.org/10.1093/molbev/msp042.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zapletal D, Kubicek K, Svoboda P, Stefl R. Dicer structure and function: conserved and evolving features. EMBO Rep [Internet]. 2023;24(7):e57215. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10328071/

  • Welker NC, Maity TS, Ye X, Aruscavage PJ, Krauchuk AA, Liu Q et al. Dicer’s helicase domain discriminates dsRNA termini to promote an altered reaction mode. Mol Cell [Internet]. 2011;41(5):589–99. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3061311/

  • Sinha NK, Trettin KD, Aruscavage PJ, Bass BL. Drosophila Dicer-2 cleavage is mediated by helicase- and dsRNA termini-dependent states that are modulated by Loquacious-PD. Mol Cell [Internet]. 2015;58(3):406–17. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4433149/

  • MacKay CR, Wang JP, Kurt-Jones EA. Dicer’s role as an antiviral: still an enigma. Curr Opin Immunol [Internet]. 2014;0:49–55. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3932008/

  • Ciechanowska K, Pokornowska M, Kurzyńska-Kokorniak A. Genetic Insight into the Domain Structure and Functions of Dicer-Type Ribonucleases. Int J Mol Sci [Internet]. 2021;22(2):616. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7827160/

  • Hansen SR, Aderounmu AM, Donelick HM, Bass BL. Dicer’s Helicase Domain: A Meeting Place for Regulatory Proteins. Cold Spring Harb Symp Quant Biol [Internet]. 2019;84:185–93. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7384945/

  • Ma E, MacRae IJ, Kirsch JF, Doudna JA. Auto-inhibition of Human Dicer by its Internal Helicase Domain. J Mol Biol [Internet]. 2008;380(1):237–43. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2927216/

  • Grimson A, Srivastava M, Fahey B, Woodcroft BJ, Chiang HR, King N et al. Early origins and evolution of microRNAs and Piwi-interacting RNAs in animals. Nature [Internet]. 2008;455(7217):1193–7. Available from: https://www.nature.com/articles/nature07415

  • Mukherjee K, Campos H, Kolaczkowski B. Evolution of Animal and Plant Dicers: Early Parallel Duplications and Recurrent Adaptation of Antiviral RNA Binding in Plants. Mol Biol Evol [Internet]. 2013;30(3):627–41. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3563972/

  • Jia H, Kolaczkowski O, Rolland J, Kolaczkowski B. Increased affinity for RNA targets evolved early in animal and plant dicer lineages through different structural mechanisms. Mol Biol Evol. 2017;34(12):3047–63. https://doi.org/10.1093/molbev/msx187.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Formaggioni A, Cavalli G, Hamada M, Sakamoto T, Plazzi F, Passamonti M. The Evolution and Characterization of the RNA Interference Pathways in Lophotrochozoa. Genome Biol Evol [Internet]. 2024;16(5):1–18. Available from: https://doi.org/10.1093/gbe/evae098

  • Lee YS, Nakahara K, Pham JW, Kim K, He Z, Sontheimer EJ et al. Distinct roles for Drosophila Dicer-1 and Dicer-2 in the siRNA/miRNA silencing pathways. Cell [Internet]. 2004;117(1):69–81. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15066283

  • Mapalo MA, Wolfe JM, Ortega-Hernández J. Cretaceous amber inclusions illuminate the evolutionary origin of tardigrades. Commun Biol. 2024;7(1):953. https://doi.org/10.1038/s42003-024-06643-2.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Giacomelli M, Vecchi M, Guidetti R, Rebecchi L, Donoghue PCJ, Lozano-Fernandez J et al. CAT-Posterior Mean Site Frequencies Improves Phylogenetic Modeling Under Maximum Likelihood and Resolves Tardigrada as the Sister of Arthropoda Plus Onychophora. Lanfear R, editor. Genome Biol Evol [Internet]. 2025;17(1):1–14. Available from: https://doi.org/10.1093/gbe/evae273

  • Laumer CE, Fernández R, Lemer S, Combosch D, Kocot KM, Riesgo A, et al. Revisiting metazoan phylogeny with genomic sampling of all phyla. Proc Biol Sci. 2019;286(1906):20190831. https://doi.org/10.1098/rspb.2019.0831.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schokraie E, Hotz-Wagenblatt A, Warnken U, Frohme M, Dandekar T, Schill RO, et al. Investigating heat shock proteins of tardigrades in active versus anhydrobiotic state using shotgun proteomics. J Zool Syst Evol Res. 2011;49(s1):111–9. https://doi.org/10.1111/j.1439-0469.2010.00608.x.

