SEAFDEC. The Southeast Asian state of fisheries and aquaculture 2022. Southeast Asian Fisheries Development Center; 2022.
Suyamud B, Chen Y, Quyen DTT, Dong Z, Zhao C, Hu J. Antimicrobial resistance in aquaculture: occurrence and strategies in Southeast Asia. Sci Total Environ. 2024;907:167942. https://doi.org/10.1016/j.scitotenv.2023.167942.
FAO, The State of World Fisheries and Aquaculture. 2020. Sustainability in Action, Rome, The State of World Fisheries and Aquaculture (2020).
Mursalim MF, Budiyansah H, Raharjo HM, Debnath PP, Sakulworakan R, Chokmangmeepisarn P, Yindee J, Piasomboon P, Elayaraja S, Rodkhum C. Diversity and antimicrobial susceptibility profiles of Aeromonas spp. Isolated from diseased freshwater fishes in Thailand. J Fish Dis. 2022;45(8):1149–63. https://doi.org/10.1111/jfd.13650.
DoF. Statistics of freshwater aquaculture production of Thailand. Thailand: Department of Fisheries, Ministry of Agriculture and Cooperatives; 2020.
Hedberg N, Stenson I, Nitz Pettersson M, Warshan D, Nguyen-Kim H, Tedengren M, Kautsky N. Antibiotic use in Vietnamese fish and Lobster sea cage farms; implications for coral reefs and human health. Aquaculture. 2018;495:366–75. https://doi.org/10.1016/j.aquaculture.2018.06.005.
Cabello FC, Godfrey HP, Tomova A, Ivanova L, Dölz H, Millanao A, Buschmann AH. Antimicrobial use in aquaculture re-examined: its relevance to antimicrobial resistance and to animal and human health. Environ Microbiol. 2013;15(7):1917–42. https://doi.org/10.1111/1462-2920.12134.
Chen X, Shao T, Long X. Evaluation of the effects of different stocking densities on the sediment microbial community of juvenile hybrid grouper (Epinephelus fuscoguttatus × Epinephelus lanceolatus) in recirculating aquaculture systems. PLoS ONE. 2018;13(12). https://doi.org/10.1371/journal.pone.0208544.
Raharjo HM, Budiyansah H, Mursalim MF, Chokmangmeepisarn P, Sakulworakan R, Madyod S, Sewaka M, Sonthi M, Debnath PP, Elayaraja S, Rung-Ruangkijkrai T, Dong HT, Rodkhum C. Distribution of Vibrionaceae in farmed Asian sea bass, Lates calcarifer in Thailand and their high prevalence of antimicrobial resistance. J Fish Dis. 2022;45(9):1355–71. https://doi.org/10.1111/jfd.13667.
Kayansamruaj P, Pirarat N, Kondo H, Hirono I, Rodkhum C. Genomic comparison between pathogenic Streptococcus agalactiae isolated from nile tilapia in Thailand and fish-derived ST7 strains. Infect Genet Evol. 2015;36:307–14. https://doi.org/10.1016/j.meegid.2015.10.009.
Dong HT, Nguyen VV, Phiwsaiya K, Gangnonngiw W, Withyachumnarnkul B, Rodkhum C, Senapin S. Concurrent infections of Flavobacterium columnare and Edwardsiella ictaluri in striped catfish, Pangasianodon hypophthalmus in Thailand. Aquaculture. 2015;448:142–50. https://doi.org/10.1016/j.aquaculture.2015.05.046.
Dong H, Nguyen V, Kayansamruaj P, Gangnonngiw W, Senapin S, Pirarat N, Nilubol D, Rodkhum C. Francisella noatunensis subsp. Orientalis infects striped catfish (Pangasianodon hypophthalmus) and common carp (Cyprinus carpio) but does not kill the hosts. Aquaculture. 2016;464. https://doi.org/10.1016/j.aquaculture.2016.06.033.
Lulijwa R, Rupia EJ, Alfaro AC. Antibiotic use in aquaculture, policies and regulation, health and environmental risks: a review of the top 15 major producers. Rev Aquac. 2020;12:640–63.
Watts JEM, Schreier HJ, Lanska L, Hale MS. The rising tide of antimicrobial resistance in aquaculture: sources, sinks and solutions. Mar Drugs. 2017;15(6). https://doi.org/10.3390/md15060158.
Reverter M, Sarter S, Caruso D, Avarre JC, Combe M, Pepey E, Pouyaud L, Vega-Heredía S, de Verdal H, Gozlan RE. Aquaculture at the crossroads of global warming and antimicrobial resistance. Nat Commun. 2020;11(1). https://doi.org/10.1038/s41467-020-15735-6.
Santos L, Ramos F. Antimicrobial resistance in aquaculture: current knowledge and alternatives to tackle the problem. Int J Antimicrob Agents. 2018;52(2):135–43. https://doi.org/10.1016/j.ijantimicag.2018.03.010.
Bound JP, Voulvoulis N. Pharmaceuticals in the aquatic environment–a comparison of risk assessment strategies. Chemosphere. 2004;56(11):1143–55. https://doi.org/10.1016/j.chemosphere.2004.05.010.
Phillips I, Casewell M, Cox T, De Groot B, Friis C, Jones R, Nightingale C, Preston R, Waddell J. Does the use of antibiotics in food animals pose a risk to human health? A critical review of published data. J Antimicrob Chemother. 2004;53(1):28–52. https://doi.org/10.1093/jac/dkg483.
Kumar K, Gupta SC, Baidoo SK, Chander Y, Rosen CJ. Antibiotic uptake by plants from soil fertilized with animal manure. J Environ Qual. 2005;34(6):2082–5. https://doi.org/10.2134/jeq2005.0026.
Schar D, Zhao C, Wang Y, Larsson DGJ, Gilbert M, Van Boeckel TP. Twenty-year trends in antimicrobial resistance from aquaculture and fisheries in Asia. Nat Commun. 2021;12(1). https://doi.org/10.1038/s41467-021-25655-8.
