• Fu, L., Kane, C. L. & Mele, E. J. Topological insulators in three dimensions. Phys. Rev. Lett. 98, 106803 (2007).

    Article 
    PubMed 

    Google Scholar
     

  • Xia, Y. et al. Observation of a large-gap topological-insulator class with a single Dirac cone on the surface. Nat. Phys. 5, 398 (2009).

    Article 

    Google Scholar
     

  • Liu, Z. et al. Discovery of a three-dimensional topological Dirac semimetal, Na3Bi. Science 343, 864–867 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Liu, Z. et al. A stable three-dimensional topological Dirac semimetal Cd3As2. Nat. Mater. 13, 677–681 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Lv, B. et al. Experimental discovery of Weyl semimetal TaAs. Phys. Rev. X 5, 031013 (2015).


    Google Scholar
     

  • Lv, B. Q. et al. Observation of Weyl nodes in TaAs. Nat. Phys. 11, 724–727 (2015).

    Article 

    Google Scholar
     

  • Xu, S.-Y. et al. Discovery of a weyl fermion state with fermi arcs in niobium arsenide. Nat. Phys. 11, 748–754 (2015).

    Article 

    Google Scholar
     

  • Xu, S.-Y. et al. Discovery of a Weyl fermion semimetal and topological Fermi arcs. Science 349, 613–617 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Bradlyn, B. et al. Beyond Dirac and Weyl fermions: unconventional quasiparticles in conventional crystals. Science 353, aaf5037 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Chang, G. et al. Unconventional chiral fermions and large topological fermi arcs in RhSi. Phys. Rev. Lett. 119, 206401 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Sanchez, D. S. et al. Topological chiral crystals with helicoid-arc quantum states. Nature 567, 500–505 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Rao, Z. et al. Observation of unconventional chiral fermions with long Fermi arcs in CoSi. Nature 567, 496–499 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Schröter, N. B. et al. Chiral topological semimetal with multifold band crossings and long Fermi arcs. Nat. Phys. 15, 759–765 (2019).

    Article 

    Google Scholar
     

  • Schröter, N. B. et al. Observation and control of maximal Chern numbers in a chiral topological semimetal. Science 369, 179–183 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Vergniory, M., Elcoro, L., Felser, C., Bernevig, B. & Wang, Z. The (high quality) topological materials in the world. Nature 566, 480–485 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Tang, F., Po, H. C., Vishwanath, A. & Wan, X. Efficient topological materials discovery using symmetry indicators. Nat. Phys. 15, 470–476 (2019).

    Article 

    Google Scholar
     

  • Zhang, T. et al. Catalogue of topological electronic materials. Nature 566, 475–479 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Armitage, N. P., Mele, E. J. & Vishwanath, A. Weyl and Dirac semimetals in three-dimensional solids. Rev. Mod. Phys. 90, 015001 (2018).

    Article 

    Google Scholar
     

  • Wieder, B. J. et al. Topological materials discovery from crystal symmetry. Nat. Rev. Mater. 7, 196–216 (2021).

    Article 

    Google Scholar
     

  • Chang, G. et al. Topological quantum properties of chiral crystals. Nat. Mater. 17, 978–985 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Flicker, F. et al. Chiral optical response of multifold fermions. Phys. Rev. B 98, 155145 (2018).

    Article 

    Google Scholar
     

  • Rees, D. et al. Helicity-dependent photocurrents in the chiral Weyl semimetal RhSi. Sci. Adv. 6, eaba0509 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • De Juan, F., Grushin, A. G., Morimoto, T. & Moore, J. E. Quantized circular photogalvanic effect in Weyl semimetals. Nat. Comm. 8, 15995 (2017).

    Article 

    Google Scholar
     

  • Ni, Z. et al. Linear and nonlinear optical responses in the chiral multifold semimetal RhSi. npj Quantum Mater. 5, 96 (2020).

    Article 

    Google Scholar
     

  • Zhang, C.-L. et al. Ultraquantum magnetoresistance in the Kramers-Weyl semimetal candidate β-Ag2Se. Phys. Rev. B 96, 165148 (2017).

    Article 

    Google Scholar
     

  • Wan, B. et al. Theory for the negative longitudinal magnetoresistance in the quantum limit of Kramers Weyl semimetals. J. Condens. Matter Phys. 30, 505501 (2018).

