• Bitarello BD, De Filippo C, Teixeira JC, Schmidt JM, Kleinert P, Meyer D, Andres AM. Signatures of long-term balancing selection in human genomes. Genome Biol Evol. 2018. https://doi.org/10.1093/gbe/evy054.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Piertney SB, Oliver MK. The evolutionary ecology of the major histocompatibility complex. Heredity. 2006;96(1):7–21.

    PubMed 

    Google Scholar
     

  • Ebert D, Fields PD. Host–parasite co-evolution and its genomic signature. Nat Rev Genet. 2020;21(12):754–68.

    PubMed 

    Google Scholar
     

  • Kaufman J. Unfinished business: evolution of the MHC and the adaptive immune system of jawed vertebrates. Annu Rev Immunol. 2018. https://doi.org/10.1146/annurev-immunol-051116-052450.

    Article 
    PubMed 

    Google Scholar
     

  • Klein J. Natural history of the major histocompatibility complex. New York: Wiley; 1986.


    Google Scholar
     

  • Neefjes J, Jongsma MLM, Paul P, Bakke O. Towards a systems Understanding of MHC class I and MHC class II antigen presentation. Nat Rev Immunol. 2011;11(12):823–36.

    PubMed 

    Google Scholar
     

  • Braud VM, Allan DS, McMichael AJ. Functions of nonclassical MHC and non-MHC-encoded class I molecules. Curr Opin Immunol. 1999. https://doi.org/10.1016/S0952-7915(99)80018-1.

    Article 
    PubMed 

    Google Scholar
     

  • Alfonso C, Karlsson L. Nonclassical MHC class II molecules. Annu Rev Immunol. 2000. https://doi.org/10.1146/annurev.immunol.18.1.113.

    Article 
    PubMed 

    Google Scholar
     

  • Adams EJ, Luoma AM. The adaptable major histocompatibility complex (MHC) fold: structure and function of nonclassical and Mhc class I-like molecules. Annu Rev Immunol. 2013;31(1):529–61.

    PubMed 

    Google Scholar
     

  • Saper MA, Bjorkman PJ, Wiley DC. Refined structure of the human histocompatibility antigen HLA-A2 at 2.6 Å resolution. J Mol Biol. 1991. https://doi.org/10.1016/0022-2836(91)90567-P.

    Article 
    PubMed 

    Google Scholar
     

  • Brown JH, Jardetzky TS, Gorga JC, Stern LJ, Urban RG, Strominger JL, Wiley DC. Three-dimensional structure of the human class II histocompatibility antigen HLA-DR1. Nature. 1993. https://doi.org/10.1038/364033a0.

    Article 
    PubMed 

    Google Scholar
     

  • Yuhki N, O’Brien SJ. Nature and origin of polymorphism in feline MHC class II DRA and DRB genes. J Immunol. 1997. https://doi.org/10.4049/jimmunol.158.6.2822.

    Article 
    PubMed 

    Google Scholar
     

  • Pierini F, Lenz TL. Divergent allele advantage at human MHC genes: signatures of past and ongoing selection. Mol Biol Evol. 2018;35(9):2145–58.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Takahata N, Nei M. Allelic genealogy under overdominant and frequency-dependent selection and polymorphism of major histocompatibility complex loci. Genetics. 1990. https://doi.org/10.1093/genetics/124.4.967.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hughes AL, Nei M. Nucleotide substitution at major histocompatibility complex class II loci: evidence for overdominant selection. Proc Natl Acad Sci USA. 1989. https://doi.org/10.1073/pnas.86.3.958.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zinkernagel RM, Doherty PC. H 2 compatibility requirement for T cell mediated Lysis of target cells infected with lymphocytic choriomeningitis virus. Different cytotoxic T cell specificities are associated with structures coded for in H 2K or H 2D. J Exp Med. 1975. https://doi.org/10.1084/jem.141.6.1427.

    Article 
    PubMed 

    Google Scholar
     

  • Clarke B, Kirby DRS. Maintenance of histocompatibility polymorphisms. Nature. 1966;211(5052):999–1000.

    PubMed 

    Google Scholar
     

  • Nei M, Gu X, Sitnikova T. Evolution by the birth-and-death process in multigene families of the vertebrate immune system. Proc Natl Acad Sci USA. 1997;94(15):7799–806.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Klein J. Origin of major histocompatibility complex polymorphism: the trans-species hypothesis. Hum Immunol. 1987;19(3):155–62.