    Article 

    Google Scholar
     

  • Nelson DR, Bartels PJ, Guil N. Tardigrade Ecology. In: Schill RO, editor. Water Bears: The Biology of Tardigrades [Internet]. Cham: Springer International Publishing; 2018. pp. 163–210. Available from: https://doi.org/10.1007/978-3-319-95702-9_7

  • Buda J, Olszanowski Z, Wierzgoń M, Zawierucha K. Tardigrades and oribatid mites in bryophytes from geothermally active lava fields (Krafla, Iceland) and the description of Pilatobius islandicus sp. nov. (Eutardigrada) [Internet]. 2018. Available from: https://rebus.us.edu.pl/handle/20.500.12128/7700

  • Romano IIIF, Gallo M, D’Addabbo R, Accogli G, Baguley J, Montagna P. Deep-sea tardigrades in the northern Gulf of Mexico with a description of a new species of Coronarctidae (Tardigrada: Arthrotardigrada), Coronarctus mexicus. Journal of Zoological Systematics and Evolutionary Research [Internet]. 2011;49(s1):48–52. Available from: https://onlinelibrary.wiley.com/doi/abs/https://doi.org/10.1111/j.1439-0469.2010.00597.x

  • Tenlen JR, McCaskill S, Goldstein B. RNA interference can be used to disrupt gene function in tardigrades. Dev Genes Evol [Internet]. 2013;223(3):171–81. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23187800

  • Giovannini I, Boothby TC, Cesari M, Goldstein B, Guidetti R, Rebecchi L. Production of reactive oxygen species and involvement of bioprotectants during anhydrobiosis in the tardigrade Paramacrobiotus spatialis. Sci Rep [Internet]. 2022;12(1):1938. Available from: https://www.nature.com/articles/s41598-022-05734-6

  • Schill RO, Steinbrück G. Identification and differentiation of heterotardigrada and eutardigrada species by riboprinting. J Zool Syst Evol Res. 2007;45(3):184–90. https://doi.org/10.1111/j.1439-0469.2007.00409.x.

    Article 

    Google Scholar
     

  • Møbjerg N, Jørgensen A, Kristensen RM, Neves RC. Morphology and Functional Anatomy. In: Schill RO, editor. Water Bears: The Biology of Tardigrades [Internet]. Cham: Springer International Publishing; 2018. pp. 57–94. Available from: https://doi.org/10.1007/978-3-319-95702-9_2

  • Kamilari M, Jørgensen A, Schiøtt M, Møbjerg N. Comparative transcriptomics suggest unique molecular adaptations within tardigrade lineages. BMC Genomics. 2019;20(1):607.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stec D, Krzywański Ł, Arakawa K, Michalczyk Ł. A new redescription of Richtersius coronifer, supported by transcriptome, provides resources for describing concealed species diversity within the monotypic genus Richtersius (Eutardigrada). Zool Lett. 2020;6(1):2. https://doi.org/10.1186/s40851-020-0154-y.

    Article 

    Google Scholar
     

  • Boothby TC, Tapia H, Brozena AH, Piszkiewicz S, Smith AE, Giovannini I et al. Tardigrades Use Intrinsically Disordered Proteins to Survive Desiccation. Mol Cell [Internet]. 2017;65(6):975–984.e5. Available from: https://doi.org/10.1016/j.molcel.2017.02.018

  • Anoud M, Delagoutte E, Helleu Q, Brion A, Duvernois-Berthet E, As M et al. Comparative transcriptomics reveal a novel tardigrade-specific DNA-binding protein induced in response to ionizing radiation. Elife [Internet]. 2024;13:1–29. Available from: https://elifesciences.org/articles/92621

