Chapple DG, Roll U, Böhm M, Aguilar R, Amey AP, Austin CC, et al. Conservation status of the world’s skinks (Scincidae): taxonomic and geographic patterns in extinction risk. Biol Conserv. 2021. https://doi.org/10.1016/j.biocon.2021.109101.
Gardner MG, Pearson SK, Johnston GR, Schwarz MP. Group living in squamate reptiles: a review of evidence for stable aggregations. Biol Rev. 2016;91:925–36. https://doi.org/10.1111/brv.12201.
While GM, Chapple DG, Gardner MG, Uller T, Whiting MJ. Egernia lizards. Curr Biol. 2015;25:R593–5. https://doi.org/10.1016/j.cub.2015.02.070.
Greer AE. Limb reduction in squamates: identification of the lineages and discussion of the trends. J Herpetol. 1991;25:166–73.
Van Dyke JU, Thompson MB, Burridge CP, Castelli MA, Clulow S, DIssanayake DSB, et al. Australian lizards are outstanding models for reproductive biology research. Aust J Zool. 2021;68:168–99. https://doi.org/10.1071/ZO21017.
Pen I, Uller T, Feldmeyer B, Harts A, While GM, Wapstra E. Climate-driven population divergence in sex-determining systems. Nature. 2010;468:436–8. https://doi.org/10.1038/nature09512.
Fitzpatrick LJ, Olsson M, Pauliny A, While GM, Wapstra E. Individual telomere dynamics and their links to life history in a viviparous lizard. Proc R Soc Lond B Biol Sci. 2021;288:20210271. https://doi.org/10.1098/rspb.2021.0271.
Cunningham GD, While GM, Olsson M, Ljungström G, Wapstra E. Degrees of change: between and within population variation in thermal reaction norms of phenology in a viviparous lizard. Ecology. 2020;101:e03136. https://doi.org/10.1002/ecy.3136.
Hill PL, Burridge CP, Ezaz T, Wapstra E. Conservation of sex-linked markers among conspecific populations of a viviparous skink, Niveoscincus ocellatus, exhibiting genetic and temperature-dependent sex determination. Genome Biol Evol. 2018;10:1079–87. https://doi.org/10.1093/gbe/evy042.
Simakov O, Bredeson J, Berkoff K, Marletaz F, Mitros T, Schultz DT, et al. Deeply conserved synteny and the evolution of metazoan chromosomes. Sci Adv. 2022;8:eabi5884.
Christmas MJ, Goodman DB, Lind AL, Redlich RW, Brown AR, Teeling EC, et al. Evolutionary constraint and innovation across hundreds of placental mammals. Science. 2023;380:eabn3943. https://doi.org/10.1126/SCIENCE.ABN3943.
Chen X, Wang Z, Zhang C, Hu J, Lu Y, Zhou H, et al. Unraveling the complex evolutionary history of lepidopteran chromosomes through ancestral chromosome reconstruction and novel chromosome nomenclature. BMC Biol. 2023;21:265. https://doi.org/10.1186/s12915-023-01762-4.
Muffato M, Louis A, Nguyen NTT, Lucas J, Berthelot C, Roest Crollius H. Reconstruction of hundreds of reference ancestral genomes across the eukaryotic kingdom. Nat Ecol Evol. 2023;7:355–66. https://doi.org/10.1038/s41559-022-01956-z.
Brandies P, Peel E, Hogg CJ, Belov K. The value of reference genomes in the conservation of threatened species. Genes. 2019;10:846. https://doi.org/10.3390/genes10110846.
Formenti G, Theissinger K, Fernandes C, Bista I, Bombarely A, Bleidorn C. The era of reference genomes in conservation genomics. Trends Ecol Evol. 2021;37:197–202.
Theissinger K, Fernandes C, Formenti G, Bista I, Berg PR, Bleidorn C, et al. How genomics can help biodiversity conservation. Trends Genet. 2023;39:545–59. https://doi.org/10.1016/j.tig.2023.01.005.