    PubMed 

    Google Scholar
     

  • Těšický M, Vinkler M. Trans-Species polymorphism in immune genes: general pattern or MHC-Restricted phenomenon? J Immunol Res. 2015;2015(1):838035.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Aguilar A, Roemer G, Debenham S, Binns M, Garcelon D, Wayne RK. High MHC diversity maintained by balancing selection in an otherwise genetically monomorphic mammal. Proc Natl Acad Sci USA. 2004. https://doi.org/10.1073/pnas.0306582101.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Castro-Prieto A, Wachter B, Sommer S. Cheetah paradigm revisited: MHC diversity in the world’s largest free-ranging population. Mol Biol Evol. 2011. https://doi.org/10.1093/molbev/msq330.

    Article 
    PubMed 

    Google Scholar
     

  • Gutierrez-Espeleta GA, Hedrick PW, Kalinowski ST, Garrigan D, Boyce WM. Is the decline of desert bighorn sheep from infectious disease the result of low MHC variation? Heredity 2001, https://doi.org/10.1046/j.1365-2540.2001.00853.x

  • Radwan J, Biedrzycka A, Babik W. Does reduced MHC diversity decrease viability of vertebrate populations? Biol Conserv. 2010;143(3):537–44.

    PubMed 

    Google Scholar
     

  • Rao X, Hoof I, Fontaine Costa AICA, Van Baarle D, Keşmir C. HLA class I allele promiscuity revisited. Immunogenetics. 2011;63(11):691–701.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Reche PA, Reinherz EL. Definition of MHC supertypes through clustering of MHC peptide-binding repertoires. Methods in molecular biology (Clifton, NJ) 2007, https://doi.org/10.1007/978-1-60327-118-9_11

  • Pedersen AB, Jones KE, Nunn CL, Altizer S. Infectious diseases and extinction risk in wild mammals. Conserv Biol. 2007;21(5):1269–79.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Crooks KR, Burdett CL, Theobald DM, Rondinini C, Boitani L. Global patterns of fragmentation and connectivity of mammalian carnivore habitat. Philosophical Trans Royal Soc B: Biol Sci. 2011;366(1578):2642–51.


    Google Scholar
     

  • Ripple WJ, Estes JA, Beschta RL, Wilmers CC, Ritchie EG, Hebblewhite M, Berger J, Elmhagen B, Letnic M, Nelson MP. Status and ecological effects of the world’s largest carnivores. Science. 2014;343(6167):1241484.

    PubMed 

    Google Scholar
     

  • Woodroffe R. Predators and people: using human densities to interpret declines of large carnivores. Anim Conserv. 2000;3(2):165–73.


    Google Scholar
     

  • Jeon Jong Y, Black Andrew N, Heenkenda Erangi J, Mularo Andrew J, Lamka Gina F, Janjua S, Brüniche-Olsen A, Bickham John W, Willoughby Janna R, DeWoody JA. Genomic diversity as a key conservation criterion: Proof-of-concept from mammalian whole-genome resequencing data. Evol Appl. 2024;17(9):e70000.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yuhki N, Beck T, Stephens R, Neelam B, O’Brien SJ. Comparative genomic structure of human, dog, and Cat MHC: HLA, DLA, and FLA. J Hered. 2007;98(5):390–9.

    PubMed 

    Google Scholar
     

  • Graumann MB, DeRose SA, Ostrander EA, Storb R. Polymorphism analysis of four canine MHC class I genes. Tissue Antigens. 1998;51(4):374–81.

    PubMed 

    Google Scholar
     

  • Holmes JC, Scholl EH, Dickey AN, Hess PR. High-resolution characterization of the structural features and genetic variation of six feline leukocyte antigen class I loci via single molecule, real-time (SMRT) sequencing. Immunogenetics. 2021;73(5):381–93.

    PubMed 

    Google Scholar
     

  • Zhu Y, Sun D, Ge Y, Yu B, Chen Y, Wan Q. Isolation and characterization of class I MHC genes in the giant panda (Ailuropoda melanoleuca). Chin Sci Bull. 2013;58(18):2140–7.


    Google Scholar
     

  • Marsden CD, Mable BK, Woodroffe R, Rasmussen GSA, Cleaveland S, McNutt JW, Emmanuel M, Thomas R, Kennedy LJ. Highly endangered African wild dogs (Lycaon pictus) lack variation at the major histocompatibility complex. J Hered. 2009;100(suppl1):S54–65.


    Google Scholar
     

  • Kennedy LJ, Randall DA, Knobel D, Brown JJ, Fooks AR, Argaw K, Shiferaw F, Ollier WER, Sillero-Zubiri C, Macdonald DW, et al. Major histocompatibility complex diversity in the endangered Ethiopian Wolf (Canis simensis). Tissue Antigens. 2011;77(2):118–25.

    PubMed 

    Google Scholar
     

  • Hedrick PW, Lee RN, Garrigan D. Major histocompatibility complex variation in red wolves: evidence for common ancestry with Coyotes and balancing selection. Mol Ecol. 2002;11(10):1905–13.

