• Meng, Y., Broom, M. & Li, A. Impact of misinformation in the evolution of collective cooperation on networks. J. R. Soc. Interface 20, 20230295 (2023).

    Article 

    Google Scholar
     

  • Kopp, C., Korb, K. B. & Mills, B. I. Information-theoretic models of deception: modelling cooperation and diffusion in populations exposed to ‘fake news’. PLoS ONE 13, e0207383 (2018).

    Article 

    Google Scholar
     

  • Levin, S. A. & Weber, E. U. Polarization and the psychology of collectives. Perspect. Psychol. Sci. 19, 335–343 (2024).

    Article 

    Google Scholar
     

  • Loomba, S., de Figueiredo, A., Piatek, S. J., de Graaf, K. & Larson, H. J. Measuring the impact of COVID-19 vaccine misinformation on vaccination intent in the UK and USA. Nat. Hum. Behav. 5, 337–348 (2021).

    Article 

    Google Scholar
     

  • Abascal, M., Huang, T. J. & Tran, V. C. Intervening in anti-immigrant sentiments: the causal effects of factual information on attitudes toward immigration. Ann. Am. Acad. Pol. Soc. Sci. 697, 174–191 (2021).

    Article 

    Google Scholar
     

  • Hornsey, M. J., Harris, E. A., Bain, P. G. & Fielding, K. S. Meta-analyses of the determinants and outcomes of belief in climate change. Nat. Clim. Change 6, 622–626 (2016).

    Article 

    Google Scholar
     

  • Van der Linden, S., Leiserowitz, A. & Maibach, E. The gateway belief model: a large-scale replication. J. Environ. Psychol. 62, 49–58 (2019).

    Article 

    Google Scholar
     

  • Lewandowsky, S. Climate change disinformation and how to combat it. Annu. Rev. Public Health 42, 1–21 (2021).

    Article 

    Google Scholar
     

  • Van der Linden, S. L., Leiserowitz, A. A., Feinberg, G. D. & Maibach, E. W. The scientific consensus on climate change as a gateway belief: experimental evidence. PLoS ONE 10, e0118489 (2015).

    Article 

    Google Scholar
     

  • Goldberg, M. H., van der Linden, S., Maibach, E. & Leiserowitz, A. Discussing global warming leads to greater acceptance of climate science. Proc. Natl Acad. Sci. USA 116, 14804–14805 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Većkalov, B. et al. A 27-country test of communicating the scientific consensus on climate change. Nat. Hum. Behav. 8, 1892–1905 (2024).

    Article 

    Google Scholar
     

  • Bago, B., Rand, D. G. & Pennycook, G. Reasoning about climate change. Proc. Natl Acad. Sci. USA 2, pgad100 (2023).


    Google Scholar
     

  • Feldman, L. & Hart, P. S. Broadening exposure to climate change news? How framing and political orientation interact to influence selective exposure. J. Commun. 68, 503–524 (2018).

    Article 

    Google Scholar
     

  • Peterson, E. & Iyengar, S. Partisan gaps in political information and information seeking behavior: motivated reasoning or cheerleading? Am. J. Political Sci. 65, 133–147.

  • Areni, C. S. Motivated reasoning and climate change: comparing news sources, politicization, intensification, and qualification in denier versus believer subreddit comments. Appl. Cogn. Psychol. 38, e4167 (2024).

    Article 

    Google Scholar
     

  • Newman, T. P., Nisbet, E. C. & Nisbet, M. C. Climate change, cultural cognition, and media effects: worldviews drive news selectivity, biased processing, and polarized attitudes. Pub. Understand. Sci. 27, 985–1002 (2018).

    Article 

    Google Scholar
     

  • Bolin, J. L. & Hamilton, L. C. The news you choose: news media preferences amplify views on climate change. Environ. Polit. 27, 455–476 (2018).

    Article 

    Google Scholar
     

  • Wang, Y. & Jaidka, K. Confirmation bias in seeking climate information: employing relative search volume to predict partisan climate opinions. Soc. Sci. Comput. Rev. 42, 4–24 (2024).