  • Yoshida Y, Koutsovoulos G, Laetsch DR, Stevens L, Kumar S, Horikawa DD, et al. Comparative genomics of the tardigrades Hypsibius dujardini and Ramazzottius varieornatus. PLoS Biol. 2017;15(7):e2002266. https://doi.org/10.1371/journal.pbio.2002266.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mapalo MA, Arakawa K, Baker CM, Persson DK, Mirano-Bascos D, Giribet G. The unique antimicrobial recognition and signaling pathways in tardigrades with a comparison across ecdysozoa. G3 Genes|Genomes|Genetics. 2020;10(3):1137–48.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Murai Y, Yagi-Utsumi M, Fujiwara M, Tanaka S, Tomita M, Kato K et al. Multiomics study of a heterotardigrade, Echinisicus testudo, suggests the possibility of convergent evolution of abundant heat-soluble proteins in Tardigrada. BMC Genomics [Internet]. 2021;22(1):813. Available from: http://biorxiv.org/content/early/2020/10/28/2020.10.27.358333.abstract

  • Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 2013;30(4):772–80. https://doi.org/10.1093/molbev/mst010.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Criscuolo A, Gribaldo S. BMGE (block mapping and gathering with entropy): a new software for selection of phylogenetic informative regions from multiple sequence alignments. BMC Evol Biol. 2010;10(1):210. https://doi.org/10.1186/1471-2148-10-210.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Minh BQ, Schmidt HA, Chernomor O, Schrempf D, Woodhams MD, von Haeseler A, et al. IQ-tree 2: new models and efficient methods for phylogenetic inference in the genomic era. Mol Biol Evol. 2020;37(5):1530–4. https://doi.org/10.1093/molbev/msaa015.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kalyaanamoorthy S, Minh BQ, Wong TKF, von Haeseler A, Jermiin LS. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat Methods [Internet]. 2017;14(6):587–9. Available from: https://www.nature.com/articles/nmeth.4285

  • Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol. 2010;59(3):307–21. https://doi.org/10.1093/sysbio/syq010.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hoang DT, Chernomor O, von Haeseler A, Minh BQ, Vinh LS. UFboot2: improving the ultrafast bootstrap approximation. Mol Biol Evol. 2018;35(2):518–22. https://doi.org/10.1093/molbev/msx281.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lartillot N, Rodrigue N, Stubbs D, Richer J, PhyloBayes MPI. Phylogenetic Reconstruction with Infinite Mixtures of Profiles in a Parallel Environment. Syst Biol [Internet]. 2013;62(4):611–5. Available from: https://doi.org/10.1093/sysbio/syt022

  • Manni M, Berkeley MR, Seppey M, Simão FA, Zdobnov EM. BUSCO Update: Novel and Streamlined Workflows along with Broader and Deeper Phylogenetic Coverage for Scoring of Eukaryotic, Prokaryotic, and Viral Genomes. Kelley J, editor. Mol Biol Evol [Internet]. 2021;38(10):4647–54. Available from: https://academic.oup.com/mbe/article/38/10/4647/6329644

  • Buchfink B, Xie C, Huson DH. Fast and sensitive protein alignment using DIAMOND. Nat Methods [Internet]. 2015;12(1):59–60. Available from: https://www.nature.com/articles/nmeth.3176

  • Herranz M, Stiller J, Worsaae K, Sørensen MV. Phylogenomic analyses of mud dragons (Kinorhyncha). Mol Phylogenet Evol [Internet]. 2022;168(December 2021):107375. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1055790321003080

  • Sato S, Cunha TJ, de Medeiros BAS, Khost DE, Sackton TB, Giribet G. Sizing Up the Onychophoran Genome: Repeats, Introns, and Gene Family Expansion Contribute to Genome Gigantism in Epiperipatus broadwayi. Vieira C, editor. Genome Biol Evol [Internet]. 2023;15(3):1–6. Available from: https://doi.org/10.1093/gbe/evad021

  • Lord A, Cunha TJ, de Medeiros BAS, Sato S, Khost DE, Sackton TB et al. Expanding on Our Knowledge of Ecdysozoan Genomes: A Contiguous Assembly of the Meiofaunal Priapulan Tubiluchus corallicola. Wheat C, editor. Genome Biol Evol [Internet]. 2023;15(6):1–6. Available from: https://doi.org/10.1093/gbe/evad103

  • Wang HC, Minh BQ, Susko E, Roger AJ. Modeling site heterogeneity with posterior mean site frequency profiles accelerates accurate phylogenomic estimation. Syst Biol. 2018;67(2):216–35. https://doi.org/10.1093/sysbio/syx068.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lu S, Wang J, Chitsaz F, Derbyshire MK, Geer RC, Gonzales NR et al. CDD/SPARCLE: the conserved domain database in 2020. Nucleic Acids Res [Internet]. 2020;48(D1):D265–8. Available from: https://doi.org/10.1093/nar/gkz991