    Article 

    Google Scholar
     

  • Ni, Z. et al. Giant topological longitudinal circular photo-galvanic effect in the chiral multifold semimetal CoSi. Nat. Comm. 12, 154 (2021).

    Article 

    Google Scholar
     

  • Wang, Z. Z. et al. Charge density wave transport in (TaSe4)2I. Solid State Commun. 46, 325–328 (1983).

    Article 

    Google Scholar
     

  • Maki, M., Kaiser, M., Zettl, A. & Grüner, G. Charge density wave transport in a novel inorganic chain compound (TaSe4)2I. Solid State Commun. 46, 497–500 (1983).

    Article 

    Google Scholar
     

  • Shi, W. et al. A charge-density-wave topological semimetal. Nat. Phys. 17, 381–387 (2021).

    Article 

    Google Scholar
     

  • Gooth, J. et al. Axionic charge-density wave in the Weyl semimetal (TaSe4)2I. Nature 575, 315–319 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Wang, Z. & Zhang, S.-C. Chiral anomaly, charge density waves, and axion strings from Weyl semimetals. Phys. Rev. B 87, 161107 (2013).

    Article 

    Google Scholar
     

  • Sinchenko, A. A., Ballou, R., Lorenzo, J. E., Grenet, T. & Monceau, P. Does (TaSe4)2I really harbor an axionic charge density wave? Appl. Phys. Lett. 120, 063102 (2022).

    Article 

    Google Scholar
     

  • Crepaldi, A. et al. Optically induced changes in the band structure of the weyl charge-density-wave compound (TaSe4)2I. J. Phys. Mater. 5, 044006 (2022).

    Article 

    Google Scholar
     

  • Nguyen, Q. L. et al. Ultrafast x-ray scattering reveals composite amplitude collective mode in the weyl charge density wave material (TaSe4)2I. Phys. Rev. Lett. 131, 076901 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Kim, S. et al. Observation of a massive phason in a charge-density-wave insulator. Nat. Mater. 22, 429–433 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Lin, M.-K. et al. Unconventional spectral gaps induced by charge density waves in the weyl semimetal (TaSe4)2I. Nano Lett. 24, 8778 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Christensen, J. A. et al. Disorder and diffuse scattering in single-chirality (TaSe4)2I crystals. Phys. Rev. Mater. 8, 034202 (2024).

    Article 

    Google Scholar
     

  • Yi, H. et al. Surface charge induced dirac band splitting in a charge density wave material (TaSe4)2I. Phys. Rev. Res. 3, 013271 (2021).

    Article 

    Google Scholar
     

  • Grüner, G. The dynamics of charge-density waves. Rev. Mod. Phys. 60, 1129–1181 (1988).

    Article 

    Google Scholar
     

  • Voit, J. Electronic structure of solids with competing periodic potentials. Science 290, 501–503 (2000).

    Article 
    PubMed 

    Google Scholar
     

  • Tournier-Colletta, C. et al. Electronic instability in a zero-gap semiconductor: the charge-density wave in (TaSe4)2I. Phys. Rev. Lett. 110, 236401 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • van Smaalen, S., Lam, E. J. & Lüdecke, J. Structure of the charge-density wave in (TaSe4)2I. J. Phys.:Condens. Matter 13, 9923 (2001).


    Google Scholar
     

  • Bradlyn, B. et al. Topological quantum chemistry. Nature 547, 298–305 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Vergniory, M.G. et al. All topological bands of all nonmagnetic stoichiometric materials. Science 376, 816 (2022).

  • See Supplementary Information.

  • Favre-Nicolin, V. et al. Structural evidence for ta-tetramerization displacements in the charge-density-wave compound (TaSe4)2I from x-ray anomalous diffraction. Phys. Rev. Lett. 87, 015502 (2001).

    Article 
    PubMed 

    Google Scholar
     

  • Fujishita, H., Shapiro, S. M., Sato, M. & Hoshino, S. A neutron scattering study of the quasi-one-dimensional conductor (TaSe4)2I. J. Phys. C Solid State Phys. 19, 3049–3057 (1986).

    Article 

    Google Scholar
     

  • Li, X.-P. et al. Type-III Weyl semimetals: (TaSe4)2I. Phys. Rev. B 103, L081402 (2021).

