• Wang J, Gao L, Aksoy S. Microbiota in disease-transmitting vectors. Nat Rev Microbiol. 2023;21:604–18. https://doi.org/10.1038/s41579-023-00901-6.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Steen CJ, Carbonaro PA, Schwartz RA. Arthropods in dermatology. J Am Acad Dermatol. 2004;50:819–44. https://doi.org/10.1016/j.jaad.2003.12.019.

    Article 
    PubMed 

    Google Scholar
     

  • Angus BM. The history of the cattle tick Boophilus microplus in Australia and achievements in its control. Int J Parasitol. 1996;26:1341–55. https://doi.org/10.1016/s0020-7519(96)00112-9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chitimia-Dobler L, Barboutis C, Bounas A, Kassara C, Mans BJ, Saratsis A. Discovery of a novel mediterranean Haemaphysalis (Ornithophysalis) doenitzi group tick species infesting Falco eleonorae on Antikythira Island, Greece. Parasitology. 2024;151:933–45. https://doi.org/10.1017/S0031182024000866.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang SB, Gao ZH, Wang YK, et al. The evaluation of cystatin protein vaccines based on the stress response of ticks triggered by low-temperature and toxin stress in Haemaphysalis doenitzi. Pest Manag Sci. 2024;80:3957–66. https://doi.org/10.1002/ps.8099.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hoogstraal H, Wassef HY. The haemaphysalis ticks (Ixodoidea: Ixodidae) of birds. 3. H. (Ornithophysalis) subgen. n.: definition, species, hosts, and distribution in the Oriental, Palearctic, Malagasy, and Ethiopian faunal regions. J Parasitol. 1973;59:1099–117. https://doi.org/10.2307/3278650.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fei S, Zhao H, Yin J, et al. Molecular identification and genetic characterization of public health threatening ticks – Chongming Island, China, 2021–2022. China CDC Wkly. 2023;5:815–21. https://doi.org/10.46234/ccdcw2023.156.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Saito Y, Hoogstraal H, Wassef HY. The Haemaphysalis ticks (Ixodoidea: Ixodidae) of birds. 4. H. (Ornithophysalis) phasiana sp. n. from Japan. J Parasitol. 1974;60:198–208. https://doi.org/10.2307/3278700.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kim H, Chong S, Choi C, Nam H, Chae H, Klein T, et al. Tick surveillance, including new records for three Haemaphysalis species (Acari: Ixodidae) collected from migratory birds during 2009 on Hong Island (Hong-do), Republic of Korea. Syst Appl Acarol. 2016;211:596–606. https://doi.org/10.11158/saa.21.5.4.

    Article 

    Google Scholar
     

  • Martin M, Cecilie D, Petter W, Morten T, Barbara Z. Patterns of cattle and sheep losses related to large carnivores and other causes in the outfields of Norway. Biol Conserv. 2025;305:111107. https://doi.org/10.1016/j.biocon.2025.111107.

    Article 

    Google Scholar
     

  • Zhang S, Gao Z, Dong K, et al. Functional analysis of novel cystatins from Haemaphysalis doenitzi and evaluation of their roles in cypermethrin and λ-cyhalothrin resistance. Pestic Biochem Physiol. 2024;204:106075. https://doi.org/10.1016/j.pestbp.2024.106075.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang D, Xiao Y, Xu P, Yang X, Wu Q, Wu K. Insecticide resistance monitoring for the invasive populations of fall armyworm, Spodoptera frugiperda in China. J Integr Agric. 2021;20:783–91. https://doi.org/10.1016/S2095-3119(20)63392-5.

