Kubacka, T. et al. Large-amplitude spin dynamics driven by a THz pulse in resonance with an electromagnon. Science 343, 1333–1336 (2014).
Mitrano, M. et al. Possible light-induced superconductivity in K3C60 at high temperature. Nature 530, 461–464 (2016).
Li, X. et al. Terahertz field-induced ferroelectricity in quantum paraelectric SrTiO3. Science 364, 1079–1082 (2019).
Salén, P. et al. Matter manipulation with extreme terahertz light: progress in the enabling THz technology. Phys. Rep. 836, 1–74 (2019).
Jana, K. et al. Quantum control of flying doughnut terahertz pulses. Sci. Adv. 10, eadl1803 (2024).
Zhang, Z. et al. Terahertz-field-driven magnon upconversion in an antiferromagnet. Nat. Phys. 20, 788–793 (2024).
Pizzuto, A. et al. Near-field terahertz nonlinear optics with blue light. Light Sci. Appl. 12, 96 (2023).
Jelic, V. et al. Atomic-scale terahertz time-domain spectroscopy. Nat. Photon. 18, 898–904 (2024).
Dong, J. et al. Single-shot ultrafast terahertz photography. Nat. Commun. 14, 1704 (2023).
Liao, G. et al. Multimillijoule coherent terahertz bursts from picosecond laser-irradiated metal foils. Proc. Natl Acad. Sci. USA 116, 3994–3999 (2019).
Kumar, M. et al. Intense multicycle THz pulse generation from laser-produced nanoplasmas. Sci. Rep. 13, 4233 (2023).
Wu, X. et al. Generation of 13.9-mJ terahertz radiation from lithium niobate materials. Adv. Mater. 35, 2208947 (2023).
Koulouklidis, A. D. et al. Observation of extremely efficient terahertz generation from mid-infrared two-color laser filaments. Nat. Commun. 11, 292 (2020).
Pak, T. et al. Multi-millijoule terahertz emission from laser-wakefield-accelerated electrons. Light Sci. Appl. 12, 37 (2023).
Liu, B. et al. Generation of narrowband, high-intensity, carrier-envelope phase-stable pulses tunable between 4 and 18 THz. Opt. Lett. 42, 129–131 (2017).
Shalaby, M. et al. Demonstration of a low-frequency three-dimensional terahertz bullet with extreme brightness. Nat. Commun. 6, 5976 (2015).
Yang, H. et al. Efficient generation and frequency modulation of quasi-monochromatic terahertz wave in lithium niobate subwavelength waveguide. Opt. Express 25, 14766–14773 (2017).
Andruszkow, J. et al. First observation of self-amplified spontaneous emission in a free-electron laser at 109 nm wavelength. Phys. Rev. Lett. 85, 3825 (2000).
Perenboom, J. A. A. J. et al. Developments at the high field magnet laboratory in Nijmegen. J. Low Temp. Phys. 170, 520–530 (2013).
Kawase, K. et al. Extremely high-intensity operation of a THz free-electron laser using an electron beam with a higher bunch charge. Nucl. Instrum. Methods A 960, 163582 (2020).
Knyazev, B. A. et al. Novosibirsk terahertz free electron laser: instrumentation development and experimental achievements. Meas. Sci. Technol. 21, 054017 (2010).
Krasilnikov, M. et al. THz SASE FEL at PITZ: lasing at a wavelength of 100 µm. In Proc. 14th International Particle Accelerator Conference (IPAC’23) 3948–3951 (JACoW Publishing, 2023).
Krasilnikov, M. et al. First high peak and average power single-pass THz free-electron laser in operation. Phys. Rev. Accel. Beams 28, 030701 (2025).
Fisher, A. et al. Single-pass high-efficiency terahertz free-electron laser. Nat. Photon. 16, 441–447 (2022).
Gover, A. et al. Superradiant and stimulated-superradiant emission of bunched electron beams. Rev. Mod. Phys. 91, 035003 (2019).
Zhang, Z. et al. A high-power, high-repetition-rate THz source for pump-probe experiments at Linac Coherent Light Source II. J. Synchrotron Radiat. 27, 890–901 (2020).
Tiedtke, K. et al. The soft X-ray free-electron laser FLASH at DESY: beamlines, diagnostics and end-stations. New J. Phys. 11, 023029 (2009).
Chiadroni, E. et al. The SPARC linear accelerator based terahertz source. Appl. Phys. Lett. 102, 094101 (2013).
Fisher, A. et al. Towards higher frequencies in a compact prebunched waveguide THz-FEL. Nat. Commun. 15, 7582 (2024).
Power, J. G. & Jing, C. Temporal laser pulse shaping for RF photocathode guns: the cheap and easy way using UV birefringent crystals. AIP Conf. Proc. 1086, 689–694 (2009).
Musumeci, P. et al. Nonlinear longitudinal space charge oscillations in relativistic electron beams. Phys. Rev. Lett. 106, 184801 (2011).