Wold J, Koepfli KP, Galla SJ, Eccles D, Hogg CJ, Le Lec MF, et al. Expanding the conservation genomics toolbox: incorporating structural variants to enhance genomic studies for species of conservation concern. Mol Ecol. 2021;30:5949–65. https://doi.org/10.1111/mec.16141.
Pal K, Forcato M, Ferrari F. Hi-c analysis: from data generation to integration. Biophys Rev. 2019;11:67–78. https://doi.org/10.1007/s12551-018-0489-1.
Rhie A, McCarthy SA, Fedrigo O, Damas J, Formenti G, Koren S, et al. Towards complete and error-free genome assemblies of all vertebrate species. Nature. 2021;592:737–46. https://doi.org/10.1038/s41586-021-03451-0.
Bringloe TT, Parent GJ. Contrasting new and available reference genomes to highlight uncertainties in assemblies and areas for future improvement: an example with monodontid species. BMC Genomics. 2023;24:693. https://doi.org/10.1186/s12864-023-09779-3.
Kadota M, Nishimura O, Miura H, Tanaka K, Hiratani I, Kuraku S. Multifaceted Hi-C benchmarking: what makes a difference in chromosome-scale genome scaffolding? Gigascience. 2020;9:1–15. https://doi.org/10.1093/gigascience/giz158.
Yamaguchi K, Kadota M, Nishimura O, Ohishi Y, Naito Y, Kuraku S. Technical considerations in Hi-C scaffolding and evaluation of chromosome-scale genome assemblies. Mol Ecol. 2021;30:5923–34. https://doi.org/10.1111/mec.16146.
Perry BW, Schield DR, Adams RH, Castoe TA. Microchromosomes exhibit distinct features of vertebrate chromosome structure and function with underappreciated ramifications for genome evolution. Mol Biol Evol. 2021;38:904–10. https://doi.org/10.1093/molbev/msaa253.
Waters PD, Patel HR, Ruiz-Herrera A, Alvarez-Gonzalez L, Lister NC, Simakov O, et al. Microchromosomes are building blocks of bird, reptile, and mammal chromosomes. Proc Natl Acad Sci U S A. 2021;118:1–11. https://doi.org/10.1073/pnas.2112494118.
Davalos-Dehullu E, Baty SM, Fisher RN, Scott PA, Dolby GA, Munguia-Vega A, et al. Chromosome-level genome assembly of the blacktail brush lizard, Urosaurus nigricaudus, reveals dosage compensation in an endemic lizard. Genome Biol Evol. 2023;15:evad210. https://doi.org/10.1093/gbe/evad210.
Luo H, Jiang X, Li B, Wu J, Shen J, Xu Z, et al. A high-quality genome assembly highlights the evolutionary history of the great bustard (Otis tarda, Otidiformes). Commun Biol. 2023;6:746. https://doi.org/10.1038/s42003-023-05137-x.
Schield DR, Card DC, Hales NR, Perry BW, Pasquesi GM, Blackmon H, et al. The origins and evolution of chromosomes, dosage compensation, and mechanisms underlying venom regulation in snakes. Genome Res. 2019;29:590–601. https://doi.org/10.1101/gr.240952.118.
Lewin HA, Graves JAM, Ryder OA, Graphodatsky AS, O’Brien SJ. Precision nomenclature for the new genomics. GigaScience. 2019;8:giz086. https://doi.org/10.1093/gigascience/giz086.
Shi Y, Chen B, Kong S, Zeng Q, Li L, Liu B, et al. Comparative genomics analysis and genome assembly integration with the recombination landscape contribute to Takifugu bimaculatus assembly refinement. Gene. 2023;849:146910. https://doi.org/10.1016/j.gene.2022.146910.
Koochekian N, Ascanio A, Farleigh K, Card DC, Schield DR, Castoe TA, et al. A chromosome-level genome assembly and annotation of the desert horned lizard, Phrynosoma platyrhinos, provides insight into chromosomal rearrangements among reptiles. Gigascience. 2022;11:giab098. https://doi.org/10.1093/gigascience/giab098.