    PubMed 

    Google Scholar
     

  • Luo S-J, Kim J-H, Johnson WE, Walt Jvd, Martenson J, Yuhki N, Miquelle DG, Uphyrkina O, Goodrich JM, Quigley HB, et al. Phylogeography and genetic ancestry of Tigers (Panthera tigris). PLoS Biol. 2004;2(12):e442.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pokorny I, Sharma R, Goyal SP, Mishra S, Tiedemann R. MHC class I and MHC class II DRB gene variability in wild and captive Bengal Tigers (Panthera Tigris Tigris). Immunogenetics. 2010;62:667–79.

    PubMed 

    Google Scholar
     

  • Castillo S, Srithayakumar V, Meunier V, Kyle CJ. Characterization of major histocompatibility complex (MHC) DRB exon 2 and DRA exon 3 fragments in a primary terrestrial rabies vector (Procyon lotor). PLoS ONE. 2010. https://doi.org/10.1371/journal.pone.0012066.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hammond JA, Guethlein LA, Norman PJ, Parham P. Natural selection on marine carnivores elaborated a diverse family of classical MHC class I genes exhibiting haplotypic gene content variation and allelic polymorphism. Immunogenetics. 2012;64(12):915–33.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cant MA, Nichols HJ, Thompson FJ, Vitikainen E. Banded mongooses: Demography, life history, and social behavior. In: Cooperative breeding in vertebrates: Studies of ecology, evolution and behavior. Edited by Koenig WD, Dickinson JL. https://doi.org/10.1017/CBO9781107338357.019. Cambridge UK: Cambridge University Press; 2016: 318–337.

  • Hodge SJ, Bell MBV, Cant MA. Reproductive competition and the evolution of extreme birth synchrony in a cooperative mammal. Biol Lett. 2011. https://doi.org/10.1098/rsbl.2010.0555.

    Article 
    PubMed 

    Google Scholar
     

  • Marshall HH, Johnstone RA, Thompson FJ, Nichols HJ, Wells D, Hoffman JI, Kalema-Zikusoka G, Sanderson JL, Vitikainen EIK, Blount JD, et al. A veil of ignorance can promote fairness in a mammal society. Nat Commun. 2021. https://doi.org/10.1038/s41467-021-23910-6.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wells DA, Cant MA, Hoffman JI, Nichols HJ. Inbreeding depresses altruism in a cooperative society. Ecol Lett. 2020;23(10):1460–7.

    PubMed 

    Google Scholar
     

  • Wells DA, Cant MA, Nichols HJ, Hoffman JI. A high-quality pedigree and genetic markers both reveal inbreeding depression for quality but not survival in a cooperative mammal. Mol Ecol. 2018. https://doi.org/10.1111/mec.14570.

    Article 
    PubMed 

    Google Scholar
     

  • Khera M, Arbuckle K, Hoffman JI, Sanderson JL, Cant MA, Nichols HJ. Cooperatively breeding banded mongooses do not avoid inbreeding through familiarity-based kin recognition. Behav Ecol Sociobiol. 2021. https://doi.org/10.1007/s00265-021-03076-3.

    Article 

    Google Scholar
     

  • Nichols HJ, Cant MA, Sanderson JL. Adjustment of costly extra-group paternity according to inbreeding risk in a cooperative mammal. Behav Ecol. 2015;26(6):1486–94.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sanderson JL, Wang J, Vitikainen EIK, Cant MA, Nichols HJ. Banded mongooses avoid inbreeding when mating with members of the same Natal group. Mol Ecol. 2015. https://doi.org/10.1111/mec.13253.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Alexander KA, Laver PN, Williams MC, Sanderson CE, Kanipe C, Palmer MV. Pathology of the emerging Mycobacterium tuberculosis complex Pathogen, Mycobacterium mungi, in the banded mongoose (Mungos mungo). Vet Pathol. 2018. https://doi.org/10.1177/0300985817741730.

    Article 
    PubMed 

    Google Scholar
     

  • Alexander KA, Sanderson CE, Larsen MH, Robbe-Austerman S, Williams MC, Palmer MV. Emerging tuberculosis pathogen hijacks social communication behavior in the group-living banded mongoose (Mungos mungo). mBio 2016, https://doi.org/10.1128/mBio.00281-16

  • Alexander KA, Sanderson CE, Laver PN. Novel Mycobacterium tuberculosis complex spp. In group-living African mammals. Tuberculosis, leprosy and mycobacterial diseases of man and animals: the many hosts of mycobacteria. Wallingford UK: CABI; 2015. pp. 386–401. https://doi.org/10.1079/9781780643960.0386.

    Chapter 

    Google Scholar
     

  • Brüns AC, Tanner M, Williams MC, Botha L, O’Brien A, Fosgate GT, van Helden PD, Clarke J, Michel AL. Diagnosis and implications of Mycobacterium Bovis infection in banded mongooses (Mungos mungo) in the Kruger National Park, South Africa. J Wildl Dis. 2017. https://doi.org/10.7589/2015-11-318.