    Article 
    CAS 

    Google Scholar
     

  • Seo SM, Jung CS, Kang J, et al. Larvicidal and acetylcholinesterase inhibitory activities of apiaceae plant essential oils and their constituents against Aedes albopictus and formulation development. J Agric Food Chem. 2015;63:9977–86. https://doi.org/10.1021/acs.jafc.5b03586.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gao Z, Bai L, Xu X, et al. The contact toxicity and toxic mechanism of essential oils from Pimenta racemosa and Eugenia caryophyllata against Haemaphysalis longicornis (Acari: Ixodidae). Pestic Biochem Physiol. 2024;203:105992. https://doi.org/10.1016/j.pestbp.2024.105992.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hao Y, Guo X, Yang R, et al. Unraveling the biosynthesis of carvacrol in different tissues of Origanum vulgare. Int J Mol Sci. 2022;23:13231. https://doi.org/10.3390/ijms232113231.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rizzi L, Rafiq M, Cabrol M, et al. Effect of intercropping apple trees with basil (Ocimum basilicum) or French marigold (Tagetes patula) on the rosy apple aphid regulation (Dysaphis plantaginea) and the abundance of its natural enemies. Pest Manag Sci. 2025;81:1373–83. https://doi.org/10.1002/ps.8538.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang XL, Guo YS, Wang CH, et al. Phenolic compounds from Origanum vulgare and their antioxidant and antiviral activities. Food Chem. 2014;152:300–6. https://doi.org/10.1016/j.foodchem.2013.11.153.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cetin H, Erler F, Yanikoglu A. A comparative evaluation of Origanum onites essential oil and its four major components as larvicides against the pine processionary moth, Thaumetopoea wilkinsoni Tams. Pest Manag Sci. 2007;63:830–3. https://doi.org/10.1002/ps.1401.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Carroll JF, Demirci B, Kramer M, et al. Repellency of the Origanum onites L. essential oil and constituents to the lone star tick and yellow fever mosquito. Nat Prod Res. 2017;31:2192–7. https://doi.org/10.1080/14786419.2017.1280485.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lun X, Jin M, Chen Z, et al. Flowering Ocimum gratissimum intercropped in tea plantations attracts and reduces Apolygus lucorum populations. Pest Manag Sci. 2024;80:4841–52. https://doi.org/10.1002/ps.8120.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Karen M, Monica P. Oil and gas development and its effect on bird diversity in the high plains of Colorado (2003–2018). Biol Conserv. 2021;263:109358. https://doi.org/10.1016/j.biocon.2021.109358.

    Article 

    Google Scholar
     

  • Euijin Y, JooHeon C, HeeJin K, Young H. Comparison of the toxicity and potential ecological risks of various pesticides for nurses of honey bee (Apis mellifera. L). Environ Chem Ecotoxicol. 2025;7:791–801. https://doi.org/10.1016/j.enceco.2025.04.008.

    Article 
    CAS 

    Google Scholar
     

  • Guo F, Zhao R, Li T, Wu S, Jiang S, Tian H, et al. Toxicity and oviposition-deterrent effects of ten plant essential oils on Bactrocera dorsalis Hendel adults. J Mt Agric Biol. 2020;39:63–6.

