• Chapple DG, Roll U, Böhm M, Aguilar R, Amey AP, Austin CC, et al. Conservation status of the world’s skinks (Scincidae): taxonomic and geographic patterns in extinction risk. Biol Conserv. 2021. https://doi.org/10.1016/j.biocon.2021.109101.

    Article 

    Google Scholar
     

  • Gardner MG, Pearson SK, Johnston GR, Schwarz MP. Group living in squamate reptiles: a review of evidence for stable aggregations. Biol Rev. 2016;91:925–36. https://doi.org/10.1111/brv.12201.

    Article 
    PubMed 

    Google Scholar
     

  • While GM, Chapple DG, Gardner MG, Uller T, Whiting MJ. Egernia lizards. Curr Biol. 2015;25:R593–5. https://doi.org/10.1016/j.cub.2015.02.070.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Greer AE. Limb reduction in squamates: identification of the lineages and discussion of the trends. J Herpetol. 1991;25:166–73.

    Article 

    Google Scholar
     

  • Van Dyke JU, Thompson MB, Burridge CP, Castelli MA, Clulow S, DIssanayake DSB, et al. Australian lizards are outstanding models for reproductive biology research. Aust J Zool. 2021;68:168–99. https://doi.org/10.1071/ZO21017.

    Article 

    Google Scholar
     

  • Pen I, Uller T, Feldmeyer B, Harts A, While GM, Wapstra E. Climate-driven population divergence in sex-determining systems. Nature. 2010;468:436–8. https://doi.org/10.1038/nature09512.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fitzpatrick LJ, Olsson M, Pauliny A, While GM, Wapstra E. Individual telomere dynamics and their links to life history in a viviparous lizard. Proc R Soc Lond B Biol Sci. 2021;288:20210271. https://doi.org/10.1098/rspb.2021.0271.

    Article 
    CAS 

    Google Scholar
     

  • Cunningham GD, While GM, Olsson M, Ljungström G, Wapstra E. Degrees of change: between and within population variation in thermal reaction norms of phenology in a viviparous lizard. Ecology. 2020;101:e03136. https://doi.org/10.1002/ecy.3136.

    Article 
    PubMed 

    Google Scholar
     

  • Hill PL, Burridge CP, Ezaz T, Wapstra E. Conservation of sex-linked markers among conspecific populations of a viviparous skink, Niveoscincus ocellatus, exhibiting genetic and temperature-dependent sex determination. Genome Biol Evol. 2018;10:1079–87. https://doi.org/10.1093/gbe/evy042.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Simakov O, Bredeson J, Berkoff K, Marletaz F, Mitros T, Schultz DT, et al. Deeply conserved synteny and the evolution of metazoan chromosomes. Sci Adv. 2022;8:eabi5884.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Christmas MJ, Goodman DB, Lind AL, Redlich RW, Brown AR, Teeling EC, et al. Evolutionary constraint and innovation across hundreds of placental mammals. Science. 2023;380:eabn3943. https://doi.org/10.1126/SCIENCE.ABN3943.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen X, Wang Z, Zhang C, Hu J, Lu Y, Zhou H, et al. Unraveling the complex evolutionary history of lepidopteran chromosomes through ancestral chromosome reconstruction and novel chromosome nomenclature. BMC Biol. 2023;21:265. https://doi.org/10.1186/s12915-023-01762-4.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Muffato M, Louis A, Nguyen NTT, Lucas J, Berthelot C, Roest Crollius H. Reconstruction of hundreds of reference ancestral genomes across the eukaryotic kingdom. Nat Ecol Evol. 2023;7:355–66. https://doi.org/10.1038/s41559-022-01956-z.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brandies P, Peel E, Hogg CJ, Belov K. The value of reference genomes in the conservation of threatened species. Genes. 2019;10:846. https://doi.org/10.3390/genes10110846.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Formenti G, Theissinger K, Fernandes C, Bista I, Bombarely A, Bleidorn C. The era of reference genomes in conservation genomics. Trends Ecol Evol. 2021;37:197–202.