    Article 
    PubMed 

    Google Scholar
     

  • Jordan NR, Mwanguhya F, Kyabulima S, Rüedi P, Cant MA. Scent marking within and between groups of wild banded mongooses. J Zool. 2010. https://doi.org/10.1111/j.1469-7998.2009.00646.x.

    Article 

    Google Scholar
     

  • ASAB Ethical Committee, ABS Animal Care Committee. Guidelines for the treatment of animals in behavioural research and teaching. Anim Behav. 2022. https://doi.org/10.1016/s0003-3472(21)00389-4.

    Article 

    Google Scholar
     

  • Yuhki N, O’Brien SJ. DNA variation of the mammalian major histocompatibility complex reflects genomic diversity and population history. Proc Natl Acad Sci USA. 1990. https://doi.org/10.1073/pnas.87.2.836.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 2013. https://doi.org/10.1093/molbev/mst010.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Untergasser A, Cutcutache I, Koressaar T, Ye J, Faircloth BC, Remm M, Rozen SG. Primer3-new capabilities and interfaces. Nucleic Acids Res. 2012. https://doi.org/10.1093/nar/gks596.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Faircloth BC, Glenn TC. Not all sequence tags are created equal: designing and validating sequence identification tags robust to indels. PLoS ONE. 2012. https://doi.org/10.1371/journal.pone.0042543.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sebastian A, Herdegen M, Migalska M, Radwan J. Amplisas: A web server for multilocus genotyping using next-generation amplicon sequencing data. Mol Ecol Resour. 2016. https://doi.org/10.1111/1755-0998.12453.

    Article 
    PubMed 

    Google Scholar
     

  • Zhang Z, Schwartz S, Wagner L, Miller W. A greedy algorithm for aligning DNA sequences. J Comput Biol. 2000;7(1–2):203–14.

    PubMed 

    Google Scholar
     

  • Kaufman J, Salomonsen J, Flajnik M. Evolutionary conservation of MHC class I and class II molecules – different yet the same. Semin Immunol. 1994;6(6):411–24.

    PubMed 

    Google Scholar
     

  • Reche PA, Reinherz EL. Sequence variability analysis of human class I and class II MHC molecules: functional and structural correlates of amino acid polymorphisms. J Mol Biol. 2003. https://doi.org/10.1016/S0022-2836(03)00750-2.

    Article 
    PubMed 

    Google Scholar
     

  • Huang K, Zhang P, Dunn DW, Wang T, Mi R, Li B. Assigning alleles to different loci in amplifications of duplicated loci. Mol Ecol Resour. 2019;19:1240–53.

    PubMed 

    Google Scholar
     

  • IUCN: The IUCN Red List of Threatened Species. Version 2024-1. 2024, https://www.iucnredlist.org

  • Rozas J, Ferrer-Mata A, Sanchez-DelBarrio JC, Guirao-Rico S, Librado P, Ramos-Onsins SE, Sanchez-Gracia A. DnaSP 6: DNA sequence polymorphism analysis of large data sets. Mol Biol Evol. 2017. https://doi.org/10.1093/molbev/msx248.

    Article 
    PubMed 

    Google Scholar
     

  • Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol. 2018. https://doi.org/10.1093/molbev/msy096.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Winternitz J, Chakarov N, Rinaud T, Ottensmann M, Krüger O. High functional allelic diversity and copy number in both MHC classes in the common buzzard. BMC Ecol Evol. 2023. https://doi.org/10.1186/s12862-023-02135-9.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Martin DP, Murrell B, Golden M, Khoosal A, Muhire B. RDP4: detection and analysis of recombination patterns in virus genomes. Virus Evol. 2015. https://doi.org/10.1093/ve/vev003.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Martin D, Rybicki E. RDP: detection of recombination amongst aligned sequences. Bioinformatics. 2000. https://doi.org/10.1093/bioinformatics/16.6.562.

    Article 
    PubMed 

    Google Scholar
     

  • Padidam M, Sawyer S, Fauquet CM. Possible emergence of new geminiviruses by frequent recombination. Virology. 1999;265(2):218–25.

    PubMed 

    Google Scholar
     

  • Salminen MO, Carr JK, Burke DS, McCutchan FE. Identification of breakpoints in intergenotypic recombinants of HIV type 1 by bootscanning. AIDS Res Hum Retroviruses. 1995. https://doi.org/10.1089/aid.1995.11.1423.

    Article 
    PubMed 

    Google Scholar
     

  • Gibbs MJ, Armstrong JS, Gibbs AJ. Sister-scanning: A Monte Carlo procedure for assessing signals in rebombinant sequences. Bioinformatics. 2000. https://doi.org/10.1093/bioinformatics/16.7.573.