Raharjo HM, Budiyansah H, Mursalim MF, Chokmangmeepisarn P, Sakulworakan R, Debnath PP, Sivaramasamy E, Intan ST, Chuanchuen R, Dong HT, Mabrok M, Rodkhum C. The first evidence of blaCTX-M-55, QnrVC5, and novel insight into the genome of MDR Vibrio vulnificus isolated from Asian sea bass (Lates calcarifer) identified by resistome analysis. Aquaculture. 2023;571. https://doi.org/10.1016/j.aquaculture.2023.739500.
Verner-Jeffreys DW, Welch TJ, Schwarz T, Pond MJ, Woodward MJ, Haig SJ, Rimmer GSE, Roberts E, Morrison V, Baker-Austin C. High prevalence of Multidrug-Tolerant Bacteria and associated antimicrobial resistance genes isolated from ornamental fish and their carriage water. PLoS ONE. 2009;4(12):e8388. https://doi.org/10.1371/journal.pone.0008388.
Fu S, Wang Q, Wang R, Zhang Y, Lan R, He F, Yang Q. Horizontal transfer of antibiotic resistance genes within the bacterial communities in aquacultural environment. Sci Total Environ. 2022;820:153286. https://doi.org/10.1016/j.scitotenv.2022.153286.
WHO, The AWaRe classification of antibiotics database. (2019).
Jeamsripong S, Thaotumpitak V, Anuntawirun S, Roongrojmongkhon N, Atwill ER, Hinthong W. Molecular epidemiology of antimicrobial resistance and virulence profiles of Escherichia coli, Salmonella spp., and Vibrio spp. Isolated from coastal seawater for aquaculture. Antibiotics. 2022;11(12). https://doi.org/10.3390/antibiotics11121688.
Nhinh DT, Le DV, Van KV, Giang NTH, Dang LT, Hoai TD. Prevalence, virulence gene distribution and alarming the multidrug resistance of aeromonas hydrophila associated with disease outbreaks in freshwater aquaculture. Antibiotics. 2021;10(5). https://doi.org/10.3390/antibiotics10050532.
Gullberg E, Albrecht LM, Karlsson C, Sandegren L, Andersson DI. Selection of a multidrug resistance plasmid by sublethal levels of antibiotics and heavy metals. mBio. 2014;5(5). https://doi.org/10.1128/mBio.01918-14.
Bacanlı M, Başaran N. Importance of antibiotic residues in animal food. Food Chem Toxicol. 2019;125:462–6. https://doi.org/10.1016/j.fct.2019.01.033.
Ma F, Xu S, Tang Z, Li Z, Zhang L. Use of antimicrobials in food animals and impact of transmission of antimicrobial resistance on humans. Biosaf Health. 2021;3(1):32–8. https://doi.org/10.1016/j.bsheal.2020.09.004.
Tiseo K, Huber L, Gilbert M, Robinson TP, Van Boeckel TP. Global trends in antimicrobial use in food animals from 2017 to 2030. Antibiotics. 2020;9(12):1–14. https://doi.org/10.3390/antibiotics9120918.
Kimera ZI, Mshana SE, Rweyemamu MM, Mboera LEG, Matee MIN. Antimicrobial use and resistance in food-producing animals and the environment: an African perspective. Antimicrob Resist Infect Control. 2020;9(1). https://doi.org/10.1186/s13756-020-0697-x.
Van Boeckel TP, Pires J, Silvester R, Zhao C, Song J, Criscuolo NG, Gilbert M, Bonhoeffer S, Laxminarayan R. Global trends in antimicrobial resistance in animals in low- and middle-income countries. Science. 2019;365(6459). https://doi.org/10.1126/science.aaw1944.
Underwood W, Anthony R. AVMA Guidelines for the Euthanasia of Animals: 2020 Edition. AVMA Guidelines for the Euthanasia of Animals: 2020 Edition, 2020.
Patel R. MALDI-TOF MS for the diagnosis of infectious diseases. Clin Chem. 2015;61(1):100–11. https://doi.org/10.1373/clinchem.2014.221770.
Sakulworakan R, Chokmangmeepisarn P, Dinh-Hung N, Sivaramasamy E, Hirono I, Chuanchuen R, Kayansamruaj P, Rodkhum C. Insight into whole genome of Aeromonas veronii isolated from freshwater fish by resistome analysis reveal extensively antibiotic resistant traits. Front Microbiol. 2021;12. https://doi.org/10.3389/fmicb.2021.733668.
CLSI, Performance Standards for Antimicrobial Susceptibility Testing, 34th Ed. CLSI M100. Clinical and Laboratory Standards Institute. (2024).
CLSI, Methods for Antimicrobial Broth Dilution and Disk Diffusion Susceptibility Testing of Bacteria Isolated From Aquatic Animals, 2nd Ed. CLSI VET03; Clinical and Laboratory Standards Institute. (2020).
Smith P, Buba E, Desbois AP, Adams A, Verner-Jeffreys D, Joseph A, Light E, Le Devendec L, Jouy E, Larvor E. Setting epidemiological cut-off values relevant to MIC and disc diffusion data for Aeromonas salmonicida generated by a standard method. Dis Aquat Organ. 2024;159:29–35.
Smith P, Schwarz T, Verner-Jeffreys DW. Use of normalised resistance analyses to set interpretive criteria for antibiotic disc diffusion data produce by Aeromonas spp. Aquaculture. 2012;326–9. https://doi.org/10.1016/j.aquaculture.2011.11.011.
Wu CJ, Chuang YC, Lee MF, Lee CC, Lee HC, Lee NY, Chang CM, Chen PL, Lin YT, Yan JJ, Ko WC. Bacteremia due to extended-spectrum-β-lactamase-producing Aeromonas spp. At a medical center in Southern Taiwan. Antimicrob Agents Chemother. 2011;55(12):5813–8. https://doi.org/10.1128/aac.00634–11.