    CAS 

    Google Scholar
     

  • Abdullah S, Yadav CL, Vatsya S. Esterase profile of Rhipicephalus (Boophilus) microplus populations collected from Northern India exhibiting varied susceptibility to deltamethrin. Exp Appl Acarol. 2012;58:315–25. https://doi.org/10.1007/s10493-012-9584-3.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ruiz-May E, Álvarez-Sánchez ME, Aguilar-Tipacamú G, et al. Comparative proteome analysis of the midgut of Rhipicephalus microplus (Acari: Ixodidae) strains with contrasting resistance to ivermectin reveals the activation of proteins involved in the detoxification metabolism. J Proteomics. 2022;263:104618. https://doi.org/10.1016/j.jprot.2022.104618.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gonzaga BCF, de Moraes NR, Gomes GW, et al. Combination of synthetic acaricides with (E)-cinnamaldehyde to control Rhipicephalus microplus. Exp Appl Acarol. 2022;88:191–207. https://doi.org/10.1007/s10493-022-00743-6.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Maciel WG, Lopes WD, Cruz BC, et al. Ten years later: evaluation of the effectiveness of 12.5% amitraz against a field population of Rhipicephalus (Boophilus) microplus using field studies, artificial infestation (Stall tests) and adult immersion tests. Vet Parasitol. 2015;214:233–41. https://doi.org/10.1016/j.vetpar.2015.10.024.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Carroll JF, Cantrell CL, Klun JA, Kramer M. Repellency of two terpenoid compounds isolated from Callicarpa americana (Lamiaceae) against Ixodes scapularis and Amblyomma americanum ticks. Exp Appl Acarol. 2007;41:215–24. https://doi.org/10.1007/s10493-007-9057-2.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Meng H, Li AY, Costa Junior LM, Castro-Arellano I, Liu J. Evaluation of DEET and eight essential oils for repellency against nymphs of the lone star tick, Amblyomma americanum (Acari: Ixodidae). Exp Appl Acarol. 2016;68:241–9. https://doi.org/10.1007/s10493-015-9994-0.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Qiao Y, Yu Z, Bai L, et al. Chemical composition of essential oils from Thymus mongolicus, Cinnamomum verum, and Origanum vulgare and their acaricidal effects on Haemaphysalis longicornis (Acari: Ixodidae). Ecotoxicol Environ Saf. 2021;224:112672. https://doi.org/10.1016/j.ecoenv.2021.112672.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yeom HJ, Jung CS, Kang J, et al. Insecticidal and acetylcholine esterase inhibition activity of Asteraceae plant essential oils and their constituents against adults of the German cockroach (Blattella germanica). J Agric Food Chem. 2015;63:2241–8. https://doi.org/10.1021/jf505927n.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sharifi-Rad M, Berkay Yılmaz Y, Antika G, et al. Phytochemical constituents, biological activities, and health-promoting effects of the genus Origanum. Phytother Res. 2021;35:95–121. https://doi.org/10.1002/ptr.6785.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Saran P, Damor H, Lal M, Sarkar R, Kalariya K, Suthar M. Identification of suitable chemotype of Ocimum gratissimum L. for cost effective eugenol production. Ind Crops Prod. 2023;191:0926–6690. https://doi.org/10.1016/j.indcrop.2022.115890.

    Article 
    CAS 

    Google Scholar
     

  • Silva Lima A, Milhomem MN, Santos Monteiro O, et al. Seasonal analysis and acaricidal activity of the thymol-type essential oil of Ocimum gratissimum and its major constituents against Rhipicephalus microplus (Acari: Ixodidae). Parasitol Res. 2018;117:59–65. https://doi.org/10.1007/s00436-017-5662-0.

    Article 
    PubMed 

    Google Scholar
     

  • Aboelhadid SM, Abdel-Tawab H, Mahran HA, et al. Synergistic larvicidal and repellent effects of essential oils of three Origanum species on Rhipicephalus annulatus tick. Exp Appl Acarol. 2022;87:273–87. https://doi.org/10.1007/s10493-022-00737-4.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liggri PGV, Tsitsanou KE, Stamati ECV, et al. The structure of AgamOBP5 in complex with the natural insect repellents Carvacrol and Thymol: crystallographic, fluorescence and thermodynamic binding studies. Int J Biol Macromol. 2023;237:124009. https://doi.org/10.1016/j.ijbiomac.2023.124009.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Veljovic K, Tesevic V, Mitrovic H, Stankovic M. Essential oil of origanum minutiflorum exhibits anti-inflammatory and antioxidative effects in human bronchial cells and antimicrobial activity on lung pathogens. J Herbal Med. 2023;39:100651. https://doi.org/10.1016/j.hermed.2023.100651.

    Article 

    Google Scholar
     

  • Somensi N, Rabelo TK, Guimarães AG, et al. Carvacrol suppresses LPS-induced pro-inflammatory activation in RAW 264.7 macrophages through ERK1/2 and NF-kB pathway. Int Immunopharmacol. 2019;75:105743. https://doi.org/10.1016/j.intimp.2019.105743.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mączka W, Twardawska M, Grabarczyk M, Wińska K. Carvacrol-a natural phenolic compound with antimicrobial properties. Antibiotics. 2023;12:824. https://doi.org/10.3390/antibiotics12050824.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tabari MA, Youssefi MR, Maggi F, Benelli G. Toxic and repellent activity of selected monoterpenoids (thymol, carvacrol and linalool) against the castor bean tick, Ixodes ricinus (Acari: Ixodidae). Vet Parasitol. 2017;245:86–91. https://doi.org/10.1016/j.vetpar.2017.08.012.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Anjos OO, Gomes MN, Tavares CP, et al. Polymeric films of corn starch enhance the lethal effects of thymol and carvacrol terpenes upon Rhipicephalus microplus ticks. Vet Parasitol. 2024;327:110149. https://doi.org/10.1016/j.vetpar.2024.110149.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pazinato R, Volpato A, Baldissera MD, et al. In vitro effect of seven essential oils on the reproduction of the cattle tick Rhipicephalus microplus. J Adv Res. 2016;7:1029–34. https://doi.org/10.1016/j.jare.2016.05.003.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gao Z, Yu Z, Qiao Y, et al. Chemical profiles and enzyme-targeting acaricidal properties of essential oils from Syzygium aromaticum, Ilex chinensis and Citrus limon against Haemaphysalis longicornis (Acari: Ixodidae). Ind Crops Prod. 2022;188:115697. https://doi.org/10.1016/j.indcrop.2022.115697.