    Article 
    PubMed 

    Google Scholar
     

  • Smith JM. Analyzing the mosaic structure of genes. J Mol Evol. 1992. https://doi.org/10.1007/BF00182389.

    Article 
    PubMed 

    Google Scholar
     

  • Posada D, Crandall KA. Evaluation of methods for detecting recombination from DNA sequences: computer simulations. Proc Natl Acad Sci USA. 2001. https://doi.org/10.1073/pnas.241370698.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Boni MF, Posada D, Feldman MW. An exact nonparametric method for inferring mosaic structure in sequence triplets. Genetics. 2007. https://doi.org/10.1534/genetics.106.068874.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Martin DP, Murrell B, Khoosal A, Muhire B. Detecting and analyzing genetic recombination using RDP4. In: Bioinformatics Methods in Molecular Biology. Edited by Kieth J, vol. 1525. New York, NY: Humana Press; 2017.

  • Murrell B, Moola S, Mabona A, Weighill T, Sheward D, Kosakovsky Pond SL, Scheffler K. FUBAR: A fast, unconstrained bayesian approximation for inferring selection. Mol Biol Evol. 2013. https://doi.org/10.1093/molbev/mst030.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Murrell B, Wertheim JO, Moola S, Weighill T, Scheffler K, Kosakovsky Pond SL. Detecting individual sites subject to episodic diversifying selection. PLoS Genet. 2012. https://doi.org/10.1371/journal.pgen.1002764.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Weaver S, Shank SD, Spielman SJ, Li M, Muse SV, Kosakovsky Pond SL. Datamonkey 2.0: A modern web application for characterizing selective and other evolutionary processes. Mol Biol Evol. 2018. https://doi.org/10.1093/molbev/msx335.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gao F, Chen C, Arab DA, Du Z, He Y, Ho SYW. EasyCodeML: A visual tool for analysis of selection using codeml. Ecol Evol. 2019;9(7):3891–8.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang Z. PAML 4: phylogenetic analysis by maximum likelihood. Mol Biol Evol. 2007;24(8):1586–91.

    PubMed 

    Google Scholar
     

  • Katoh K, Misawa K, Kuma KI, Miyata T. MAFFT: A novel method for rapid multiple sequence alignment based on fast fourier transform. Nucleic Acids Res. 2002. https://doi.org/10.1093/nar/gkf436.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Trifinopoulos J, Nguyen LT, von Haeseler A, Minh BQ. W-IQ-TREE: a fast online phylogenetic tool for maximum likelihood analysis. Nucleic Acids Res. 2016. https://doi.org/10.1093/NAR/GKW256.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kalyaanamoorthy S, Minh BQ, Wong TKF, Von Haeseler A, Jermiin LS. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat Methods. 2017. https://doi.org/10.1038/nmeth.4285.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nguyen LT, Schmidt HA, Von Haeseler A, Minh BQ. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol. 2015;32(1):268–74.

    PubMed 

    Google Scholar
     

  • Hoang DT, Chernomor O, Von Haeseler A, Minh BQ, Vinh LS. UFBoot2: improving the ultrafast bootstrap approximation. Mol Biol Evol. 2018. https://doi.org/10.1093/molbev/msx281.

    Article 
    PubMed 

    Google Scholar
     

  • Nei M, Gojobori T. Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions. Mol Biol Evol. 1986;3(5):418–26.

    PubMed 

    Google Scholar
     

  • Sandberg M, Eriksson L, Jonsson J, Sjöström M, Wold S. New chemical descriptors relevant for the design of biologically active peptides. A multivariate characterization of 87 amino acids. J Med Chem. 1998. https://doi.org/10.1021/jm9700575.

    Article 
    PubMed 

    Google Scholar
     

  • Osorio D, Rondón-Villarreal P, Torres R. Peptides: A package for data mining of antimicrobial peptides. R J. 2015. https://doi.org/10.32614/rj-2015-001.

    Article 

    Google Scholar
     

  • Jombart T. Adegenet: A R package for the multivariate analysis of genetic markers. Bioinformatics. 2008. https://doi.org/10.1093/bioinformatics/btn129.

    Article 
    PubMed 

    Google Scholar
     

  • Gamer M, Lemon J, Fellows I, Singh P. Irr: various coefficients of interrater reliability and agreement. R package version 0.84.1. In.; 2019.

  • Wei T, Simko V. R package ‘corrplot’: Visualization of a Correlation Matrix. In, https://github.com/taiyun/corrplot, Version 0.95 edn; 2024.