Lim KWONM-G, Kim Y-J, Myoung-Sug SEO, Jung-Soo, Kim D-H. Epidemiological Cut-off values generated for disc diffusion data from Photobacterium damselae. Korean J Fisheries Aquat Sci. 2016;49(6):838–44. https://doi.org/10.5657/KFAS.2016.0838.
Lim Y-J, Kim D-H, Roh HJ, Park M-A, Park C-I, Smith P. Epidemiological cut-off values for disc diffusion data generated by standard test protocols from Edwardsiella tarda and Vibrio harveyi. Aquacult Int. 2016;24:1153–61.
Nadella RK, Panda SK, Kumar A, Uchoi D, Kishore P, Badireddy MR, Kuricheti PP, Raman RP, Mothadaka MP. AMR threat perception assessment of heterotrophic Bacteria from shrimp aquaculture through epidemiological cut off values. J AOAC Int. 2024;107(3):479–86. https://doi.org/10.1093/jaoacint/qsae011.
Smith P, Le Devendec L, Jouy E, Larvor E, Lesne J, Kirschner AKT, Rehm C, Leopold M, Pleininger S, Heger F, Jäckel C, Göllner C, Nekat J, Hammerl JA, Baron S. Epidemiological cut-off values for non-O1/ non-O139 Vibrio cholerae disc diffusion data generated by standardised methods. Dis Aquat Organ. 2023a;156:115–21. https://doi.org/10.3354/dao03766.
Smith P, Le Devendec L, Jouy E, Larvor E, Le Breton A, Picon-Camacho S, Zrnčić S, Zupičić IG, Oraić D, Karataş S, Verner-Jeffreys D, Joseph AW, Light E, Essen-Zandbergen AV, van Gelderen B, Voorbergen-Laarman M, Haenen OLM, Veldman KT, Madsen L, Mouritsen KK, Smith Svanevik C, Håkonsholm F, Vela AI, García M, Florio D, Fioravanti M, Cortinovis L, Pretto T, Manfrin A, Baron S. Epidemiological cut-off values for Vibrio anguillarum MIC and disc diffusion data generated by standardised methods. Dis Aquat Organ. 2023b;155:109–23. https://doi.org/10.3354/dao03745.
Smith P, Devendec L, Jouy E, Larvor E, Lesne J, Kirschner AKT, Rehm C, Leopold M, Pleininger S, Heger F, Jäckel C, Göllner C, Nekat J, Hammerl J, Baron S. Epidemiological cut-off values for non-O1/non-O139 Vibrio cholerae disc diffusion data generated by standardised methods. Dis Aquat Organ. 2023c. https://doi.org/10.3354/dao03766.
Rosário AECD, Barbanti ACC, Matos HC, Maia C.R.M.D.S., Trindade JM, Nogueira LFF, Pilarski F, Gallani SU, Leal CAG, Figueiredo HCP, Tavares GC. antimicrobial resistance in lactococcus spp. isolated from native brazilian fish species: a growing challenge for aquaculture. microorganisms 12(11) (2024). https://doi.org/10.3390/microorganisms12112327
Leal CAG, Silva BA, Colombo SA. Susceptibility profile and epidemiological cut-off values are influenced by serotype in fish pathogenic Streptococcus agalactiae. Antibiotics. 2023;12(12):1726.
Dechêne-Tempier M, Bayon-Auboyer JE, Bougeard M-H, Chauvin S, Libante C, Payot V, Marois-Créhan S. C., Antimicrobial resistance profiles of Streptococcus suis isolated from pigs, wild boars, and humans in France between 1994 and 2020, Journal of Clinical Microbiology 61(9) (2023) e00164-23. https://doi.org/10.1128/jcm.00164–23
Hombach M, Jetter M, Blöchliger N, Kolesnik-Goldmann N, Keller PM, Böttger EC. Rapid disc diffusion antibiotic susceptibility testing for Pseudomonas aeruginosa, Acinetobacter baumannii and Enterococcus spp. J Antimicrob Chemother. 2018;73(2):385–91. https://doi.org/10.1093/jac/dkx404.
Kronvall G. Determination of the real standard distribution of susceptible strains in zone histograms. Int J Antimicrob Agents. 2003;22(1):7–13.
Kronvall G, Smith P. Normalized resistance interpretation, the NRI method: review of NRI disc test applications and guide to calculations. Apmis. 2016;124(12):1023–30.
Silley P. Susceptibility testing methods, resistance and breakpoints: what do these terms really mean? Revue Scientifique Et Technique-OIE. 2012;31(1):33.
Krumperman PH. Multiple antibiotic resistance indexing of Escherichia coli to identify high-risk sources of fecal contamination of foods. Appl Environ Microbiol. 1983;46(1):165–70. https://doi.org/10.1128/aem.46.1.165-170.1983.
Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for illumina sequence data. Bioinformatics. 2014;30(15):2114–20. https://doi.org/10.1093/bioinformatics/btu170.
Prjibelski A, Antipov D, Meleshko D, Lapidus A, Korobeynikov A. Using spades de Novo assembler. Curr Protoc Bioinf. 2020;70(1):e102. https://doi.org/10.1002/cpbi.102.
Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics. 2014;30(14):2068–9.
Richter M, Rosselló-Móra R, Oliver Glöckner F, Peplies J. JSpeciesWS: a web server for prokaryotic species circumscription based on pairwise genome comparison. Bioinformatics. 2016;32:929–31.
Meier-Kolthoff JP, Göker M. TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat Commun. 2019;10:2182.
Alcock BP, Huynh W, Chalil R, Smith KW, Raphenya AR, Wlodarski MA, Edalatmand A, Petkau A, Syed SA, Tsang KK, Baker SJC, Dave M, McCarthy MC, Mukiri KM, Nasir JA, Golbon B, Imtiaz H, Jiang X, Kaur K, Kwong M, Liang ZC, Niu KC, Shan P, Yang JYJ, Gray KL, Hoad GR, Jia B, Bhando T, Carfrae LA, Farha MA, French S, Gordzevich R, Rachwalski K, Tu MM, Bordeleau E, Dooley D, Griffiths E, Zubyk HL, Brown ED, Maguire F, Beiko RG, Hsiao WWL, Brinkman FSL, Van Domselaar G, McArthur AG. CARD 2023: expanded curation, support for machine learning, and resistome prediction at the comprehensive antibiotic resistance database. Nucleic Acids Res. 2023;51D1. D690-d699.