Dunning, M. et al. Generating periodic terahertz structures in a relativistic electron beam through frequency down-conversion of optical lasers. Phys. Rev. Lett. 109, 074801 (2012).
Zhang, Z. et al. Tunable high-intensity electron bunch train production based on nonlinear longitudinal space charge oscillation. Phys. Rev. Lett. 116, 184801 (2016).
Zhang, Z. et al. Generation of high-power, tunable terahertz radiation from laser interaction with a relativistic electron beam. Phys. Rev. Accel. Beams 20, 050701 (2017).
Zhang, K. et al. A compact accelerator-based light source for high-power, full-bandwidth tunable coherent THz generation. Appl. Sci. 11, 11850 (2021).
Lemery, F. et al. Passive ballistic microbunching of non-ultra relativistic electron bunches using electromagnetic wakefields in dielectric-lined waveguides. Phys. Rev. Lett. 122, 044801 (2019).
Liang, Y. et al. Widely tunable electron bunch trains for the generation of high-power narrowband 1–10 THz radiation. Nat. Photon. 17, 259–263 (2023).
Liu, B. et al. The SXFEL upgrade: from test facility to user facility. Appl. Sci. 12, 176 (2022).
Huang, Z. et al. Measurements of the linac coherent light source laser heater and its impact on the x-ray free-electron laser performance. Phys. Rev. ST Accel. Beams 13, 020703 (2010).
Cesar, D. et al. Electron beam shaping via laser heater temporal shaping. Phys. Rev. Accel. Beams 24, 110703 (2021).
Marinelli, A. et al. Optical shaping of X-ray free-electron lasers. Phys. Rev. Lett. 116, 254801 (2016).
Roussel, E. et al. Multicolor high-gain free-electron laser driven by seeded microbunching instability. Phys. Rev. Lett. 115, 214801 (2015).
Weling, A. S. et al. Novel sources and detectors for coherent tunable narrow-band terahertz radiation in free space. J. Opt. Soc. Am. Opt. Phys. 13, 2783–2791 (1996).
Bielawski, S. et al. Tunable narrowband terahertz emission from mastered laser-electron beam interaction. Nat. Phys. 4, 390–393 (2008).
Saldin, E. L. et al. Longitudinal space charge-driven microbunching instability in the TESLA Test Facility linac. Nucl. Instrum. Methods A 528, 355–359 (2004).
Bonifacio, R. et al. Collective instabilities and high-gain regime in a free electron laser. Opt. Commun. 50, 373–378 (1984).
Allaria, E. et al. Highly coherent and stable pulses from the FERMI seeded free-electron laser in the extreme ultraviolet. Nat. Photon. 6, 699–704 (2012).
Kang, Y. et al. Generating high-power, frequency tunable coherent THz pulse in an X-ray free-electron laser for THz pump and X-ray probe experiments. Photonics 10, 133 (2023).
Zapolnova, E. et al. THz pulse doubler at FLASH: double pulses for pump–probe experiments at X-ray FELs. J. Synchrotron Rad. 25, 39–46 (2018).
Zhang, H. et al. The Linac Coherent Light Source II photoinjector laser infrastructure. High Power Laser Sci. Eng. 12, e51 (2024).
Zhang, H. et al. The photoinjector laser system at LCLS-II. In Proc. Laser Congress 2024, Technical Digest Series AM4A.2 (Optica Publishing Group, 2024).
Jiang, Z. et al. Design and status of SHINE injector. In Proc. 10th International Particle Accelerator Conference (IPAC’19) TUPRB053 (JACoW Publishing, 2019).
Jia, H. et al. High-brightness megahertz-rate beam from a direct-current and superconducting radio-frequency combined photocathode gun. Phys. Rev. Res. 6, 043165 (2024).
Xu, H. et al. Gamma-ray flux in gated CW operation of CO2 laser at SLEGS. Nucl. Instrum. Methods A 1073, 170249 (2025).
Yu, L. et al. Theory of high gain harmonic generation: an analytical estimate. Nucl. Instrum. Methods A 483, 493–498 (2002).
Wu, J. & Bolton, P. R. Coherent X-ray Production by Cascading Stages of High Gain Harmonic Generation Free Electron Lasers Seeded by IR Laser Driven High-Order Harmonic Generation. Report No. SLAC-PUB-12124 (SLAC National Accelerator Laboratory, 2006).
Floettmann, K. A Space Charge Tracking Algorithm (DESY, 2017); https://www.desy.de/~mpyflo/
Borland, M. ELEGANT: A Flexible SDDS-Compliant Code for Accelerator Simulation. Report No. LS-287 (Argonne National Laboratory, 2000).
Reiche, S. GENESIS 1.3: a fully 3D time-dependent FEL simulation code. Nucl. Instrum. Methods A 429, 243–248 (1999).