  • Yuhki N, Mullikin JC, Beck T, Stephens R, O’Brien SJ. Sequences, annotation and single nucleotide polymorphism of the major histocompatibility complex in the domestic Cat. PLoS ONE. 2008. https://doi.org/10.1371/journal.pone.0002674.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Okano M, Miyamae J, Suzuki S, Nishiya K, Katakura F, Kulski JK, Moritomo T, Shiina T. Identification of novel alleles and structural haplotypes of major histocompatibility complex class I and DRB genes in domestic Cat (Felis Catus) by a newly developed NGS-based genotyping method. Front Genet. 2020;11:750.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Drake GJC, Kennedy LJ, Auty HK, Ryvar R, Ollier WER, Kitchener AC, Freeman AR, Radford AD. The use of reference strand-mediated conformational analysis for the study of cheetah (Acinonyx jubatus) feline leucocyte antigen class II DRB polymorphisms. Mol Ecol. 2004. https://doi.org/10.1046/j.1365-294X.2003.02027.x.

    Article 
    PubMed 

    Google Scholar
     

  • Burnett RC, Geraghty DE. Structure and expression of a divergent canine class I gene. J Immunol. 1995. https://doi.org/10.4049/jimmunol.155.9.4278.

    Article 
    PubMed 

    Google Scholar
     

  • Zhu Y, Sun DD, Ge YF, Yu B, Chen YY, Wan QH. Isolation and characterization of class I MHC genes in the giant panda (Ailuropoda melanoleuca). Chin Sci Bull. 2013. https://doi.org/10.1007/s11434-012-5582-4.

    Article 

    Google Scholar
     

  • D’Souza MP, Adams E, Altman JD, Birnbaum ME, Boggiano C, Casorati G, Chien YH, Conley A, Eckle SBG, Früh K, et al. Casting a wider net: immunosurveillance by nonclassical MHC molecules. PLoS Pathog. 2019;15(2):e1007567.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Upham NS, Esselstyn JA, Jetz W. Inferring the mammal tree: Species-level sets of phylogenies for questions in ecology, evolution, and conservation. PLoS Biol. 2019. https://doi.org/10.1371/journal.pbio.3000494.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Revell LJ. Phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol Evol. 2012. https://doi.org/10.1111/j.2041-210X.2011.00169.x.

    Article 

    Google Scholar
     

  • Yu G, Smith DK, Zhu H, Guan Y, Lam TTY. Ggtree: an r package for visualization and annotation of phylogenetic trees with their covariates and other associated data. Methods Ecol Evol. 2017. https://doi.org/10.1111/2041-210X.12628.

    Article 

    Google Scholar
     

  • R Core Team. R: A language and environment for statistical computing. In., https://www.R-project.org/: R Foundation for Statistical Computing, Vienna, Austria; 2025.

  • Bürkner PC. Brms: an R package for bayesian multilevel models using Stan. J Stat Softw. 2017. https://doi.org/10.18637/jss.v080.i01.

    Article 

    Google Scholar
     

  • Revell LJ. Phytools 2.0: an updated R ecosystem for phylogenetic comparative methods (and other things). PeerJ. 2024. https://doi.org/10.7717/peerj.16505.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lüdecke D. Ggeffects: tidy data frames of marginal effects from regression models. J Open Source Softw. 2018. https://doi.org/10.21105/joss.00772.

    Article 

    Google Scholar
     

  • Aphalo P. gginnards: Explore the Innards of ‘ggplot2’ Objects. R package version 0.2.0. 2024, https://cran.r-project.org/package=gginnards

  • Slowikowski K. ggrepel: Automatically Position Non-Overlapping Text Labels with ‘ggplot2’. In., https://doi.org/10.32614/CRAN.package.ggrepel, R package version 0.9.6 edn; 2024.

  • Campitelli E: ggnewscale: Multiple Fill and Colour Scales in ‘ggplot2’. In., https://doi.org/10.32614/CRAN.package.ggnewscale, R package version 0.5.2 edn; 2025.

  • Wickham H. ggplot2: Elegant Graphics for Data Analysis. Second Edition. Springer; 2016.

  • Singh PB. The present status of the ‘carrier hypothesis’ for chemosensory recognition of genetic individuality. Genetica. 1998. https://doi.org/10.1023/A:1026475118901.

    Article 
    PubMed 

    Google Scholar
     

  • Maccari G, Robinson J, Bontrop RE, Otting N, de Groot NG, Ho CS, Ballingall KT, Marsh SGE, Hammond JA. IPD-MHC: nomenclature requirements for the non-human major histocompatibility complex in the next-generation sequencing era. Immunogenetics. 2018. https://doi.org/10.1007/s00251-018-1072-4.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kelley J, Walter L, Trowsdale J. Comparative genomics of major histocompatibility complexes. Immunogenetics. 2005;56:683–95.