    Article 

    Google Scholar
     

  • Theissinger K, Fernandes C, Formenti G, Bista I, Berg PR, Bleidorn C, et al. How genomics can help biodiversity conservation. Trends Genet. 2023;39:545–59. https://doi.org/10.1016/j.tig.2023.01.005.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wold J, Koepfli KP, Galla SJ, Eccles D, Hogg CJ, Le Lec MF, et al. Expanding the conservation genomics toolbox: incorporating structural variants to enhance genomic studies for species of conservation concern. Mol Ecol. 2021;30:5949–65. https://doi.org/10.1111/mec.16141.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pal K, Forcato M, Ferrari F. Hi-c analysis: from data generation to integration. Biophys Rev. 2019;11:67–78. https://doi.org/10.1007/s12551-018-0489-1.

    Article 
    PubMed 

    Google Scholar
     

  • Rhie A, McCarthy SA, Fedrigo O, Damas J, Formenti G, Koren S, et al. Towards complete and error-free genome assemblies of all vertebrate species. Nature. 2021;592:737–46. https://doi.org/10.1038/s41586-021-03451-0.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bringloe TT, Parent GJ. Contrasting new and available reference genomes to highlight uncertainties in assemblies and areas for future improvement: an example with monodontid species. BMC Genomics. 2023;24:693. https://doi.org/10.1186/s12864-023-09779-3.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kadota M, Nishimura O, Miura H, Tanaka K, Hiratani I, Kuraku S. Multifaceted Hi-C benchmarking: what makes a difference in chromosome-scale genome scaffolding? Gigascience. 2020;9:1–15. https://doi.org/10.1093/gigascience/giz158.

    Article 
    CAS 

    Google Scholar
     

  • Yamaguchi K, Kadota M, Nishimura O, Ohishi Y, Naito Y, Kuraku S. Technical considerations in Hi-C scaffolding and evaluation of chromosome-scale genome assemblies. Mol Ecol. 2021;30:5923–34. https://doi.org/10.1111/mec.16146.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Perry BW, Schield DR, Adams RH, Castoe TA. Microchromosomes exhibit distinct features of vertebrate chromosome structure and function with underappreciated ramifications for genome evolution. Mol Biol Evol. 2021;38:904–10. https://doi.org/10.1093/molbev/msaa253.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Waters PD, Patel HR, Ruiz-Herrera A, Alvarez-Gonzalez L, Lister NC, Simakov O, et al. Microchromosomes are building blocks of bird, reptile, and mammal chromosomes. Proc Natl Acad Sci U S A. 2021;118:1–11. https://doi.org/10.1073/pnas.2112494118.