Uno Y, Nozu R, Kiyatake I, Higashiguchi N, Sodeyama S, Murakumo K, et al. Cell culture-based karyotyping of orectolobiform sharks for chromosome-scale genome analysis. Commun Biol. 2020;3:652. https://doi.org/10.1038/s42003-020-01373-7.
Shearer LA, Anderson LK, de Jong H, Smit S, Goicoechea JL, Roe BA, et al. Fluorescence in situ hybridization and optical mapping to correct scaffold arrangement in the tomato genome. G3 Genes|Genomes|Genetics. 2014;4:1395–405. https://doi.org/10.1534/g3.114.011197.
Iannucci A, Makunin AI, Lisachov AP, Ciofi C, Stanyon R, Svartman M, et al. Bridging the gap between vertebrate cytogenetics and genomics with single-chromosome sequencing (ChromSeq). Genes. 2021;12:124. https://doi.org/10.3390/genes12010124.
Zwyrtková J, Šimková H, Doležel J. Chromosome genomics uncovers plant genome organization and function. Biotechnol Adv. 2021;46:107659. https://doi.org/10.1016/j.biotechadv.2020.107659.
Fierst JL. Using linkage maps to correct and scaffold de novo genome assemblies: methods, challenges, and computational tools. Front Genet. 2015;6:220. https://doi.org/10.3389/fgene.2015.00220.
Rice ES, Green RE. New approaches for genome assembly and scaffolding. Annu Rev Anim Biosci. 2019;7:17–40. https://doi.org/10.1146/annurev-animal-020518-115344.
Damas J, O’Connor R, Farré M, Lenis VPE, Martell HJ, Mandawala A, et al. Upgrading short-read animal genome assemblies to chromosome level using comparative genomics and a universal probe set. Genome Res. 2017;27:875–84. https://doi.org/10.1101/gr.213660.116.
O’Connor RE, Farré M, Joseph S, Damas J, Kiazim L, Jennings R, et al. Chromosome-level assembly reveals extensive rearrangement in saker falcon and budgerigar, but not ostrich, genomes. Genome Biol. 2018. https://doi.org/10.1186/s13059-018-1550-x.
Beliveau BJ, Joyce EF, Apostolopoulos N, Yilmaz F, Fonseka CY, McCole RB, et al. Versatile design and synthesis platform for visualizing genomes with Oligopaint FISH probes. Proc Natl Acad Sci U S A. 2012;109:21301–6. https://doi.org/10.1073/pnas.1213818110.
Han Y, Zhang T, Thammapichai P, Weng Y, Jiang J. Chromosome-specific painting in Cucumis species using bulked oligonucleotides. Genetics. 2015;200:771–9. https://doi.org/10.1534/genetics.115.177642.
Braz GT, He L, Zhao H, Zhang T, Semrau K, Rouillard JM, et al. Comparative oligo-FISH mapping: an efficient and powerful methodology to reveal karyotypic and chromosomal evolution. Genetics. 2018;208:513–23. https://doi.org/10.1534/genetics.117.300344.
He L, Braz GT, Torres GA, Jiang J. Chromosome painting in meiosis reveals pairing of specific chromosomes in polyploid Solanum species. Chromosoma. 2018;127:505–13. https://doi.org/10.1007/s00412-018-0682-9.
He L, Zhao H, He J, Yang Z, Guan B, Chen K, et al. Extraordinarily conserved chromosomal synteny of Citrus species revealed by chromosome-specific painting. Plant J. 2020;103:2225–35. https://doi.org/10.1111/tpj.14894.
Bielski W, Książkiewicz M, Šimoníková D, Hřibová E, Susek K, Naganowska B. The puzzling fate of a lupin chromosome revealed by reciprocal oligo-fish and bac-fish mapping. Genes. 2020;11:1–17. https://doi.org/10.3390/genes11121489.