    PubMed 

    Google Scholar
     

  • Winternitz JC, Wares JP. Duplication and population dynamics shape historic patterns of selection and genetic variation at the major histocompatibility complex in rodents. Ecol Evol. 2013;3(6):1552–68.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sommer S. The importance of immune gene variability (MHC) in evolutionary ecology and conservation. Front Zool. 2005;2:1–18.


    Google Scholar
     

  • Ujvari B, Belov K. Major histocompatibility complex (MHC) markers in conservation biology. Int J Mol Sci. 2011;12(8):5168–86.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Coker OM, Osaiyuw OH, Fatoki AO. Major histocompatibility complex (MHC) diversity and its implications in human and wildlife health and conservation. Genet Biodivers J. 2023;7(2):1–11.


    Google Scholar
     

  • Nichols HJ, Jordan NR, Jamie GA, Cant MA, Hoffman JI. Fine-scale Spatiotemporal patterns of genetic variation reflect budding dispersal coupled with strong Natal philopatry in a cooperatively breeding mammal. Mol Ecol. 2012;21(21):5348–62.

    PubMed 

    Google Scholar
     

  • Schubert N, Nichols HJ, Mwanguhya F, Businge R, Kyambulima S, Mwesige K, Hoffman JI, Cant MA, Winternitz JC. Sex-dependent influence of major histocompatibility complex diversity on fitness in a social mammal. BioRxiv. 2024. https://doi.org/10.1101/2024.12.18.629201.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gonzalez-Galarza Faviel F, McCabe A, Santos Eduardo J, Md, Jones J, Takeshita L, Ortega-Rivera Nestor D, Cid-Pavon Glenda MD, Ramsbottom K, Ghattaoraya G, Alfirevic A, et al. Allele frequency net database (AFND) 2020 update: gold-standard data classification, open access genotype data and new query tools. Nucleic Acids Res. 2019;48(D1):D783–8.

    PubMed Central 

    Google Scholar
     

  • Schaschl H, Herzog T, Oberreiter V, Kutanan W, Jakobsson M, Larena M. HLA diversity and signatures of selection in the Maniq, a nomadic hunter-gatherer population in Southern Thailand. Immunogenetics. 2025;77(1):23.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Denyer AL, Massey JP, Davison LJ, Ollier WER, Catchpole B, Kennedy LJ. Dog leucocyte antigen (DLA) class II haplotypes and risk of canine diabetes mellitus in specific dog breeds. Canine Med Genet. 2020;7(1):15.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nielsen JF, English S, Goodall-Copestake WP, Wang J, Walling CA, Bateman AW, Flower TP, Sutcliffe RL, Samson J, Thavarajah NK, et al. Inbreeding and inbreeding depression of early life traits in a cooperative mammal. Mol Ecol. 2012. https://doi.org/10.1111/j.1365-294X.2012.05565.x.

    Article 
    PubMed 

    Google Scholar
     

  • Mueller-Klein N, Risely A, Wilhelm K, Riegel V, Manser M, Clutton-Brock T, Santos P, Melville D, Sommer S. Twenty-year co-evolutionary arms race between meerkat MHC and tuberculosis. PREPRINT (Version 1) Available Res Square. 2024. https://doi.org/10.21203/rs.3.rs-4685784/v1.

    Article 

    Google Scholar
     

  • Cutrera AP, Lacey EA. Major histocompatibility complex variation in Talas tuco-tucos: the influence of demography on selection. J Mammal. 2006;87(4):706–16.


    Google Scholar
     

  • Anderson RM, May RM. Population biology of infectious diseases: part I. Nature. 1979;280(5721):361–7.

    PubMed 

    Google Scholar
     

  • Altizer S, Nunn CL, Thrall PH, Gittleman JL, Antonovics J, Cunningham AA, Dobson AP, Ezenwa V, Jones KE, Pedersen AB et al. Social organization and parasite risk in mammals: Integrating theory and empirical studies. Annual Review of Ecology, Evolution, and Systematics 2003, 34(Volume 34, 2003):517–547.

  • Côté IM, Poulin R. Parasitism and group size in social animals: a meta-analysis. Behav Ecol. 1995;6(2):159–65.


    Google Scholar
     

  • Hambuch TM, Lacey EA. Enhanced selection for Mhc diversity in social tuco-tucos. Evolution. 2002;56(4):841–5.

    PubMed 

    Google Scholar
     

  • Minias P, Whittingham LA, Dunn PO. Coloniality and migration are related to selection on MHC genes in birds. Evolution. 2017;71(2):432–41.

    PubMed 

    Google Scholar
     

  • Cant MA. Social control of reproduction in banded mongooses. Anim Behav. 2000. https://doi.org/10.1006/anbe.1999.1279.

    Article 
    PubMed 

    Google Scholar
     

  • Nichols HJ, Amos W, Cant MA, Bell MBV, Hodge SJ. Top males gain high reproductive success by guarding more successful females in a cooperatively breeding mongoose. Anim Behav. 2010. https://doi.org/10.1016/j.anbehav.2010.06.025.