    Article 
    CAS 

    Google Scholar
     

  • Davalos-Dehullu E, Baty SM, Fisher RN, Scott PA, Dolby GA, Munguia-Vega A, et al. Chromosome-level genome assembly of the blacktail brush lizard, Urosaurus nigricaudus, reveals dosage compensation in an endemic lizard. Genome Biol Evol. 2023;15:evad210. https://doi.org/10.1093/gbe/evad210.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Luo H, Jiang X, Li B, Wu J, Shen J, Xu Z, et al. A high-quality genome assembly highlights the evolutionary history of the great bustard (Otis tarda, Otidiformes). Commun Biol. 2023;6:746. https://doi.org/10.1038/s42003-023-05137-x.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schield DR, Card DC, Hales NR, Perry BW, Pasquesi GM, Blackmon H, et al. The origins and evolution of chromosomes, dosage compensation, and mechanisms underlying venom regulation in snakes. Genome Res. 2019;29:590–601. https://doi.org/10.1101/gr.240952.118.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lewin HA, Graves JAM, Ryder OA, Graphodatsky AS, O’Brien SJ. Precision nomenclature for the new genomics. GigaScience. 2019;8:giz086. https://doi.org/10.1093/gigascience/giz086.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shi Y, Chen B, Kong S, Zeng Q, Li L, Liu B, et al. Comparative genomics analysis and genome assembly integration with the recombination landscape contribute to Takifugu bimaculatus assembly refinement. Gene. 2023;849:146910. https://doi.org/10.1016/j.gene.2022.146910.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Koochekian N, Ascanio A, Farleigh K, Card DC, Schield DR, Castoe TA, et al. A chromosome-level genome assembly and annotation of the desert horned lizard, Phrynosoma platyrhinos, provides insight into chromosomal rearrangements among reptiles. Gigascience. 2022;11:giab098. https://doi.org/10.1093/gigascience/giab098.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Uno Y, Nozu R, Kiyatake I, Higashiguchi N, Sodeyama S, Murakumo K, et al. Cell culture-based karyotyping of orectolobiform sharks for chromosome-scale genome analysis. Commun Biol. 2020;3:652. https://doi.org/10.1038/s42003-020-01373-7.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shearer LA, Anderson LK, de Jong H, Smit S, Goicoechea JL, Roe BA, et al. Fluorescence in situ hybridization and optical mapping to correct scaffold arrangement in the tomato genome. G3 Genes|Genomes|Genetics. 2014;4:1395–405. https://doi.org/10.1534/g3.114.011197.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Iannucci A, Makunin AI, Lisachov AP, Ciofi C, Stanyon R, Svartman M, et al. Bridging the gap between vertebrate cytogenetics and genomics with single-chromosome sequencing (ChromSeq). Genes. 2021;12:124. https://doi.org/10.3390/genes12010124.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zwyrtková J, Šimková H, Doležel J. Chromosome genomics uncovers plant genome organization and function. Biotechnol Adv. 2021;46:107659. https://doi.org/10.1016/j.biotechadv.2020.107659.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fierst JL. Using linkage maps to correct and scaffold de novo genome assemblies: methods, challenges, and computational tools. Front Genet. 2015;6:220. https://doi.org/10.3389/fgene.2015.00220.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rice ES, Green RE. New approaches for genome assembly and scaffolding. Annu Rev Anim Biosci. 2019;7:17–40. https://doi.org/10.1146/annurev-animal-020518-115344.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Damas J, O’Connor R, Farré M, Lenis VPE, Martell HJ, Mandawala A, et al. Upgrading short-read animal genome assemblies to chromosome level using comparative genomics and a universal probe set. Genome Res. 2017;27:875–84. https://doi.org/10.1101/gr.213660.116.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • O’Connor RE, Farré M, Joseph S, Damas J, Kiazim L, Jennings R, et al. Chromosome-level assembly reveals extensive rearrangement in saker falcon and budgerigar, but not ostrich, genomes. Genome Biol. 2018. https://doi.org/10.1186/s13059-018-1550-x.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Beliveau BJ, Joyce EF, Apostolopoulos N, Yilmaz F, Fonseka CY, McCole RB, et al. Versatile design and synthesis platform for visualizing genomes with Oligopaint FISH probes. Proc Natl Acad Sci U S A. 2012;109:21301–6. https://doi.org/10.1073/pnas.1213818110.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Han Y, Zhang T, Thammapichai P, Weng Y, Jiang J. Chromosome-specific painting in Cucumis species using bulked oligonucleotides. Genetics. 2015;200:771–9. https://doi.org/10.1534/genetics.115.177642.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Braz GT, He L, Zhao H, Zhang T, Semrau K, Rouillard JM, et al. Comparative oligo-FISH mapping: an efficient and powerful methodology to reveal karyotypic and chromosomal evolution. Genetics. 2018;208:513–23. https://doi.org/10.1534/genetics.117.300344.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • He L, Braz GT, Torres GA, Jiang J. Chromosome painting in meiosis reveals pairing of specific chromosomes in polyploid Solanum species. Chromosoma. 2018;127:505–13. https://doi.org/10.1007/s00412-018-0682-9.

    Article 
    PubMed 

    Google Scholar
     

  • He L, Zhao H, He J, Yang Z, Guan B, Chen K, et al. Extraordinarily conserved chromosomal synteny of Citrus species revealed by chromosome-specific painting. Plant J. 2020;103:2225–35. https://doi.org/10.1111/tpj.14894.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bielski W, Książkiewicz M, Šimoníková D, Hřibová E, Susek K, Naganowska B. The puzzling fate of a lupin chromosome revealed by reciprocal oligo-fish and bac-fish mapping. Genes. 2020;11:1–17. https://doi.org/10.3390/genes11121489.