Bortolaia V, Kaas RS, Ruppe E, Roberts MC, Schwarz S, Cattoir V, Philippon A, Allesoe RL, Rebelo AR, Florensa AF, Fagelhauer L, Chakraborty T, Neumann B, Werner G, Bender JK, Stingl K, Nguyen M, Coppens J, Xavier BB, Malhotra-Kumar S, Westh H, Pinholt M, Anjum MF, Duggett NA, Kempf I, Nykäsenoja S, Olkkola S, Wieczorek K, Amaro A, Clemente L, Mossong J, Losch S, Ragimbeau C, Lund O, Aarestrup FM. ResFinder 4.0 for predictions of phenotypes from genotypes. J Antimicrob Chemother. 2020;75(12):3491–500. https://doi.org/10.1093/jac/dkaa345.
Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, Madden TL. BLAST+: architecture and applications. BMC Bioinformatics. 2009;10:421. https://doi.org/10.1186/1471-2105-10-421.
Johansson MHK, Bortolaia V, Tansirichaiya S, Aarestrup FM, Roberts AP, Petersen TN. Detection of mobile genetic elements associated with antibiotic resistance in Salmonella enterica using a newly developed web tool: mobileelementfinder. J Antimicrob Chemother. 2021;76(1):101–9. https://doi.org/10.1093/jac/dkaa390.
RStudio Team. RStudio: Integrated Development for R. RStudio, PBC, Boston, MA; 2015 http://www.rstudio.com/.
DoF. Fisheries Statistics of Thailand 2020 no. 4/2022, Fisheries Statistics of Thailand 2020 No. 4/2022 (2022).
Petty BD, Francis-Floyd R. Bacterial Diseases of Fish. merck veterinary manual (2023).
Siboni N, et al. Increased abundance of potentially pathogenic Vibrio and a marine heatwave co-occur with a Pacific oyster summer mortality event. Aquaculture. 2024;583:740618.
Preena PG, Swaminathan TR, Kumar VJR, Singh ISB. Antimicrobial resistance in aquaculture: a crisis for concern. Biologia. 2020;75(9):1497–517. https://doi.org/10.2478/s11756-020-00456-4.
Letchumanan V, Chan KG, Lee LH. Vibrio parahaemolyticus: a review on the pathogenesis, prevalence, and advance molecular identification techniques. Front Microbiol. 2014;5:705. https://doi.org/10.3389/fmicb.2014.00705.
Gibson-Kueh S, Terence C, Chew XZ, Uichanco JA, Shen X. -situ hybridization, and phylogenetic analysis suggest that ‘big belly’ disease in barramundi, Lates calcarifer (Bloch), is caused by a novel Vibrio species. J Fish Dis. 2021;44(12):1985–92. https://doi.org/10.1111/jfd.13512.
Baker-Austin C, Oliver JD, Alam M, Ali A, Waldor MK, Qadri F, Martinez-Urtaza J. Vibrio spp. Infections. Nat Reviews Disease Primers. 2018;4(1):1–19. https://doi.org/10.1038/s41572-018-0005-8.
Kanchanopas-Barnette P, Labella A, Alonso CM, Manchado M, Castro D, Borrego JJ. The first isolation of photobacterium damselae subsp. damselae from Asian seabass lates calcarifer. Fish Pathol. 2009;44(1):47–50. https://doi.org/10.3147/jsfp.44.47
Essam HM, Abdellrazeq GS, Tayel SI, Torky HA, Fadel AH. Pathogenesis of Photobacterium damselae subspecies infections in sea bass and sea Bream. Microb Pathog. 2016;99:41–50. https://doi.org/10.1016/j.micpath.2016.08.003.
Austin B, Austin DA. Bacterial fish pathogens: Disease of farmed and wild fish. 2012.
Janda JM, Abbott SL. The genus aeromonas: taxonomy, pathogenicity, and infection. Clin Microbiol Rev. 2010;23(1):35–73. https://doi.org/10.1128/cmr.00039–09.
Austin B. Taxonomy of bacterial fish pathogens. Vet Res. 2011;42(1). https://doi.org/10.1186/1297-9716-42-20.
El-Bahar HM, Ali NG, Aboyadak IM, Khalil SAES, Ibrahim MS. Virulence genes contributing to Aeromonas hydrophila pathogenicity in Oreochromis niloticus. Int Microbiol. 2019;22(4):479–90. https://doi.org/10.1007/s10123-019-00075-3.
Ran C, Qin C, Xie M, Zhang J, Li J, Xie Y, Wang Y, Li S, Liu L, Fu X, Lin Q, Li N, Liles MR, Zhou Z. Aeromonas veronii and Aerolysin are important for the pathogenesis of motile aeromonad septicemia in cyprinid fish. Environ Microbiol. 2018;20(9):3442–56. https://doi.org/10.1111/1462-2920.14390.
Ganesan R, Vasantha-Srinivasan P, Sadhasivam DR, Subramanian R, Vimalraj S, Suk KT. Carbon nanotubes induce metabolomic profile disturbances in zebrafish: NMR-Based metabolomics platform. Front Mol Biosci. 2021;8. https://doi.org/10.3389/fmolb.2021.688827.
Halimi M, Alishahi M, Abbaspour MR, Ghorbanpoor M, Tabandeh MR. High efficacy and economical procedure of oral vaccination against Lactococcus garvieae/streptococcus iniae in rainbow trout (Oncorhynchus mykiss). Fish Shellfish Immunol. 2020;99:505–13. https://doi.org/10.1016/j.fsi.2020.02.033.
Irshath AA, Rajan AP, Vimal S, Prabhakaran VS, Ganesan R. Bacterial pathogenesis in various fish diseases: recent advances and specific challenges in vaccine development. Vaccines (Basel). 2023;11(2). https://doi.org/10.3390/vaccines11020470.