  • Mirdita M, Schütze K, Moriwaki Y, Heo L, Ovchinnikov S, Steinegger M. ColabFold: making protein folding accessible to all. Nat Methods [Internet]. 2022;19(6):679–82. Available from: https://www.nature.com/articles/s41592-022-01488-1

  • Sehnal D, Bittrich S, Deshpande M, Svobodová R, Berka K, Bazgier V et al. Mol* Viewer: modern web app for 3D visualization and analysis of large biomolecular structures. Nucleic Acids Res [Internet]. 2021;49(W1):W431–7. Available from: https://academic.oup.com/nar/article/49/W1/W431/6270780

  • Grant BJ, Rodrigues APC, ElSawy KM, McCammon JA, Caves LSD. Bio3d: an R package for the comparative analysis of protein structures. Bioinformatics [Internet]. 2006;22(21):2695–6. Available from: https://academic.oup.com/bioinformatics/article/22/21/2695/252414

  • Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res [Internet]. 2004;32(5):1792–7. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15034147

  • Yoshida Y, Sugiura K, Tomita M, Matsumoto M, Arakawa K. Comparison of the transcriptomes of two tardigrades with different hatching coordination. BMC Dev Biol. 2019;19(1):1–9.

    Article 

    Google Scholar
     

  • Krueger F, Babraham Institute. 2015. Trim Galore! A wrapper tool around Cutadapt and FastQC to consistently apply quality and adapter trimming to FastQ files. Available from: http://www.bioinformatics.babraham.ac.uk/projects/trim_galore/

  • Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29(1):15–21. https://doi.org/10.1093/bioinformatics/bts635.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pertea G, Pertea M. GFF Utilities: GffRead and GffCompare. F1000Res [Internet]. 2020;9:ISCB Comm J-304. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7222033/

  • Liao Y, Smyth GK, Shi W. Featurecounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics. 2014. https://doi.org/10.1093/bioinformatics/btt656.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Horton NJ, Kleinman K, Using. R and RStudio for Data Management, Statistical Analysis, and Graphics [Internet]. CRC Press; 2015. 280 p. Available from: https://books.google.com/books?id=W1G3BgAAQBAJ

  • Vergani-Junior CA, Tonon-da-Silva G, Inan MD, Mori MA. DICER: structure, function, and regulation. Biophys Rev. 2021;13(6):1081–90. https://doi.org/10.1007/s12551-021-00902-w.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee YS, Nakahara K, Pham JW, Kim K, He Z, Sontheimer EJ et al. Distinct Roles for Drosophila Dicer-1 and Dicer-2 in the siRNA/miRNA Silencing Pathways. Cell [Internet]. 2004;117(1):69–81. Available from: https://www.cell.com/cell/abstract/S0092-8674(04)00261-2

  • Kidwell MA, Chan JM, Doudna JA. Evolutionarily Conserved Roles of the Dicer Helicase Domain in Regulating RNA Interference Processing. Journal of Biological Chemistry [Internet]. 2014;289(41):28352–62. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4192488/

  • Kaufman EJ, Miska EA. The microRNAs of Caenorhabditis elegans. Semin Cell Dev Biol [Internet]. 2010;21(7):728–37. Available from: https://www.sciencedirect.com/science/article/pii/S1084952110001060

  • Lim LP, Lau NC, Weinstein EG, Abdelhakim A, Yekta S, Rhoades MW, et al. The microRNAs of Caenorhabditis elegans. Genes Dev. 2003;17(8):991–1008. https://doi.org/10.1101/gad.1074403.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bukhari SIA, Vasquez-Rifo A, Gagné D, Paquet ER, Zetka M, Robert C et al. The microRNA pathway controls germ cell proliferation and differentiation in C. elegans. Cell Res [Internet]. 2012;22(6):1034–45. Available from: https://www.nature.com/articles/cr201231

  • McMenamin AJ, Daughenbaugh KF, Flenniken ML. The Heat Shock Response in the Western Honey Bee (Apis mellifera) is Antiviral. Viruses [Internet]. 2020;12(2):245. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7077298/

  • Aderounmu AM, Aruscavage PJ, Kolaczkowski B, Bass BL. Ancestral protein reconstruction reveals evolutionary events governing variation in Dicer helicase function. Elife [Internet]. 2023;12:e85120. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10159624/