    Article 
    CAS 

    Google Scholar
     

  • Aboelhadid SM, Abdel-Baki AS, Ibrahium SM, et al. The efficacy of essential oil components with ivermectin against Rhipicephalus annulatus: an in-vitro study. Vet Parasitol. 2024;332:110335. https://doi.org/10.1016/j.vetpar.2024.110335.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rempel S, Stanek WK, Slotboom DJ. ECF-type ATP-binding cassette transporters. Annu Rev Biochem. 2019;88:551–76. https://doi.org/10.1146/annurev-biochem-013118-111705.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lu H, Xu Y, Cui F. Phylogenetic analysis of the ATP-binding cassette transporter family in three mosquito species. Pestic Biochem Physiol. 2016;132:118–24. https://doi.org/10.1016/j.pestbp.2015.11.006.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Amezian D, Nauen R, Van Leeuwen T. The role of ATP-binding cassette transporters in arthropod pesticide toxicity and resistance. Curr Opin Insect Sci. 2024;63:101200. https://doi.org/10.1016/j.cois.2024.101200.

    Article 
    PubMed 

    Google Scholar
     

  • Nwanade CF, Wang M, Yu Z, Liu J. Biochemical and molecular mechanisms involved in the response of Haemaphysalis longicornis (acari: ixodidae) to Cinnamomum cassia essential oil and its major constituent. J Pest Sci. 2024;97:99–111. https://doi.org/10.1007/s10340-023-01602-y.