    Article 

    Google Scholar
     

  • Perfetti, L. et al. Spectroscopic indications of polaronic carriers in the quasi-one-dimensional conductor (TaSe4)2I. Phys. Rev. Lett. 87, 216404 (2001).

    Article 
    PubMed 

    Google Scholar
     

  • Dardel, B. et al. Unusual photoemission spectral function of quasi-one-dimensional metals. Phys. Rev. Lett. 67, 3144 (1991).

    Article 
    PubMed 

    Google Scholar
     

  • Gatti, G. et al. Radial spin texture of the Weyl fermions in chiral tellurium. Phys. Rev. Lett. 125, 216402 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Sakano, M. et al. Radial spin texture in elemental tellurium with chiral crystal structure. Phys. Rev. Lett. 124, 136404 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Wang, Y. H. et al. Observation of a warped helical spin texture in Bi2Se3 from circular dichroism angle-resolved photoemission spectroscopy. Phys. Rev. Lett. 107, 207602 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Fu, L. Hexagonal warping effects in the surface states of the topological insulator Bi2Te3. Phys. Rev. Lett. 103, 266801 (2009).

    Article 
    PubMed 

    Google Scholar
     

  • Jung, W. et al. Warping effects in the band and angular-momentum structures of the topological insulator Bi2Te3. Phys. Rev. B 84, 245435 (2011).

    Article 

    Google Scholar
     

  • Ryu, H. et al. Photon energy dependent circular dichroism in angle-resolved photoemission from Au(111) surface states. Phys. Rev. B 95, 115144 (2017).

    Article 

    Google Scholar
     

  • Crepaldi, A. et al. Momentum and photon energy dependence of the circular dichroic photoemission in the bulk rashba semiconductors BiTeX (X=I, Br, Cl). Phys. Rev. B 89, 125408 (2014).

    Article 

    Google Scholar
     

  • Liu, Y., Bian, G., Miller, T. & Chiang, T.-C. Visualizing electronic chirality and berry phases in graphene systems using photoemission with circularly polarized light. Phys. Rev. Lett. 107, 166803 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Zhang, Y., Lin, L.-F., Moreo, A., Dong, S. & Dagotto, E. First-principles study of the low-temperature charge density wave phase in the quasi-one-dimensional Weyl chiral compound (TaSe4)2I. Phys. Rev. B 101, 174106 (2020).

    Article 

    Google Scholar
     

  • Lorenzo, J. E. et al. A neutron scattering study of the quasi-one-dimensional conductor (TaSe4)2I. J. Phys. Condens. Matter 10, 5039 (1998).

    Article 

    Google Scholar
     

  • Hohenberg, P. & Kohn, W. Inhomogeneous electron gas. Phys. Rev. 136, B864 (1964).

    Article 

    Google Scholar
     

  • Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169 (1996).

    Article 

    Google Scholar
     

  • Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).

    Article 

    Google Scholar
     

  • Gajdoš, M., Hummer, K., Kresse, G., Furthmüller, J. & Bechstedt, F. Linear optical properties in the projector-augmented wave methodology. Phys. Rev. B 73, 045112 (2006).

    Article 

    Google Scholar
     

  • Steiner, S., Khmelevskyi, S., Marsmann, M. & Kresse, G. Calculation of the magnetic anisotropy with projected-augmented-wave methodology and the case study of disordered Fe1−xCox alloys. Phys. Rev. B 93, 224425 (2016).

    Article 

    Google Scholar
     

  • Jain, A. et al. The materials project: a materials genome approach to accelerating materials innovation. APL Mater. 1, 011002 (2013).

    Article 

    Google Scholar
     

  • Ong, S. P. et al. Python Materials Genomics (pymatgen): a robust, open-source python library for materials analysis. Comput. Mater. Sci. 68, 314–319 (2013).

    Article 

    Google Scholar
     

  • Setyawan, W. & Curtarolo, S. High-throughput electronic band structure calculations: challenges and tools. Comput. Mater. Sci. 49, 299–312 (2010).

    Article 

    Google Scholar
     

  • Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996).

    Article 
    PubMed 

    Google Scholar
     

  • Monkhorst, H. J. & Pack, J. D. Special points for brillouin-zone integrations. Phys. Rev. B 13, 5188 (1976).

    Article 

    Google Scholar
     

  • Momma, K. & Izumi, F. VESTA3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 44, 1272–1276 (2011).

    Article 

    Google Scholar