    Article 
    CAS 

    Google Scholar
     

  • Huang Z. Evolutionary analysis of a complete chicken genome. Proc Natl Acad Sci. 2023;120:e2216641120. https://doi.org/10.1073/pnas.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Poisson W, Prunier J, Carrier A, Gilbert I, Mastromonaco G, Albert V, et al. Chromosome-level assembly of the Rangifer tarandus genome and validation of cervid and bovid evolution insights. BMC Genomics. 2023;24:1–17. https://doi.org/10.1186/s12864-023-09189-5.

    Article 
    CAS 

    Google Scholar
     

  • Donnellan SC. The evolution of sex chromosomes in scincid lizards. Sydney, NSW, Australia: Macquarie University; 1985.


    Google Scholar
     

  • Hill P, Shams F, Burridge CP, Wapstra E, Ezaz T. Differences in homomorphic sex chromosomes are associated with population divergence in sex determination in Carinascincus ocellatus (Scincidae: Lygosominae). Cells. 2021;10:291.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hanrahan BJ, Alreja K, Reis ALM, Chang JK, Dissanayake DSB, Edwards RJ, et al. A genome assembly and annotation for the Australian alpine skink Bassiana duperreyi using long-read technologies. G3 Genes Genomes Genet. 2025;15:jkaf046. https://doi.org/10.1093/g3journal/jkaf046.

    Article 
    CAS 

    Google Scholar
     

  • Rivera D, Henderson JB, Lam AW, Hostetter NJ, Collazo JA, Bell RC. High-quality, chromosome-level reference genomes of the viviparous Caribbean skinks Spondylurus nitidus and S. culebrae. Genome Biol Evol. 2024;16:1–7. https://doi.org/10.1093/gbe/evae079.

    Article 
    CAS 

    Google Scholar
     

  • Deakin JE, Potter S, O’neill R, Ruiz-Herrera A, Cioffi MB, Eldridge MDB, et al. Chromosomics: bridging the gap between genomes and chromosomes. Genes. 2019;10(8):627. https://doi.org/10.3390/genes10080627.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dodge TO, Farquharson KA, Ford C, Cavanagh L, Schubert K, Schumer M, et al. Genomes of two extinct-in-the-wild reptiles from Christmas Island reveal distinct evolutionary histories and conservation insights. Mol Ecol Resour. 2022;2023:1–17. https://doi.org/10.1111/1755-0998.13780.

    Article 
    CAS 

    Google Scholar
     

  • Deakin JE, Ezaz T. Understanding the evolution of reptile chromosomes through applications of combined cytogenetics and genomics approaches. Cytogenet Genome Res. 2019;157:7–20. https://doi.org/10.1159/000495974.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bourke PM, Van Geest G, Voorrips RE, Jansen J, Kranenburg T, Shahin A, et al. PolymapR – linkage analysis and genetic map construction from F 1 populations of outcrossing polyploids. Bioinformatics. 2018;34:3496–502. https://doi.org/10.1093/bioinformatics/bty371.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Grandke F, Ranganathan S, van Bers N, de Haan JR, Metzler D. PERGOLA: fast and deterministic linkage mapping of polyploids. BMC Bioinformatics. 2017;18:1–9. https://doi.org/10.1186/s12859-016-1416-8.

    Article 

    Google Scholar
     

  • Saunders PA, Ferre-Ortega C, Hill PL, Simakov O, Ezaz T, Burridge CP, et al. Using a handful of transcriptomes to detect sex-linked markers and develop molecular sexing assays in a species with homomorphic sex chromosomes. Genome Biol Evol. 2024;16:1–7. https://doi.org/10.1093/gbe/evae060.

    Article 
    CAS 

    Google Scholar
     

  • Marçais G, Kingsford C. A fast, lock-free approach for efficient parallel counting of occurrences of k-mers. Bioinformatics. 2011;27:764–70. https://doi.org/10.1093/bioinformatics/btr011.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cheng H, Concepcion GT, Feng X, Zhang H, Li H. Haplotype-resolved de novo assembly using phased assembly graphs with hifiasm. Nat Methods. 2021;176:170–5. https://doi.org/10.1038/s41592-020-01056-5.