    Article 
    CAS 

    Google Scholar
     

  • Yuan YH, Lin XN, Xu XM, Liu LX, Li XJ, Liu YG. Antifungal mechanism of rose, mustard, and their blended essential oils against Cladosporium allicinum isolated from Xinjiang naan and its storage application. J Appl Microbiol. 2024;135:lxae010. https://doi.org/10.1093/jambio/lxae010.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tomsuk Ö, Kuete V, Sivas H, Kürkçüoğlu M. Effects of essential oil of Origanum onites and its major component carvacrol on the expression of toxicity pathway genes in HepG2 cells. BMC Complement Med Ther. 2024;24:265. https://doi.org/10.1186/s12906-024-04571-6.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang Z, Zhao Y, Chen X, et al. Effects of cinnamon essential oil on the physiological metabolism of Salmonella enteritidis. Front Microbiol. 2022;13:1035894. https://doi.org/10.3389/fmicb.2022.1035894.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xiao Y, Liu K, Zhang D, et al. Resistance to Bacillus thuringiensis mediated by an ABC transporter mutation increases susceptibility to toxins from other bacteria in an invasive insect. PLoS Pathog. 2016;12:e1005450. https://doi.org/10.1371/journal.ppat.1005450.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yao PH, Mobarak SH, Yang MF, Hu CX. Differential detoxification enzyme profiles in C-corn strain and R-rice strain of Spodoptera frugiperda by comparative genomic analysis: insights into host adaptation. BMC Genomics. 2025;26:14. https://doi.org/10.1186/s12864-024-11185-2.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Enayati AA, Ranson H, Hemingway J. Insect glutathione transferases and insecticide resistance. Insect Mol Biol. 2005;14:3–8. https://doi.org/10.1111/j.1365-2583.2004.00529.x.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhao M, Gao Z, Ji X, et al. The diverse functions of Mu-class Glutathione S-transferase HrGSTm1 during the development of Hyalomma rufipes with a focus on the detoxification metabolism of cyhalothrin. Parasit Vectors. 2024;17:1. https://doi.org/10.1186/s13071-023-06084-6.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ahmed FS, Helmy WS, Alfuhaid NA, Moustafa MAM. Target enzymes of origanum majorana and rosmarinus officinalis essential oils in black cutworm (agrotis ipsilon). In vitro and in silico studies. Insects. 2024;15:483. https://doi.org/10.3390/insects15070483.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Le Gall VL, Klafke GM, Torres TT. Detoxification mechanisms involved in ivermectin resistance in the cattle tick, Rhipicephalus (Boophilus) microplus. Sci Rep. 2018;8:12401. https://doi.org/10.1038/s41598-018-30907-7.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nauen R, Bass C, Feyereisen R, Vontas J. The role of cytochrome P450s in insect toxicology and resistance. Annu Rev Entomol. 2022;67:105–24. https://doi.org/10.1146/annurev-ento-070621-061328.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ibrahim H, Nchiozem-Ngnitedem VA, Dandurand LM, Popova I. Naturally-occurring nematicides of plant origin: two decades of novel chemistries. Pest Manag Sci. 2025;81:540–71. https://doi.org/10.1002/ps.8504.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liang X, Xiao D, He Y, Yao J, Zhu G, Zhu KY. Insecticide-mediated up-regulation of cytochrome P450 genes in the red flour beetle (Tribolium castaneum). Int J Mol Sci. 2015;16:2078–98. https://doi.org/10.3390/ijms16012078.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu P, Huang Y, Zheng J, Zhang Y, Qiu L. Regulation of CncC in insecticide-induced expression of cytochrome P450 CYP9A14 and CYP6AE11 in Helicoverpa armigera. Pestic Biochem Physiol. 2023;197:105707. https://doi.org/10.1016/j.pestbp.2023.105707.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhao Y, Wu Z, Li J, Qi Y, Zhang X, Shen C. The key role of cytochrome P450s in the biosynthesis of plant derived natural products. Plant Physiol Biochem. 2025;222:109695. https://doi.org/10.1016/j.plaphy.2025.109695.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lee NH, Lee S, Chung N, Lee HS. Haemaphysalis longicornis and carvacrol as acaricide: efficacy and mechanism of action. Molecules. 2025;30:1518. https://doi.org/10.3390/molecules30071518.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Feng X, Li M, Liu N. Carboxylesterase genes in pyrethroid resistant house flies, Musca domestica Insect. Biochem Mol Biol. 2018;92:30–9. https://doi.org/10.1016/j.ibmb.2017.11.007.

    Article 
    CAS 

    Google Scholar
     

  • Niu X, Liu Y, Zhao R, et al. Mechanisms for translating chiral enantiomers separation research into macroscopic visualization. Adv Colloid Interface Sci. 2025;335:103342. https://doi.org/10.1016/j.cis.2024.103342.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pastor J, García M, Steinbauer S, et al. Combinations of ascaridole, carvacrol, and caryophyllene oxide against Leishmania. Acta Trop. 2015;145:31–8. https://doi.org/10.1016/j.actatropica.2015.02.002.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tong F, Gross AD, Dolan MC, Coats JR. The phenolic monoterpenoid carvacrol inhibits the binding of nicotine to the housefly nicotinic acetylcholine receptor. Pest Manag Sci. 2013;69:775–80. https://doi.org/10.1002/ps.3443.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rice PJ, Coats JR. Insecticidal properties of several monoterpenoids to the house fly (Diptera: Muscidae), red flour beetle (Coleoptera: Tenebrionidae), and southern corn rootworm (Coleoptera: Chrysomelidae). J Econ Entomol. 1994;87:1172–9. https://doi.org/10.1093/jee/87.5.1172.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Baser KH. Biological and pharmacological activities of carvacrol and carvacrol bearing essential oils. Curr Pharm Des. 2008;14:3106–19. https://doi.org/10.2174/138161208786404227.

    Article 
    CAS 
    PubMed 

    Google Scholar