• Sabine, C. L. et al. The oceanic sink for anthropogenic CO2. Science 305, 367–371 (2004).

    Article 
    CAS 

    Google Scholar
     

  • Gruber, N. et al. The oceanic sink for anthropogenic CO2 from 1994 to 2007. Science 363, 1193–1199 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Frölicher, T. L. et al. Dominance of the Southern Ocean in anthropogenic carbon and heat uptake in CMIP5 models. J. Clim. 28, 862–886 (2015).

    Article 

    Google Scholar
     

  • Caldeira, K. & Duffy, P. B. The role of the Southern Ocean in uptake and storage of anthropogenic carbon dioxide. Science 287, 620–622 (2000).

    Article 
    CAS 

    Google Scholar
     

  • Morrison, A. K., Waugh, D. W., Hogg, A. M., Jones, D. C. & Abernathey, R. P. Ventilation of the Southern Ocean pycnocline. Annu. Rev. Mar. Sci. 14, 405–430 (2022).

    Article 

    Google Scholar
     

  • Marshall, J. & Speer, K. Closure of the meridional overturning circulation through Southern Ocean upwelling. Nat. Geosci. 5, 171–180 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Talley, L. Closure of the global overturning circulation through the Indian, Pacific, and Southern Oceans: schematics and transports. Oceanography 26, 80–97 (2013).

    Article 

    Google Scholar
     

  • Murnane, R. J., Sarmiento, J. L. & Le Quéré, C. Spatial distribution of air-sea CO2 fluxes and the interhemispheric transport of carbon by the oceans. Glob. Biogeochem. Cycles 13, 287–305 (1999).

    Article 
    CAS 

    Google Scholar
     

  • Chen, H., Haumann, F. A., Talley, L. D., Johnson, K. S. & Sarmiento, J. L. The deep ocean’s carbon exhaust. Glob. Biogeochem. Cycles 36, e2021GB007156 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Bushinsky, S. M. et al. Reassessing Southern Ocean air-sea CO2 flux estimates with the addition of biogeochemical float observations. Glob. Biogeochem. Cycles 33, 1370–1388 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Le Quéré, C. et al. Saturation of the Southern Ocean CO2 sink due to recent climate change. Science 316, 1735–1738 (2007).

    Article 

    Google Scholar
     

  • Lovenduski, N. S., Gruber, N. & Doney, S. C. Toward a mechanistic understanding of the decadal trends in the Southern Ocean carbon sink. Glob. Biogeochem. Cycles https://doi.org/10.1029/2007GB003139 (2008).

  • Waugh, D. W., Primeau, F., DeVries, T. & Holzer, M. Recent changes in the ventilation of the southern oceans. Science 339, 568–570 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Miller, R. L., Schmidt, G. A. & Shindell, D. T. Forced annular variations in the 20th century Intergovernmental Panel on Climate Change Fourth Assessment Report models. J. Geophys. Res. Atmospheres 111, D18101 (2006).

    Article 

    Google Scholar
     

  • Gillett, N. P. & Thompson, D. W. J. Simulation of recent Southern Hemisphere climate change. Science 302, 273–275 (2003).

    Article 
    CAS 

    Google Scholar
     

  • Marshall, G. J. Trends in the southern annular mode from observations and reanalyses. J. Clim. 16, 4134–4143 (2003).

    Article 

    Google Scholar
     

  • Thompson, D. W. J. et al. Signatures of the Antarctic ozone hole in Southern Hemisphere surface climate change. Nat. Geosci. 4, 741–749 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Lee, S.-K. et al. Human-induced changes in the global meridional overturning circulation are emerging from the Southern Ocean. Commun. Earth Environ. 4, 69 (2023).

    Article 

    Google Scholar
     

  • Bronselaer, B. et al. Importance of wind and meltwater for observed chemical and physical changes in the Southern Ocean. Nat. Geosci. 13, 35–42 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Lovenduski, N. S., Gruber, N., Doney, S. C. & Lima, I. D. Enhanced CO2 outgassing in the Southern Ocean from a positive phase of the Southern Annular Mode. Glob. Biogeochem. Cycles https://doi.org/10.1029/2006GB002900 (2007).

  • Lenton, A. & Matear, R. J. Role of the Southern Annular Mode (SAM) in Southern Ocean CO2 uptake. Glob. Biogeochem. Cycles https://doi.org/10.1029/2006GB002714 (2007).