Dinh-Hung N, Dong HT, Taengphu S, Soontara C, Rodkhum C, Senapin S, Chatchaiphan S. Streptococcus suis is a lethal pathogen in snakeskin gourami, trichopodus pectoralis. Aquaculture. 2023;566:739173. https://doi.org/10.1016/j.aquaculture.2022.739173.
Scherrer S, Biggel M, Schneeberger M, Cernela N, Rademacher F, Schmitt S, Stephan R. Genetic diversity and antimicrobial susceptibility of Streptococcus suis from diseased Swiss pigs collected between 2019–2022. Vet Microbiol. 2024;293. https://doi.org/10.1016/j.vetmic.2024.110084.
Wertheim HF, Nghia HD, Taylor W, Schultsz C. Streptococcus suis: an emerging human pathogen. Clin Infect Dis. 2009;48(5):617–25. https://doi.org/10.1086/596763.
Okura M, Osaki M, Nomoto R, Arai S, Osawa R, Sekizaki T, Takamatsu D. Current taxonomical situation of Streptococcus suis. Pathogens. 2016;5(3). https://doi.org/10.3390/pathogens5030045.
Xu T, Zhang X-H. Edwardsiella tarda: an intriguing problem in aquaculture. Aquaculture. 2014;431:129–35.
Fadel A, Mabrok M, Aly S. Epizootics of Pseudomonas anguilliseptica among cultured seabream (Sparus aurata) populations: control and treatment strategies. Microb Pathog. 2018;121:1–8.
Duman M, Valdés E, Ay H, Altun S. Satıcıoğlu I., description of a novel fish pathogen, plesiomonas shigelloides subsp. oncorhynchi, isolated from rainbow trout (oncorhynchus mykiss): first genome analysis and comparative genomics. Fishes 8 (2023) 179. https://doi.org/10.3390/fishes8040179
Salam MA, Al-Amin MY, Salam MT, Pawar JS, Akhter N, Rabaan AA, Alqumber MAA. Antimicrobial resistance: A growing serious threat for global public health. Healthc (Basel). 2023;11(13). https://doi.org/10.3390/healthcare11131946.
Kaur N, Prasad R, Varma A. Prevalence and antibiotic susceptibility pattern of methicillin resistant Staphylococcus aureus in tertiary care hospitals. Biotechnol J Int. 2014;4(3):228–35. https://doi.org/10.9734/BBJ/2014/4245.
Chancey ST, Zähner D, Stephens DS. Acquired inducible antimicrobial resistance in Gram-positive bacteria. Future Microbiol 7(8) (2012) 959– 78. https://doi.org/10.2217/fmb.12.63
Reygaert WC. An overview of the antimicrobial resistance mechanisms of bacteria. AIMS Microbiol. 2018;4(3):482–501. https://doi.org/10.3934/microbiol.2018.3.482.
Suyamud B, Chen Y, Quyen DTT, Dong Z, Zhao C, Hu J. Antimicrobial resistance in aquaculture: occurrence and strategies in Southeast Asia. Sci Total Environ. 2024;907:167942. https://doi.org/10.1016/j.scitotenv.2023.167942.
Janda JM, Abbott SL. The genus aeromonas: taxonomy, pathogenicity, and infection. Clin Microbiol Rev. 2010;23(1):35–73. 10.1128/CMR.00039– 09.
Yin W, Li H, Shen Y, Liu Z, Wang S, Shen Z, Zhang R, Walsh TR, Shen J, Wang Y. Novel plasmid-mediated colistin resistance gene mcr-3 in Escherichia coli. mBio. 2017;8(3). https://doi.org/10.1128/mBio.00543–17.
Yang YQ, Li YX, Lei CW, Zhang AY, Wang HN. Novel plasmid-mediated colistin resistance gene mcr-7.1 in Klebsiella pneumoniae. J Antimicrob Chemother. 2018;73(7):1791–5. https://doi.org/10.1093/jac/dky111.
Wang Y, Hou N, Rasooly R, Gu Y, He X. Prevalence and genetic analysis of chromosomal mcr-3/7 in Aeromonas from U.S. animal-derived samples. Front Microbiol. 2021;12. https://doi.org/10.3389/fmicb.2021.667406.
Odeyemi OA, Ahmad A. Antibiotic resistance profiling and phenotyping of Aeromonas species isolated from aquatic sources. Saudi J Biol Sci. 2017;24(1):65–70. https://doi.org/10.1016/j.sjbs.2015.09.016.
Azzam-Sayuti M, Ina-Salwany MY, Zamri-Saad M, Yusof MT, Annas S, Najihah MY, Liles MR, Monir MS, Zaidi Z, Amal MNA. The prevalence, putative virulence genes and antibiotic resistance profiles of Aeromonas spp. Isolated from cultured freshwater fishes in Peninsular Malaysia. Aquaculture. 2021;540. https://doi.org/10.1016/j.aquaculture.2021.736719.
Zdanowicz M, Mudryk ZJ, Perliński P. Abundance and antibiotic resistance of Aeromonas isolated from the water of three carp ponds. Vet Res Commun. 2020;44(1):9–18.
Hossain S, De Silva BCJ, Wimalasena S, Pathirana H, Dahanayake PS, Heo GJ. Distribution of antimicrobial resistance genes and class 1 integron gene cassette arrays in motile Aeromonas spp. Isolated from goldfish (Carassius auratus). Microb Drug Resist. 2018;24(8):1217–25. https://doi.org/10.1089/mdr.2017.0388.
Jagoda SS, Wijewardana TG, Arulkanthan A, Igarashi Y, Tan E, Kinoshita S, Watabe S, Asakawa. S., Characterization and antimicrobial susceptibility of motile aeromonads isolated from freshwater ornamental fish showing signs of septicaemia, Dis Aquat Organ 109(2) (2014) 127– 37. https://doi.org/10.3354/dao02733
Rico A, et al. Use, fate and ecological risks of antibiotics applied in tilapia cage farming in Thailand. Environ Pollut. 2014;191:8–16.