    Article 
    CAS 

    Google Scholar
     

  • Manni M, Berkeley MR, Seppey M, Simão FA, Zdobnov EM. BUSCO update: novel and streamlined workflows along with broader and deeper phylogenetic coverage for scoring of eukaryotic, prokaryotic, and viral genomes. Mol Biol Evol. 2021;38:4647–54. https://doi.org/10.1093/molbev/msab199.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dudchenko O, Batra SS, Omer AD, Nyquist SK, Hoeger M, Durand NC, et al. De novo assembly of the Aedes aegypti genome using Hi-C yields chromosome-length scaffolds. Science. 2017;356:92–5. https://doi.org/10.1126/science.aal3327.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Durand NC, Shamim MS, Machol I, Rao SSP, Huntley MH, Lander ES, et al. Juicer provides a one-click system for analyzing loop-resolution Hi-C experiments. Cell Syst. 2016;3:95–8. https://doi.org/10.1016/j.cels.2016.07.002.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Uliano-Silva M, Ferreira JGRN, Krasheninnikova K, Blaxter M, Mieszkowska N, Hall N, et al. MitoHiFi: a python pipeline for mitochondrial genome assembly from PacBio high fidelity reads. BMC Bioinformatics. 2023;24:1–13. https://doi.org/10.1186/s12859-023-05385-y.

    Article 
    CAS 

    Google Scholar
     

  • Flynn JM, Hubley R, Goubert C, Rosen J, Clark AG, Feschotte C, et al. Repeatmodeler2 for automated genomic discovery of transposable element families. Proc Natl Acad Sci U S A. 2020. https://doi.org/10.1073/pnas.1921046117.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Smit AFA, Hubley R, Green P. RepeatMasker Open-4.0. 2015. http://www.repeatmasker.org. Accessed 01 May 2024.

  • Gabriel L, Brůna T, Hoff KJ, Ebel M, Lomsadze A, Borodovsky M, et al. BRAKER3: fully automated genome annotation using RNA-seq and protein evidence with GeneMark-ETP, AUGUSTUS, and TSEBRA. Genome Res. 2024;34:769–77. https://doi.org/10.1101/gr.278090.123.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kuznetsov D, Tegenfeldt F, Manni M, Seppey M, Berkeley M, Kriventseva EV, et al. OrthoDB v11: annotation of orthologs in the widest sampling of organismal diversity. Nucleic Acids Res. 2023;51(D1):D445-51. https://doi.org/10.1093/nar/gkac998.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29:15–21. https://doi.org/10.1093/bioinformatics/bts635.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cantalapiedra CP, Hernández-Plaza A, Letunic I, Bork P, Huerta-Cepas J. eggNOG-mapper v2: Functional Annotation, Orthology Assignments, and Domain Prediction at the Metagenomic Scale. Mol Biol Evol. 2021;38:5825–9. https://doi.org/10.1093/molbev/msab293.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kent WJ. BLAT—the BLAST-like alignment tool. Genome Res. 2002;12:656–64. https://doi.org/10.1101/gr.229202.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Harris RS. Improved pairwise alignment of genomic DNA. The Pennsylvania State University. 2007. Accessible at: https://www.proquest.com/openview/bc77cca0fb9390b44b9ef572fb574322/1?pq-origsite=gscholar&cbl=18750.

  • Kent WJ, Baertsch R, Hinrichs A, Miller W, Haussler D. Evolution’s cauldron: duplication, deletion, and rearrangement in the mouse and human genomes. Proc Natl Acad Sci U S A. 2003;100:11484–9. https://doi.org/10.1073/pnas.1932072100.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chromosome-level assembly for Carinascincus ocellatus, ENA Bioproject accession: PRJEB88809. 2025.

  • Spotted snow skink RNAseq, NCBI Bioproject accession: PRJNA975681. 2023.

  • Chromosome-level assembly (PacBio HiFi + HiC) for the Tasmanian spotted snow skink Carinascincus ocellatus, accession number: GCA_965280105.1. 2025.

  • Hedges SB. The high-level classification of skinks (Reptilia, Squamata, Scincomorpha). Zootaxa. 2014;3765:317–38. https://doi.org/10.11646/zootaxa.3765.4.2.

    Article 
    PubMed 

    Google Scholar
     

  • Uetz P, Koo MS, Aguilar R, Brings E, Catenazzi A, Chang AT, et al. A quarter century of reptile and amphibian databases. Herpetol Rev. 2021;52:246–55.


    Google Scholar