  • Lenton, A. et al. Sea–air CO2 fluxes in the Southern Ocean for the period 1990–2009. Biogeosciences 10, 4037–4054 (2013).

    Article 

    Google Scholar
     

  • Metzl, N. Decadal increase of oceanic carbon dioxide in Southern Indian Ocean surface waters (1991–2007). Deep-Sea Res. Part II Top. Stud. Oceanogr. 56, 607–619 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Zheng, F., Li, J., Clark, R. T. & Nnamchi, H. C. Simulation and projection of the Southern Hemisphere annular mode in CMIP5 models. J. Clim. 26, 9860–9879 (2013).

    Article 

    Google Scholar
     

  • Goyal, R., Sen Gupta, A., Jucker, M. & England, M. H. Historical and projected changes in the Southern Hemisphere surface westerlies. Geophys. Res. Lett. 48, e2020GL090849 (2021).

    Article 

    Google Scholar
     

  • Landschützer, P. et al. The reinvigoration of the Southern Ocean carbon sink. Science 349, 1221–1224 (2015).

    Article 

    Google Scholar
     

  • Gregor, L., Kok, S. & Monteiro, P. M. S. Interannual drivers of the seasonal cycle of CO2 in the Southern Ocean. Biogeosciences 15, 2361–2378 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Munro, D. R. et al. Recent evidence for a strengthening CO2 sink in the Southern Ocean from carbonate system measurements in the Drake Passage (2002–2015). Geophys. Res. Lett. 42, 7623–7630 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Gruber, N., Landschützer, P. & Lovenduski, N. S. The variable Southern Ocean carbon sink. Annu. Rev. Mar. Sci. 11, 159–186 (2019).

    Article 

    Google Scholar
     

  • Keppler, L. & Landschützer, P. Regional wind variability modulates the Southern Ocean carbon sink. Sci. Rep. 9, 7384 (2019).

    Article 

    Google Scholar
     

  • Lovenduski, N. S. & Ito, T. The future evolution of the Southern Ocean CO2 sink. J. Mar. Res. 67, 597–617 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Terhaar, J., Frölicher, T. L. & Joos, F. Southern Ocean anthropogenic carbon sink constrained by sea surface salinity. Sci. Adv. 7, eabd5964 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Swart, N. C., Gille, S. T., Fyfe, J. C. & Gillett, N. P. Recent Southern Ocean warming and freshening driven by greenhouse gas emissions and ozone depletion. Nat. Geosci. 11, 836–841 (2018).

    Article 
    CAS 

    Google Scholar
     

  • François, R. et al. Contribution of Southern Ocean surface-water stratification to low atmospheric CO2 concentrations during the last glacial period. Nature 389, 929–935 (1997).

    Article 

    Google Scholar
     

  • Anderson, R. F. et al. Wind-driven upwelling in the Southern Ocean and the deglacial rise in atmospheric CO2. Science 323, 1443–1448 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Hasenfratz, A. P. et al. The residence time of Southern Ocean surface waters and the 100,000-year ice age cycle. Science 363, 1080–1084 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Anderson, R. F., Chase, Z., Fleisher, M. Q. & Sachs, J. The Southern Ocean’s biological pump during the Last Glacial Maximum. Deep Sea Res. Part II Top. Stud. Oceanogr. 49, 1909–1938 (2002).

    Article 
    CAS 

    Google Scholar
     

  • Hogg, A. M., Spence, P., Saenko, O. A. & Downes, S. M. The energetics of Southern Ocean upwelling. J. Phys. Oceanogr. 47, 135–153 (2017).

    Article 

    Google Scholar
     

  • Haumann, F. A., Gruber, N. & Münnich, M. Sea-ice induced Southern Ocean subsurface warming and surface cooling in a warming climate. AGU Adv. 1, e2019AV000132 (2020).

    Article 

    Google Scholar
     

  • IPCC IPCC Special Report on the Ocean and Cryosphere in a Changing Climate (eds Pörtner, H.-O. et al.) (Cambridge University Press, 2022).

  • Lauvset, S. K. et al. A new global interior ocean mapped climatology: the 1° × 1° GLODAP version 2. Earth Syst. Sci. Data 8, 325–340 (2016).

    Article 

    Google Scholar
     

  • Lauvset, S. K. et al. The annual update GLODAPv2.2023: the global interior ocean biogeochemical data product. Earth Syst. Sci. Data 16, 2047–2072 (2024).