    Article 

    Google Scholar
     

  • Sweeny, K., Melnyk, D., Miller, W. & Shepperd, J. A. Information avoidance: who, what, when, and why. Rev. Gen. Psychol. 14, 340–353 (2010).

    Article 

    Google Scholar
     

  • Bénabou, R. & Tirole, J. Identity, morals, and taboos: beliefs as assets. Q. J. Econ. 126, 805–855 (2011).

    Article 

    Google Scholar
     

  • Golman, R., Hagmann, D. & Loewenstein, G. Information avoidance. J. Econ. Lit. 55, 96–135 (2017).

    Article 

    Google Scholar
     

  • Andersen, K., Toff, B. & Ytre-Arne, B. Introduction: what we (don’t) know about news avoidance. Journal. Stud. 25, 1367–1384 (2024).


    Google Scholar
     

  • Skovsgaard, M. & Andersen, K. Conceptualizing news avoidance: towards a shared understanding of different causes and potential solutions. Journal. Stud. 21, 459–476 (2020).


    Google Scholar
     

  • Mangold, F., Schoch, D. & Stier, S. Ideological self-selection in online news exposure: evidence from europe and the us. Sci. Adv. 10, eadg9287 (2024).

    Article 

    Google Scholar
     

  • Hickman, C. et al. Climate anxiety in children and young people and their beliefs about government responses to climate change: a global survey. Lancet Planet. Health 5, e863–e873 (2021).

    Article 

    Google Scholar
     

  • Bayes, R. & Druckman, J. N. Motivated reasoning and climate change. Curr. Opin Behav. Sci. 42, 27–35 (2021).

    Article 

    Google Scholar
     

  • Newman, N., Fletcher, R., Eddy, K., Robertson, C. T. & Nielsen, R. K. Reuters Institute Digital News Report 2023. Tech. Rep. (Reuters Institute for the Study of Journalism, 2023); https://reutersinstitute.politics.ox.ac.uk/digital-news-report/2023

  • Chinn, S., Hart, P. S. & Soroka, S. Politicization and polarization in climate change news content, 1985–2017. Science Communication 42, 112–129 (2020).

    Article 

    Google Scholar
     

  • Malka, A., Krosnick, J. A. & Langer, G. The association of knowledge with concern about global warming: trusted information sources shape public thinking. Risk Anal. 29, 633–647 (2009).

    Article 

    Google Scholar
     

  • Feldman, L., Myers, T. A., Hmielowski, J. D. & Leiserowitz, A. The mutual reinforcement of media selectivity and effects: testing the reinforcing spirals framework in the context of global warming. J. Commun. 64, 590–611 (2014).

    Article 

    Google Scholar
     

  • Edenbrandt, A. K., Lagerkvist, C. J. & Nordström, J. Interested, indifferent or active information avoiders of carbon labels: cognitive dissonance and ascription of responsibility as motivating factors. Food Policy 101, 102036 (2021).

    Article 

    Google Scholar
     

  • d’Adda, G., Gao, Y., Golman, R. & Tavoni, M. Strategic information avoidance, belief manipulation and the effectiveness of green nudges. Ecol. Econ. 222, 108191 (2024).

    Article 

    Google Scholar
     

  • Sharot, T. & Sunstein, C. R. How people decide what they want to know. Nat. Hum. Behav. 4, 14–19 (2020).

    Article 

    Google Scholar
     

  • Dorison, C. A., Minson, J. A. & Rogers, T. Selective exposure partly relies on faulty affective forecasts. Cognition 188, 98–107 (2019).