Huang Z. Evolutionary analysis of a complete chicken genome. Proc Natl Acad Sci. 2023;120:e2216641120. https://doi.org/10.1073/pnas.
Poisson W, Prunier J, Carrier A, Gilbert I, Mastromonaco G, Albert V, et al. Chromosome-level assembly of the Rangifer tarandus genome and validation of cervid and bovid evolution insights. BMC Genomics. 2023;24:1–17. https://doi.org/10.1186/s12864-023-09189-5.
Donnellan SC. The evolution of sex chromosomes in scincid lizards. Sydney, NSW, Australia: Macquarie University; 1985.
Hill P, Shams F, Burridge CP, Wapstra E, Ezaz T. Differences in homomorphic sex chromosomes are associated with population divergence in sex determination in Carinascincus ocellatus (Scincidae: Lygosominae). Cells. 2021;10:291.
Hanrahan BJ, Alreja K, Reis ALM, Chang JK, Dissanayake DSB, Edwards RJ, et al. A genome assembly and annotation for the Australian alpine skink Bassiana duperreyi using long-read technologies. G3 Genes Genomes Genet. 2025;15:jkaf046. https://doi.org/10.1093/g3journal/jkaf046.
Rivera D, Henderson JB, Lam AW, Hostetter NJ, Collazo JA, Bell RC. High-quality, chromosome-level reference genomes of the viviparous Caribbean skinks Spondylurus nitidus and S. culebrae. Genome Biol Evol. 2024;16:1–7. https://doi.org/10.1093/gbe/evae079.
Deakin JE, Potter S, O’neill R, Ruiz-Herrera A, Cioffi MB, Eldridge MDB, et al. Chromosomics: bridging the gap between genomes and chromosomes. Genes. 2019;10(8):627. https://doi.org/10.3390/genes10080627.
Dodge TO, Farquharson KA, Ford C, Cavanagh L, Schubert K, Schumer M, et al. Genomes of two extinct-in-the-wild reptiles from Christmas Island reveal distinct evolutionary histories and conservation insights. Mol Ecol Resour. 2022;2023:1–17. https://doi.org/10.1111/1755-0998.13780.
Deakin JE, Ezaz T. Understanding the evolution of reptile chromosomes through applications of combined cytogenetics and genomics approaches. Cytogenet Genome Res. 2019;157:7–20. https://doi.org/10.1159/000495974.
Bourke PM, Van Geest G, Voorrips RE, Jansen J, Kranenburg T, Shahin A, et al. PolymapR – linkage analysis and genetic map construction from F 1 populations of outcrossing polyploids. Bioinformatics. 2018;34:3496–502. https://doi.org/10.1093/bioinformatics/bty371.
Grandke F, Ranganathan S, van Bers N, de Haan JR, Metzler D. PERGOLA: fast and deterministic linkage mapping of polyploids. BMC Bioinformatics. 2017;18:1–9. https://doi.org/10.1186/s12859-016-1416-8.
Saunders PA, Ferre-Ortega C, Hill PL, Simakov O, Ezaz T, Burridge CP, et al. Using a handful of transcriptomes to detect sex-linked markers and develop molecular sexing assays in a species with homomorphic sex chromosomes. Genome Biol Evol. 2024;16:1–7. https://doi.org/10.1093/gbe/evae060.
Marçais G, Kingsford C. A fast, lock-free approach for efficient parallel counting of occurrences of k-mers. Bioinformatics. 2011;27:764–70. https://doi.org/10.1093/bioinformatics/btr011.
Cheng H, Concepcion GT, Feng X, Zhang H, Li H. Haplotype-resolved de novo assembly using phased assembly graphs with hifiasm. Nat Methods. 2021;176:170–5. https://doi.org/10.1038/s41592-020-01056-5.
Manni M, Berkeley MR, Seppey M, Simão FA, Zdobnov EM. BUSCO update: novel and streamlined workflows along with broader and deeper phylogenetic coverage for scoring of eukaryotic, prokaryotic, and viral genomes. Mol Biol Evol. 2021;38:4647–54. https://doi.org/10.1093/molbev/msab199.