Fan J, Shan Q, Wang J, Liu S, Li L, Zheng G. Comparative pharmacokinetics of Enrofloxacin in healthy and Aeromonas hydrophila-infected crucian carp (Carassius auratus gibelio). J Vet Pharmacol Ther. 2017;40(5):580–2. https://doi.org/10.1111/jvp.12392.
Godoy DT, Mian GF, Zanolo R, Yuhara TY, Faria FC, Figueiredo HCP. Patterns of resistance to florfenicol and bicyclomycin in Brazilian strains of motile aeromonads. Aquaculture. 2008;285(1–4):255–9. https://doi.org/10.1016/j.aquaculture.2008.08.014.
Mursalim MF, Budiyansah H, Raharjo HM, Chokomangmeepisarn P, Sakulworakan R, Yindee J, Chanchaithong P, Rodkhum C. Characterization and antimicrobial susceptibility of Aeromonas spp. Isolated from diseased Asian sea bass (Lates calcarifer). Thai J Veterinary Med. 2020;50:10–3.
Chiou J, Li R, Chen S. CARB-17 family of β-lactamases mediates intrinsic resistance to penicillins in Vibrio parahaemolyticus. Antimicrob Agents Chemother. 2015;59(6):3593–5.
Zhang G, Sun K, Ai G, Li J, Tang N, Song Y, Wang C, Feng J. A novel family of intrinsic Chloramphenicol acetyltransferase CATC in Vibrio parahaemolyticus: naturally occurring variants reveal diverse resistance levels against Chloramphenicol. Int J Antimicrob Agents. 2019;54(1):75–9. https://doi.org/10.1016/j.ijantimicag.2019.03.012.
Matsuyama R, Kuninaga N, Morimoto T, Shibano T, Sudo A, Sudo K, Asano M, Suzuki M, Asai T. Isolation and antimicrobial susceptibility of Plesiomonas shigelloides from great cormorants (Phalacrocorax carbo hanedae) in Gifu and Shiga prefectures, Japan. J Vet Med Sci. 2015;77(9):1179–81. https://doi.org/10.1292/jvms.15–0014.
Deng L, Li Y, Geng Y, Zheng L, Rehman T, Zhao R, Wang K, OuYang P, Chen D, Huang X, He C, Yang Z, Lai W. Molecular serotyping and antimicrobial susceptibility of Streptococcus agalactiae isolated from fish in China. Aquaculture. 2019;510:84–9. https://doi.org/10.1016/j.aquaculture.2019.05.046.
Sapkota A, Ojo K, Roberts M, Schwab K. Antibiotic resistance genes in multidrug-resistant Enterococcus spp. And Streptococcus spp. Recovered from the indoor air of a large‐scale swine‐feeding operation. Lett Appl Microbiol. 2006;43(5):534–40.
Krause KM, Serio AW, Kane TR, Connolly LE. Aminoglycosides: an overview. Cold Spring Harbor Perspect Med. 2016;6(6):a027029.
Vendrell D, Balcázar JL, Ruiz-Zarzuela I, de Blas I, Gironés O, Múzquiz JL. Lactococcus garvieae in fish: A review. Comp Immunol Microbiol Infect Dis. 2006;29(4):177–98. https://doi.org/10.1016/j.cimid.2006.06.003.
Ricci G, Ferrario C, Borgo F, Rollando A, Fortina MG. Genome sequences of Lactococcus garvieae TB25, isolated from Italian cheese, and Lactococcus garvieae LG9, isolated from Italian rainbow trout. J Bacteriol. 2012;194(5):1249–50. https://doi.org/10.1128/JB.06655-11.
Suyamud B, Lohwacharin J, Yang Y, Sharma VK. Antibiotic resistant bacteria and genes in shrimp aquaculture water: identification and removal by ferrate(VI). J Hazard Mater. 2021;420. https://doi.org/10.1016/j.jhazmat.2021.126572.
Ong HMG, Zhong Y, Hu CC, Ong KH, Khor WC, Schlundt J, Aung KT. quantitative risk evaluation of antimicrobial-resistant vibrio parahaemolyticus isolated from farmed grey mullets in Singapore. Pathogens 12(1) (2023). https://doi.org/10.3390/pathogens12010093
Eid HM, El-Mahallawy HS, Shalaby AM, Elsheshtawy HM, Shetewy MM, Hussein Eidaroos N. Emergence of extensively drug-resistant Aeromonas hydrophila complex isolated from wild Mugil cephalus (striped mullet) and mediterranean seawater. Vet World. 2022;15(1):55–64. https://doi.org/10.14202/vetworld.2022.55-64.
Odeyemi OA, Ahmad A. Antibiotic resistance profiling and phenotyping of Aeromonas species isolated from aquatic sources. Saudi J Biol Sci. 2017;24(1):65–70.
Perretta A, Antúnez K, Zunino P. Phenotypic, molecular and pathological characterization of motile aeromonads isolated from diseased fishes cultured in Uruguay. J Fish Dis. 2018;41(10):1559–69. https://doi.org/10.1111/jfd.12864.
Dias C, Borges A, Saavedra MJ, Simões M. Biofilm formation and multidrug-resistant Aeromonas spp. From wild animals. J Global Antimicrob Resist. 2018;12:227–34. https://doi.org/10.1016/j.jgar.2017.09.010.
Borella L, Salogni C, Vitale N, Scali F, Moretti VM, Pasquali P, Alborali GL. Motile aeromonads from farmed and wild freshwater fish in Northern italy: an evaluation of antimicrobial activity and multidrug resistance during 2013 and 2016. Acta Vet Scand. 2020;62(1). https://doi.org/10.1186/s13028-020-0504-y.
Mohamad N, Amal MNA, Saad MZ, Yasin ISM, Zulkiply NA, Mustafa M, Nasruddin NS. Virulence-associated genes and antibiotic resistance patterns of Vibrio spp. Isolated from cultured marine fishes in Malaysia. BMC Vet Res. 2019;15(1). https://doi.org/10.1186/s12917-019-1907-8.