    Article 

    Google Scholar
     

  • Newman, N., Fletcher, R., Schulz, A., Simge, A. & Nielsen, R. K. Reuters Institute Digital News Report 2020. Tech. Rep. (Reuters Institute for the Study of Journalism, 2020); https://reutersinstitute.politics.ox.ac.uk/sites/default/files/2020-06/DNR_2020_FINAL.pdf

  • Newman, N., Fletcher, R., Eddy, K., Robertson, C. T. & Nielsen, R. K. Reuters Institute Digital News Report 2022. Tech. Rep. (Reuters Institute for the Study of Journalism, 2022); https://reutersinstitute.politics.ox.ac.uk/digital-news-report/2022

  • González-Bailón, S. et al. Asymmetric ideological segregation in exposure to political news on facebook. Science 381, 392–398 (2023).

    Article 

    Google Scholar
     

  • Iyengar, S. & Hahn, K. S. Red media, blue media: evidence of ideological selectivity in media use. J. Commun. 59, 19–39 (2009).

    Article 

    Google Scholar
     

  • Petersen, A. M., Vincent, E. M. & Westerling, A. L. Discrepancy in scientific authority and media visibility of climate change scientists and contrarians. Nat. Commun. 10, 3502 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Koehler, D. J. Can journalistic ‘false balance’ distort public perception of consensus in expert opinion? J. Exp. Psychol. Appl. 22, 24 (2016).

    Article 

    Google Scholar
     

  • Pennycook, G., McPhetres, J., Zhang, Y., Lu, J. G. & Rand, D. G. Fighting COVID-19 misinformation on social media: experimental evidence for a scalable accuracy-nudge intervention. Psychol. Sci. 31, 770–780 (2020).

    Article 

    Google Scholar
     

  • Pennycook, G. et al. Shifting attention to accuracy can reduce misinformation online. Nature 592, 590–595 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Frimer, J. A., Skitka, L. J. & Motyl, M. Liberals and conservatives are similarly motivated to avoid exposure to one another’s opinions. J. Exper. Soc. Psychol. 72, 1–12 (2017).

    Article 

    Google Scholar
     

  • Nyhan, B. et al. Like-minded sources on facebook are prevalent but not polarizing. Nature 620, 137–144 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Robertson, R. E. et al. Users choose to engage with more partisan news than they are exposed to on Google search. Nature 618, 342–348 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Janét, K., Richards, O. & Landrum, A. R. Headline format influences evaluation of, but not engagement with, environmental news. Journal. Pract. 16, 35–55 (2022).


    Google Scholar
     

  • Feldman, L. & Hart, P. S. Upping the ante? The effects of ‘emergency’ and ‘crisis’ framing in climate change news. Clim. Change 169, 10 (2021).

    Article 

    Google Scholar
     

  • Chapman, D. A., Lickel, B. & Markowitz, E. M. Reassessing emotion in climate change communication. Nat. Clim. Change 7, 850–852 (2017).

    Article 

    Google Scholar
     

  • Robertson, C. E. et al. Negativity drives online news consumption. Nat. Hum. Behav. 7, 812–822 (2023).

    Article 

    Google Scholar
     

  • Zhang, M. et al. Negative news headlines are more attractive: negativity bias in online news reading and sharing. Curr. Psychol. 43, 30156–30169 (2024).

    Article 

    Google Scholar
     

  • Vlasceanu, M. et al. Addressing climate change with behavioral science: a global intervention tournament in 63 countries. Sci. Adv. 10, eadj5778 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Maertens, R., Anseel, F. & van der Linden, S. Combatting climate change misinformation: evidence for longevity of inoculation and consensus messaging effects. J. Environ. Psychol. 70, 101455 (2020).

    Article 

    Google Scholar
     

  • Nyhan, B., Porter, E. & Wood, T. J. Time and skeptical opinion content erode the effects of science coverage on climate beliefs and attitudes. Proc. Natl Acad. Sci. USA 119, e2122069119 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Dubey, A. et al. The Llama3 herd of models. Preprint at https://doi.org/10.48550/arXiv.2407.21783 (2024).

  • Howe, P. D., Mildenberger, M., Marlon, J. R. & Leiserowitz, A. Geographic variation in opinions on climate change at state and local scales in the usa. Nat. Clim. Change 5, 596–603 (2015).

