• Al-Gailani, S. A. et al. A survey of Free Space Optics (FSO) communication systems, links, and networks. IEEE Access 9, 7353–7373 (2021).

    Article 

    Google Scholar
     

  • Barchers, J. D., Fried, D. L. & Link, D. J. Evaluation of the performance of Hartmann sensors in strong scintillation. Appl. Opt. 41, 1012–1021 (2002).

    Article 
    ADS 

    Google Scholar
     

  • Crepp, J. R., Letchev, S. O., Potier, S. J., Follansbee, J. H. & Tusay, N. T. Measuring phase errors in the presence of scintillation. Opt. Express 28, 37721–37733 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Huang, Z. & Cao, L. Quantitative phase imaging based on holography: trends and new perspectives. Light Sci. Appl. 13, 145 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Poon, T.-C. Digital Holography and Three-Dimensional Display (Springer, New York, 2006).

  • Cumming, B. P. & Gu, M. Direct determination of aberration functions in microscopy by an artificial neural network. Opt. Express 28, 14511–14521 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Yazdani, R. & Fallah, H. Wavefront sensing for a Shack–Hartmann sensor using phase retrieval based on a sequence of intensity patterns. Appl. Opt. 56, 1358–1364 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Wu, Y., Sharma, M. K. & Veeraraghavan, A. WISH: wavefront imaging sensor with high resolution. Light Sci. Appl. 8, 44 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Yu, N. & Capasso, F. Flat optics with designer metasurfaces. Nat. Mater. 13, 139–150 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Ding, Y., Fan, F., Tian, Z. & Wang, Z. L. Sublimation-induced shape evolution of silver cubes. Small 5, 2812–2815 (2009).

    Article 

    Google Scholar
     

  • Koenderink, A. F., Alù, A. & Polman, A. Nanophotonics: shrinking light-based technology. Science 348, 516–521 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Solntsev, A. S., Agarwal, G. S. & Kivshar, Y. S. Metasurfaces for quantum photonics. Nat. Photon. 15, 327–336 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Colburn, S., Zhan, A. & Majumdar, A. Metasurface optics for full-color computational imaging. Sci. Adv. 4, eaar2114 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Ji, A. et al. Quantitative phase contrast imaging with a nonlocal angle-selective metasurface. Nat. Commun. https://doi.org/10.1038/s41467-022-34197-6 (2022).

    Article 

    Google Scholar
     

  • Yi, S. et al. Angle-based wavefront sensing enabled by the near fields of flat optics. Nat. Commun. 12, 6002 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Go, G.-H. et al. Meta Shack–Hartmann wavefront sensor with large sampling density and large angular field of view: phase imaging of complex objects. Light Sci. Appl. 13, 187 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Yang, Z. et al. Generalized Hartmann-Shack array of dielectric metalens sub-arrays for polarimetric beam profiling. Nat. Commun. 9, 4607 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Wu, Q. et al. Single-shot quantitative amplitude and phase imaging based on a pair of all-dielectric metasurfaces. Optica 10, 619–625 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Kwon, H., Arbabi, E., Kamali, S. M., Faraji-Dana, M. & Faraon, A. Single-shot quantitative phase gradient microscopy using a system of multifunctional metasurfaces. Nat. Photon. 14, 109–114 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Li, L. et al. Single-shot deterministic complex amplitude imaging with a single-layer metalens. Sci. Adv. https://doi.org/10.1126/sciadv.adl0501 (2024).

    Article 

    Google Scholar
     

  • Engay, E., Huo, D., Malureanu, R., Bunea, A.-I. & Lavrinenko, A. Polarization-dependent all-dielectric metasurface for single-shot quantitative phase imaging. Nano Lett 21, 3820–3826 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Zuo, C. et al. Transport of intensity equation: a tutorial. Opt. Lasers Eng. 135, 106187 (2020).

    Article 

    Google Scholar
     

  • Ferrari, J. A., Ayubi, G. A., Flores, J. L. & Perciante, C. D. Transport of intensity equation: validity limits of the usually accepted solution. Opt. Commun. 318, 133–136 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Yin, X. et al. Evaluation of the communication quality of free-space laser communication based on the power-in-the-bucket method. Appl. Opt. 57, 573–581 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Zhang, P. et al. High-accuracy wavefront sensing by phase diversity technique with bisymmetric defocuses diversity phase. Sci. Rep. 7, 15361 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Thurman, S. T. Method of obtaining wavefront slope data from through-focus point spread function measurements. J. Opt. Soc. Am. A 28, 1–7 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Ronneberger, O., Fischer, P. & Brox, T. U-net: convolutional networks for biomedical image segmentation. In Proc. Medical Image Computing and Computer-Assisted Intervention—MICCAI 2015 234–241 (Springer, 2015).

  • Liu, G. et al. Image inpainting for irregular holes using partial convolutions. In European Conference on Computer Vision (ECCV) 2018 89–105 (Springer, 2018).

  • Wang, K. et al. On the use of deep learning for phase recovery. Light Sci. Appl. 13, 4 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Shu, X., Li, B. & Ma, Z. Wavefront reconstruction using two-frame random interferometry based on Swin-Unet. Photonics 11, 122 (2024).

  • Schmidt, J. D. Numerical Simulation of Optical Wave Propagation: With Examples in MATLAB (SPIE, 2010).

  • Kang, J., Fernandez-Beltran, R., Kang, X., Ni, J. & Plaza, A. Noise-tolerant deep neighborhood embedding for remotely sensed images with label noise. IEEE J. Sel. Topics Appl. Earth Obs. Remote Sens. 14, 2551–2562 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Ohtsuji, T., Takeuchi, T., Soma, T. & Kitsunezuka, M. Noise-tolerant, deep-learning-based radio identification with logarithmic power spectrum. In IEEE International Conference on Communications (ICC) 2019 1–6 (IEEE, 2019).

  • Han, H. & Choi, S. Transfer learning from simulation to experimental data: NMR chemical shift predictions. J. Phys. Chem. Lett. 12, 3662–3668 (2021).

    Article 

    Google Scholar
     

  • Antipa, N. et al. DiffuserCam: lensless single-exposure 3D imaging. Optica 5, 1–9 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Chen, N. & Brady, D. Ptychographic wavefront cameras. Opt. Lett. 49, 6653–6656 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Wang, Q., Yu, S., Zhou, Y., Tan, L. & Ma, J. Influence of atmospheric turbulence on coherent source in a horizontal long-distance laser link. Opt. Laser Technol. 122, 105877 (2020).

    Article 

    Google Scholar
     

  • Wang, Y., Zhang, Y., Wang, J. & Jia, J. Degree of polarization for quantum light field propagating through non-Kolmogorov turbulence. Opt. Laser Technol. 43, 776–780 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Dean, B. H. & Bowers, C. W. Diversity selection for phase-diverse phase retrieval. J. Opt. Soc. Am. A 20, 1490–1504 (2003).

    Article 
    ADS 

    Google Scholar
     

  • Watnik, A. T. & Gardner, D. F. Wavefront sensing in deep turbulence. Opt. Photon. News 29, 38–45 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Goodman, J. W. Introduction to Fourier Optics (W. H. Freeman and Company, 2017).