Xu Y, Wang C, Zhang G, Tian J, Liu Y, Shen X, Feng J. ISCR2 is associated with the dissemination of multiple resistance genes among Vibrio spp. And Pseudoalteromonas spp. Isolated from farmed fish. Arch Microbiol. 2017;199(6):891–6. https://doi.org/10.1007/s00203-017-1365-2.
Zhu ZM, Dong CF, Weng SP, He JG. The high prevalence of pathogenic Vibrio harveyi with multiple antibiotic resistance in scale drop and muscle necrosis disease of the hybrid grouper, Epinephelus fuscoguttatus (♀) × E. lanceolatus (♂), in China. J Fish Dis. 2018;41(4):589–601. https://doi.org/10.1111/jfd.12758.
Park K-H, Jung S-I, Jung Y-S, Shin J-H, Hwang J-H. Marine bacteria as a leading cause of necrotizing fasciitis in coastal areas of South Korea. Am J Trop Med Hyg. 2009;80(4):646.
Rolain J-M. Food and human gut as reservoirs of transferable antibiotic resistance encoding genes. Front Microbiol. 2013;4:173.
Adzitey F. Antibiotic resistance of Escherichia coli isolated from beef and its related samples in Techiman municipality. of Ghana; 2015.
Davis R, Brown PD. Multiple antibiotic resistance index, fitness and virulence potential in respiratory Pseudomonas aeruginosa from Jamaica. J Med Microbiol. 2016;65(4):261–71.
Mthembu TP, Zishiri OT, El Zowalaty ME. Molecular detection of multidrug-resistant Salmonella isolated from livestock production systems in South Africa. Infect Drug Resist. 2019;12:3537–48. https://doi.org/10.2147/IDR.S211618. PMID: 31814742; PMCID: PMC6861519.
Apun K, Chong YL, Abdullah MT, Micky V. Antimicrobial susceptibilities of escherichia coli isolates from food animals and wildlife animals in sarawak, East Malaysia. Asian J Anim Veterinary Adv. 2008;3(6):409–16. https://doi.org/10.3923/ajava.2008.409.416.
Vivekanandhan G, Savithamani K, Hatha AAM, Lakshmanaperumalsamy P. Antibiotic resistance of Aeromonas hydrophila isolated from marketed fish and Prawn of South India. Int J Food Microbiol. 2002;76(1–2):165–8. https://doi.org/10.1016/S0168-1605(02)00009–0.
Changsen C, Likhitrattanapisal S, Lunha K, Chumpol W, Jiemsup S, Prachumwat A, Kongkasuriyachai D, Ingsriswang S, Chaturongakul S, Lamalee A, Yongkiettrakul S, Buates S. Incidence, genetic diversity, and antimicrobial resistance profiles of Vibrio parahaemolyticus in seafood in Bangkok and Eastern Thailand. PeerJ. 2023;11:e15283. https://doi.org/10.7717/peerj.15283.
Wang CZ, Wang MG, Chu YF, Sun RY, Li JG, Li XA, Sun J, Liu YH, Zhou YF, Liao XP. Antibiotic resistance patterns and molecular characterization of Streptococcus suis isolates from swine and humans in China. Microbiol Spectr. 2023;11(3):e0030923. https://doi.org/10.1128/spectrum.00309–23.
Yuan K, Wang X, Chen X, Zhao Z, Fang L, Chen B, Jiang J, Luan T, Chen B. Occurrence of antibiotic resistance genes in extracellular and intracellular DNA from sediments collected from two types of aquaculture farms. Chemosphere. 2019;234:520–7. https://doi.org/10.1016/j.chemosphere.2019.06.085.
Miller RA, Harbottle H. Antimicrobial drug resistance in fish pathogens. Microbiol Spectr. 2018;6(1). https://doi.org/10.1128/microbiolspec.ARBA-0017-2017.
Fang H, Ye N, Huang K, Yu J, Zhang S. Mobile genetic elements drive the antibiotic resistome alteration in freshwater shrimp aquaculture. Water. 2021;13(11):1461.
Shao S, Hu Y, Cheng J, Chen Y. Research progress on distribution, migration, transformation of antibiotics and antibiotic resistance genes (ARGs) in aquatic environment. Crit Rev Biotechnol. 2018;38(8):1195–208.
Bondad-Reantaso MG, MacKinnon B, Karunasagar I, Fridman S, Alday-Sanz V, Brun E, Le Groumellec M, Li A, Surachetpong W, Karunasagar I, Hao B, Dall’Occo A, Urbani R, Caputo A. Reviews Aquaculture. 2023;15(4):1421–51. https://doi.org/10.1111/raq.12786. Review of alternatives to antibiotic use in aquaculture.
Poirel L, Naas T, Nordmann P. Diversity, epidemiology, and genetics of class D β-lactamases. Antimicrob Agents Chemother. 2010;54(1):24–38.
Domínguez M, Miranda CD, Fuentes O, De La Fuente M, Godoy FA, Bello-Toledo H, González-Rocha G. Occurrence of transferable integrons and Sul and Dfr genes among Sulfonamide-and/or trimethoprim-resistant bacteria isolated from Chilean salmonid farms. Front Microbiol. 2019;10:748.
Adelowo OO, Helbig T, Knecht C, Reincke F, Mäusezahl I, Müller JA. High abundances of class 1 integrase and sulfonamide resistance genes, and characterisation of class 1 integron gene cassettes in four urban wetlands in Nigeria. PLoS ONE. 2018;13(11):e0208269.
Li P, Wei Y, Li G, Cheng H, Xu Z, Yu Z, Deng Q, Shi Y. Comparison of antimicrobial efficacy of Eravacycline and Tigecycline against clinical isolates of Streptococcus agalactiae in china: in vitro activity, heteroresistance, and cross-resistance. Microb Pathog. 2020;149:104502.