    Article 

    Google Scholar
     

  • Marlon, J. R. et al. Change in us state-level public opinion about climate change: 2008–2020. Environ. Res. Lett. 17, 124046 (2022).

    Article 

    Google Scholar
     

  • Capraro, V. et al. The impact of generative artificial intelligence on socioeconomic inequalities and policy making. PNAS Nexus 3, pgae191 (2024).

    Article 

    Google Scholar
     

  • Spitale, G., Biller-Andorno, N. & Germani, F. AI model GPT-3 (dis)informs us better than humans. Sci. Adv. 9, eadh1850 (2023).

    Article 

    Google Scholar
     

  • Kidd, C. & Birhane, A. How AI can distort human beliefs. Science 380, 1222–1223 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Shin, S. Y. & Lee, J. The effect of deepfake video on news credibility and corrective influence of cost-based knowledge about deepfakes. Digit. Journal. 10, 412–432 (2022).


    Google Scholar
     

  • Simchon, A., Edwards, M. & Lewandowsky, S. The persuasive effects of political microtargeting in the age of generative artificial intelligence. Proc. Natl Acad. Sci. USA 3, 035 (2024).


    Google Scholar
     

  • Augenstein, I. et al. Factuality challenges in the era of large language models and opportunities for fact-checking. Nat. Mach. Intell. 6, 852–863 (2024).

    Article 

    Google Scholar
     

  • Costello, T. H., Pennycook, G. & Rand, D. G. Durably reducing conspiracy beliefs through dialogues with AI. Science 385, eadq1814 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Bago, B. & Bonnefon, J.-F. Generative AI as a tool for truth. Science 385, 1164–1165 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Tessler, M. H. et al. AI can help humans find common ground in democratic deliberation. Science 386, eadq2852 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Dörr, K. N. Mapping the field of algorithmic journalism. Digit. Journal. 4, 700–722 (2016).


    Google Scholar
     

  • Diakopoulos, N. Automating the News: How Algorithms Are Rewriting the Media (Harvard Univ. Press, 2019).

  • Cools, H. & Diakopoulos, N. Uses of generative AI in the newsroom: mapping journalists’ perceptions of perils and possibilities. Journal. Pract. 1–19 (2024).

  • Guenther, L., Kunert, J. & Goodwin, B. ‘Away from this duty of chronicler and towards the unicorn’: how German science journalists assess their future with (generative) artificial intelligence. J. Sci. Commun. 24, A06 (2025).

    Article 

    Google Scholar
     

  • Opdahl, A. L. et al. Trustworthy journalism through AI. Data Knowl. Eng. 146, 102182 (2023).

    Article 

    Google Scholar
     

  • Nishal, S. & Diakopoulos, N. Envisioning the applications and implications of generative AI for news media. Preprint at https://doi.org/10.48550/arXiv.2402.18835 (2024).

  • Nishal, S., Sinchai, J. & Diakopoulos, N. Understanding practices around computational news discovery tools in the domain of science journalism. Proc. ACM Hum. Comput. Interact. 8, 1–36 (2024).

    Article 

    Google Scholar
     

  • Ren, J., Zhao, Y., Vu, T., Liu, P. J. & Lakshminarayanan, B. In Proc. Machine Learning Research 49–64 (PMLR, 2023).

  • Kadavath, S. et al. Language models (mostly) know what they know. Preprint at https://doi.org/10.48550/arXiv.2207.05221 (2022).

  • Gomila, R. Logistic or linear? estimating causal effects of experimental treatments on binary outcomes using regression analysis. J. Exp. Psychol. Gen. 150, 700 (2021).

    Article 

    Google Scholar
     

  • News personalization. AsPredicted https://aspredicted.org/wfvn-c2tg.pdf (2025).

  • Bago, B., Muller, P., Bonnefon, J.-F. Dataset and analysis for using generative AI to increase skeptics’ engagement with climate science. Zenodo https://doi.org/10.5281/zenodo.16755109 (2025).