    Article 

    Google Scholar
     

  • Hauck, J. et al. The Southern Ocean carbon cycle 1985–2018: mean, seasonal cycle, trends, and storage. Glob. Biogeochem. Cycles 37, e2023GB007848 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Toole, J. M. Sea ice, winter convection, and the temperature minimum layer in the Southern Ocean. J. Geophys. Res. Oceans 86, 8037–8047 (1981).

    Article 

    Google Scholar
     

  • Spira, T., Swart, S., Giddy, I. & du Plessis, M. The observed spatiotemporal variability of Antarctic winter water. J. Geophys. Res. Oceans 129, e2024JC021017 (2024).

    Article 

    Google Scholar
     

  • Zu, Y., Gao, L., Guo, G. & Fang, Y. Changes of circumpolar deep water between 2006 and 2020 in the south-west Indian Ocean, East Antarctica. Deep Sea Res. Part II Top. Stud. Oceanogr. 197, 105043 (2022).

    Article 

    Google Scholar
     

  • Schmidtko, S., Heywood, K. J., Thompson, A. F. & Aoki, S. Multidecadal warming of Antarctic waters. Science 346, 1227–1231 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Sallée, J.-B. et al. Summertime increases in upper-ocean stratification and mixed-layer depth. Nature 591, 592–598 (2021).

    Article 

    Google Scholar
     

  • Gray, A. R. et al. Autonomous biogeochemical floats detect significant carbon dioxide outgassing in the high-latitude Southern Ocean. Geophys. Res. Lett. 45, 9049–9057 (2018).

    Article 

    Google Scholar
     

  • Akhoudas, C. H. et al. Isotopic evidence for an intensified hydrological cycle in the Indian sector of the Southern Ocean. Nat. Commun. 14, 2763 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Haumann, F. A., Gruber, N., Münnich, M., Frenger, I. & Kern, S. Sea-ice transport driving Southern Ocean salinity and its recent trends. Nature 537, 89–92 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Roach, L. A. et al. Winds and meltwater together lead to Southern Ocean surface cooling and sea ice expansion. Geophys. Res. Lett. 50, e2023GL105948 (2023).

    Article 

    Google Scholar
     

  • Ferreira, D., Marshall, J., Bitz, C. M., Solomon, S. & Plumb, A. Antarctic Ocean and sea ice response to ozone depletion: a two-time-scale problem. J. Clim. 28, 1206–1226 (2015).

    Article 

    Google Scholar
     

  • Kostov, Y., Ferreira, D., Armour, K. C. & Marshall, J. Contributions of greenhouse gas forcing and the Southern Annular Mode to historical Southern Ocean surface temperature trends. Geophys. Res. Lett. 45, 1086–1097 (2018).

    Article 

    Google Scholar
     

  • Purich, A. & Doddridge, E. W. Record low Antarctic sea ice coverage indicates a new sea ice state. Commun. Earth Environ. 4, 314 (2023).

    Article 

    Google Scholar
     

  • Silvano, A. et al. Rising surface salinity and declining sea ice: a new Southern Ocean state revealed by satellites. Proc. Natl Acad. Sci. USA 122, e2500440122 (2025).

    Article 
    CAS 

    Google Scholar
     

  • Spira, T. et al. Wind-triggered Antarctic sea ice decline preconditioned by thinning winter water. Preprint at Research Square https://doi.org/10.21203/rs.3.rs-5919587/v1 (2025).

  • Krumhardt, K. M., Long, M. C., Lindsay, K. & Levy, M. N. Southern Ocean calcification controls the global distribution of alkalinity. Glob. Biogeochem. Cycles 34, e2020GB006727 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Sharp, J. D. et al. CO2SYSv3 for MATLAB. Zenodo https://doi.org/10.5281/zenodo.4023039 (2020).

  • Lueker, T. J., Dickson, A. G. & Keeling, C. D. Ocean pCO2 calculated from dissolved inorganic carbon, alkalinity, and equations for K1 and K2: validation based on laboratory measurements of CO2 in gas and seawater at equilibrium. Mar. Chem. 70, 105–119 (2000).

    Article 
    CAS 

    Google Scholar
     

  • Olivier, L. & Haumann, F. A. Scripts for the publication “Southern Ocean freshening stalls deep ocean CO2 release in a changing climate”. Zenodo https://doi.org/10.5281/zenodo.16873426 (2025).