Haenni M, Lupo A, Madec J-Y. Antimicrobial resistance in Streptococcus spp. Microbiol Spectr. 2018;6(2). https://doi.org/10.1128/microbiolspec.arba-0008-2017.
Clancy J, Dib-Hajj F, Petitpas JW, Yuan W. Cloning and characterization of a novel macrolide efflux gene, mrea, from Streptococcus agalactiae. Antimicrob Agents Chemother. 1997;41(12):2719–23.
Clarebout G, Villers C, Leclercq R. Macrolide resistance gene MreA of Streptococcus agalactiae encodes a flavokinase. Antimicrob Agents Chemother. 2001;45(8):2280–6. https://doi.org/10.1128/aac.45.8.2280-2286.2001.
de Azavedo JC, McGavin M, Duncan C, Low DE, McGeer A. Prevalence and mechanisms of macrolide resistance in invasive and noninvasive group B streptococcus isolates from ontario, Canada. Antimicrob Agents Chemother. 2001;45(12):3504–8. https://doi.org/10.1128/aac.45.12.3504-3508.2001.
Dechêne-Tempier M, de Boisséson C, Lucas P, Bougeard S, Marois-Créhan LV, Payot C. Virulence genes, resistome and mobilome of Streptococcus suis strains isolated in France. Microb Genom. 2024;10(3). https://doi.org/10.1099/mgen.0.001224.
Hadjirin NF, Miller EL, Murray GGR, Yen PLK, Phuc HD, Wileman TM, Hernandez-Garcia J, Williamson SM, Parkhill J, Maskell DJ, Zhou R, Fittipaldi N, Gottschalk M, Tucker AW, Hoa NT, Welch JJ, Weinert LA. Large-scale genomic analysis of antimicrobial resistance in the zoonotic pathogen Streptococcus suis. BMC Biol. 2021;19(1):191. https://doi.org/10.1186/s12915-021-01094-1.
Werner G, Aamot HV, Couto N. Antimicrobial susceptibility prediction from genomes: a dream come true? Trends Microbiol. 2024;32(4):317–8. https://doi.org/10.1016/j.tim.2024.02.012.
Coll F, Gouliouris T, Blane B, Yeats CA, Raven KE, Ludden C, Khokhar FA, Wilson HJ, Roberts LW, Harrison EM, Horner CS, Le TH, Nguyen TH, Nguyen VT, Brown NM, Holmes MA, Parkhill J, Estee Török M, Peacock SJ. Antibiotic resistance determination using Enterococcus faecium whole-genome sequences: a diagnostic accuracy study using genotypic and phenotypic data. Lancet Microbe. 2024;5(2):e151–63. https://doi.org/10.1016/S2666-5247(23)00297-5.
Estrada AA, Gottschalk M, Gebhart CJ, Marthaler DG. Comparative analysis of Streptococcus suis genomes identifies novel candidate virulence-associated genes in North American isolates, Veterinary Research 53(1) (2022) 23. https://doi.org/10.1186/s13567-022-01039-8
Rodrigo MKD, Saiganesh A, Hayes AJ, Wilson AM, Anstey J, Pickering JL, Iwasaki J, Hillas J, Winslow S, Woodman T, Nitschke P, Lacey JA, Breese KJ, van der Linden MPG, Giffard PM, Tong SYC, Gray N, Stubbs KA, Carapetis JR, Bowen AC, Davies MR, Barnett TC. Host-dependent resistance of group A Streptococcus to sulfamethoxazole mediated by a horizontally-acquired reduced folate transporter. Nat Commun. 2022;13(1):6557. https://doi.org/10.1038/s41467-022-34243-3.
Partridge SR, Kwong SM, Firth N, Jensen SO. Mobile genetic elements associated with antimicrobial resistance. Clin Microbiol Rev. 2018;31(4). https://doi.org/10.1128/cmr.00088–17.
Karkman A, Do TT, Walsh F, Virta MP. Antibiotic-resistance genes in waste water. Trends Microbiol. 2018;26(3):220–8.
Khedkar S, Smyshlyaev G, Letunic I, Maistrenko OM, Coelho LP, Orakov A, Forslund SK, Hildebrand F, Luetge M, Schmidt TSB, Barabas O, Bork P. Landscape of mobile genetic elements and their antibiotic resistance cargo in prokaryotic genomes. Nucleic Acids Res. 2022;50(6):3155–68. https://doi.org/10.1093/nar/gkac163.
Razavi M, Kristiansson E, Flach C, Larsson D. The association between insertion sequences and antibiotic resistance genes. mSphere 5, 418–420. doi: 10.1128/mSphere: 00418– 20, PMID:[Europe PMC free article][Abstract][CrossRef][Google Scholar] (2020).
Johnson CM, Grossman AD. Integrative and conjugative elements (ICEs): what they do and how they work. Annu Rev Genet. 2015;49:577–601. https://doi.org/10.1146/annurev-genet-112414-055018.
Brochet M, Couvé E, Glaser P, Guédon G, Payot S. Integrative conjugative elements and related elements are major contributors to the genome diversity of Streptococcus agalactiae. J Bacteriol. 2008;190(20):6913–7. https://doi.org/10.1128/jb.00824-08.
Pavlovic G, Burrus V, Gintz B, Decaris B, Guedon G. Evolution of genomic Islands by deletion and tandem accretion by site-specific recombination: ICE St1-related elements from Streptococcus thermophilus. Microbiology. 2004;150(4):759–74.
Sumpradit N, Wongkongkathep S, Malathum K, Janejai N, Paveenkittiporn W, Yingyong T, Chuxnum T, Vijitleela A, Boonyarit P, Akaleephan C, Manosuthi W, Thienthong V, Srinha J, Wongsrichai S, Laoprasert T, Athipunyakom P, Kriengchaiyaprug N, Intarukdach K, Numsawad S, Somjetanakul N, Punnin S, Kiatying-Angsulee N. Thailand’s National strategic plan on antimicrobial resistance: progress and challenges. Bull World Health Organ. 2021;99(9):661–73. https://doi.org/10.2471/blt.20.280644.