Dudchenko O, Batra SS, Omer AD, Nyquist SK, Hoeger M, Durand NC, et al. De novo assembly of the Aedes aegypti genome using Hi-C yields chromosome-length scaffolds. Science. 2017;356:92–5. https://doi.org/10.1126/science.aal3327.
Durand NC, Shamim MS, Machol I, Rao SSP, Huntley MH, Lander ES, et al. Juicer provides a one-click system for analyzing loop-resolution Hi-C experiments. Cell Syst. 2016;3:95–8. https://doi.org/10.1016/j.cels.2016.07.002.
Uliano-Silva M, Ferreira JGRN, Krasheninnikova K, Blaxter M, Mieszkowska N, Hall N, et al. MitoHiFi: a python pipeline for mitochondrial genome assembly from PacBio high fidelity reads. BMC Bioinformatics. 2023;24:1–13. https://doi.org/10.1186/s12859-023-05385-y.
Flynn JM, Hubley R, Goubert C, Rosen J, Clark AG, Feschotte C, et al. Repeatmodeler2 for automated genomic discovery of transposable element families. Proc Natl Acad Sci U S A. 2020. https://doi.org/10.1073/pnas.1921046117.
Smit AFA, Hubley R, Green P. RepeatMasker Open-4.0. 2015. http://www.repeatmasker.org. Accessed 01 May 2024.
Gabriel L, Brůna T, Hoff KJ, Ebel M, Lomsadze A, Borodovsky M, et al. BRAKER3: fully automated genome annotation using RNA-seq and protein evidence with GeneMark-ETP, AUGUSTUS, and TSEBRA. Genome Res. 2024;34:769–77. https://doi.org/10.1101/gr.278090.123.
Kuznetsov D, Tegenfeldt F, Manni M, Seppey M, Berkeley M, Kriventseva EV, et al. OrthoDB v11: annotation of orthologs in the widest sampling of organismal diversity. Nucleic Acids Res. 2023;51(D1):D445-51. https://doi.org/10.1093/nar/gkac998.
Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29:15–21. https://doi.org/10.1093/bioinformatics/bts635.
Cantalapiedra CP, Hernández-Plaza A, Letunic I, Bork P, Huerta-Cepas J. eggNOG-mapper v2: Functional Annotation, Orthology Assignments, and Domain Prediction at the Metagenomic Scale. Mol Biol Evol. 2021;38:5825–9. https://doi.org/10.1093/molbev/msab293.
Kent WJ. BLAT—the BLAST-like alignment tool. Genome Res. 2002;12:656–64. https://doi.org/10.1101/gr.229202.
Harris RS. Improved pairwise alignment of genomic DNA. The Pennsylvania State University. 2007. Accessible at: https://www.proquest.com/openview/bc77cca0fb9390b44b9ef572fb574322/1?pq-origsite=gscholar&cbl=18750.
Kent WJ, Baertsch R, Hinrichs A, Miller W, Haussler D. Evolution’s cauldron: duplication, deletion, and rearrangement in the mouse and human genomes. Proc Natl Acad Sci U S A. 2003;100:11484–9. https://doi.org/10.1073/pnas.1932072100.
Chromosome-level assembly for Carinascincus ocellatus, ENA Bioproject accession: PRJEB88809. 2025.
Spotted snow skink RNAseq, NCBI Bioproject accession: PRJNA975681. 2023.
Chromosome-level assembly (PacBio HiFi + HiC) for the Tasmanian spotted snow skink Carinascincus ocellatus, accession number: GCA_965280105.1. 2025.
Hedges SB. The high-level classification of skinks (Reptilia, Squamata, Scincomorpha). Zootaxa. 2014;3765:317–38. https://doi.org/10.11646/zootaxa.3765.4.2.
Uetz P, Koo MS, Aguilar R, Brings E, Catenazzi A, Chang AT, et al. A quarter century of reptile and amphibian databases. Herpetol Rev. 2021;52:246–55.