    Article 

    Google Scholar
     

  • Birch G, Nichols HJ, Mwanguhya F, Thompson FJ, Cant MA, Blount JD. Lifetime trajectories of male mating effort under reproductive conflict in a cooperatively breeding mammal. Proceedings B 2024, 291(2031):20241499–20241499.

  • Mitchell J, Vitikainen EIK, Wells DA, Cant MA, Nichols HJ. Heterozygosity but not inbreeding coefficient predicts parasite burdens in the banded mongoose. J Zool. 2017. https://doi.org/10.1111/jzo.12424.

    Article 

    Google Scholar
     

  • Winternitz JC, Abbate JL. The genes of attraction: Mating behavior, immunogenetic variation, and parasite resistance. In: Animal Behavior and Parasitism. Edited by Ezenwa V, Altizer SM, Hall R. https://doi.org/10.1093/oso/9780192895561.003.0011: Oxford University Press; 2022.

  • Winternitz J, Abbate JL, Huchard E, Havlíček J, Garamszegi LZ. Patterns of MHC-dependent mate selection in humans and nonhuman primates: a meta‐analysis. Mol Ecol. 2017;26(2):668–88.

    PubMed 

    Google Scholar
     

  • Kamiya T, O’Dwyer K, Westerdahl H, Senior A, Nakagawa S. A quantitative review of MHC-based mating preference: the role of diversity and dissimilarity. Mol Ecol. 2014;23(21):5151–63.

    PubMed 

    Google Scholar
     

  • Abduriyim S, Nishita Y, Kosintsev PA, Raichev E, Väinölä R, Kryukov AP, Abramov AV, Kaneko Y, Masuda R. Evolution of MHC class I genes in Eurasian badgers, genus Meles (Carnivora, Mustelidae). Heredity. 2019;122(2):205–18.

    PubMed 

    Google Scholar
     

  • Zhang C, Anderson A, DeLisi C. Structural principles that govern the peptide-binding motifs of class I MHC molecules. J Mol Biol. 1998. https://doi.org/10.1006/jmbi.1998.1982.

    Article 
    PubMed 

    Google Scholar
     

  • Kuduk K, Babik W, Bojarska K, Śliwińska EB, Kindberg J, Taberlet P, Swenson JE, Radwan J. Evolution of major histocompatibility complex class I and class II genes in the brown bear. BMC Evol Biol. 2012. https://doi.org/10.1186/1471-2148-12-197.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Abduriyim S, Zou DH, Zhao H. Origin and evolution of the major histocompatibility complex class I region in eutherian mammals. Ecol Evol. 2019. https://doi.org/10.1002/ece3.5373.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Takahashi K, Rooney AP, Nei M. Origins and divergence times of mammalian class II MHC gene clusters. J Hered. 2000;91(3):198–204.

    PubMed 

    Google Scholar
     

  • Rammensee HG, Bachmann J, Stevanović S. MHC ligands and peptide motifs. Springer Science & Business Media; 2013.

  • Satta Y, O’Huigin C, Takahata N, Klein J. Intensity of natural selection at the major histocompatibility complex loci. Proc Natl Acad Sci USA. 1994. https://doi.org/10.1073/pnas.91.15.7184.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Babik W, Durka W, Radwan J. Sequence diversity of the MHC DRB gene in the Eurasian beaver (Castor fiber). Mol Ecol. 2005. https://doi.org/10.1111/j.1365-294X.2005.02751.x.

    Article 
    PubMed 

    Google Scholar
     

  • Castro-Prieto A, Wachter B, Melzheimer J, Thalwitzer S, Sommer S. Diversity and evolutionary patterns of immune genes in free-ranging Namibian leopards (Panthera Pardus Pardus). J Hered. 2011;102(6):653–65.

    PubMed 

    Google Scholar
     

  • Yuhki N, Heidecker GF, O’Brien SJ. Characterization of MHC cDNA clones in the domestic cat. Diversity and evolution of class I genes. J Immunol. 1989. https://doi.org/10.4049/jimmunol.142.10.3676.

    Article 
    PubMed 

    Google Scholar
     

  • Yuhki N, O’Brien SJ. Exchanges of short polymorphic DNA segments predating speciation in feline major histocompatibility complex class I genes. J Mol Evol. 1994. https://doi.org/10.1007/BF00178246.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Okamura K, Dijkstra JM, Tsukamoto K, Grimholt U, Wiegertjes GF, Kondow A, Yamaguchi H, Hashimoto K. Discovery of an ancient MHC category with both class I and class II features. Proc Natl Acad Sci USA. 2021;118(51):e2108104118.

    PubMed 
    PubMed Central 

    Google Scholar