• Steger, M. et al. Quantum information storage for over 180 s using donor spins in a 28Si semiconductor vacuum. Science 336, 1280–1283 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Pla, J. J. et al. High-fidelity readout and control of a nuclear spin qubit in silicon. Nature 496, 334–338 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Zhong, M. et al. Optically addressable nuclear spins in a solid with a six-hour coherence time. Nature 517, 177–180 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Maurer, P. C. et al. Room-temperature quantum bit memory exceeding one second. Science 336, 1283–1286 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Raha, M. et al. Optical quantum nondemolition measurement of a single rare earth ion qubit. Nat. Commun. 11, 1605 (2020).

    Article 

    Google Scholar
     

  • Kindem, J. M. et al. Control and single-shot readout of an ion embedded in a nanophotonic cavity. Nature 580, 201–204 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Ruskuc, A. et al. Scalable multipartite entanglement of remote rare-earth ion qubits. Nature 639, 54–59 (2025).

    Article 
    ADS 

    Google Scholar
     

  • Pla, J. J. et al. Coherent control of a single Si 29 nuclear spin qubit. Phys. Rev. Lett. 113, 246801 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Madzik, M. T. et al. Precision tomography of a three-qubit donor quantum processor in silicon. Nature 601, 348–353 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Abobeih, M. H. et al. One-second coherence for a single electron spin coupled to a multi-qubit nuclear-spin environment. Nat. Commun. 9, 2552 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Waldherr, G. et al. Quantum error correction in a solid-state hybrid spin register. Nature 506, 204–207 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Muhonen, J. T. et al. Storing quantum information for 30 seconds in a nanoelectronic device. Nat. Nanotechnol. 9, 986–991 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Fernández de Fuentes, I. et al. Navigating the 16-dimensional Hilbert space of a high-spin donor qudit with electric and magnetic fields. Nat. Commun. 15, 1380 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Yu, X. et al. Creation and manipulation of Schrödinger cat states of a nuclear spin qudit in silicon. Nat. Phys. 21, 362–367 (2025).

    Article 

    Google Scholar
     

  • Thiele, S. et al. Electrically driven nuclear spin resonance in single-molecule magnets. Science 344, 1135–1138 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Godfrin, C. et al. Operating quantum states in single magnetic molecules: implementation of Grover’s quantum algorithm. Phys. Rev. Lett. 119, 187702 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Bradley, C. E. et al. A ten-qubit solid-state spin register with quantum memory up to one minute. Phys. Rev. X 9, 031045 (2019).


    Google Scholar
     

  • Abobeih, M. H. et al. Fault-tolerant operation of a logical qubit in a diamond quantum processor. Nature 606, 884–889 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Bartling, H. P. et al. Universal high-fidelity quantum gates for spin-qubits in diamond. Phys. Rev. Appl. 23, 034052 (2025).

    Article 
    ADS 

    Google Scholar
     

  • Beukers, H. K. C. et al. Control of solid-state nuclear spin qubits using an electron spin-1/2. Phys. Rev. X 15, 021011 (2025).


    Google Scholar
     

  • Maity, S. et al. Mechanical control of a single nuclear spin. Phys. Rev. X 12, 011056 (2022).


    Google Scholar
     

  • Nguyen, C. T. et al. Quantum network nodes based on diamond qubits with an efficient nanophotonic interface. Phys. Rev. Lett. 123, 183602 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Uysal, M. T. et al. Coherent control of a nuclear spin via interactions with a rare-earth ion in the solid state. PRX Quantum 4, 010323 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Babin, C. et al. Fabrication and nanophotonic waveguide integration of silicon carbide colour centres with preserved spin-optical coherence. Nat. Mater. 21, 67–73 (2022).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Albertinale, E. et al. Detecting spins by their fluorescence with a microwave photon counter. Nature 600, 434–438 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Lescanne, R. et al. Irreversible qubit-photon coupling for the detection of itinerant microwave photons. Phys. Rev. X 10, 021038 (2020).


    Google Scholar
     

  • Balembois, L. et al. Cyclically operated microwave single-photon counter with sensitivity of \(1{0}^{22}\,\text{W}\,/\sqrt{Hz}\). Phys. Rev. Appl. 21, 014043 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Wang, Z. et al. Single-electron spin resonance detection by microwave photon counting. Nature 619, 276–281 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Travesedo, J. et al. All-microwave spectroscopy and polarization of individual nuclear spins in a solid. Sci. Adv. 11, eadu0581 (2025).

    Article 
    ADS 

    Google Scholar
     

  • Bienfait, A. et al. Controlling spin relaxation with a cavity. Nature 531, 74–77 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Taminiau, T. H. et al. Detection and control of individual nuclear spins using a weakly coupled electron spin. Phys. Rev. Lett. 109, 137602 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Press, D., Ladd, T. D., Zhang, B. & Yamamoto, Y. Complete quantum control of a single quantum dot spin using ultrafast optical pulses. Nature 456, 218–221 (2008).

    Article 
    ADS 

    Google Scholar
     

  • Leibfried, D., Blatt, R., Monroe, C. & Wineland, D. Quantum dynamics of single trapped ions. Rev. Mod. Phys. 75, 281 (2003).

    Article 
    ADS 

    Google Scholar
     

  • Evered, S. J. et al. High-fidelity parallel entangling gates on a neutral-atom quantum computer. Nature 622, 268–272 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Rosenthal, E. I. et al. Microwave spin control of a tin-vacancy qubit in diamond. Phys. Rev. X 13, 031022 (2023).


    Google Scholar
     

  • Le Dantec, M. et al. Twenty-three-millisecond electron spin coherence of erbium ions in a natural-abundance crystal. Sci. Adv. 7, eabj9786 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Taminiau, T. H., Cramer, J., van der Sar, T., Dobrovitski, V. V. & Hanson, R. Universal control and error correction in multi-qubit spin registers in diamond. Nat. Nanotechnol. 9, 171–176 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Madzik, M. T. et al. Controllable freezing of the nuclear spin bath in a single-atom spin qubit. Sci. Adv. 6, eaba3442 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Wang, Z. et al. Month-long-lifetime microwave spectral holes in an erbium-doped scheelite crystal at millikelvin temperature. Preprint at https://arxiv.org/abs/2408.12758 (2024).

  • Abobeih, M. H. et al. Atomic-scale imaging of a 27-nuclear-spin cluster using a single-spin quantum sensor. Nature 576, 411–415 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Bartling, H. et al. Entanglement of spin-pair qubits with intrinsic dephasing times exceeding a minute. Phys. Rev. X 12, 011048 (2022).


    Google Scholar
     

  • Haikka, P., Kubo, Y., Bienfait, A., Bertet, P. & Mølmer, K. Proposal for detecting a single electron spin in a microwave resonator. Phys. Rev. A 95, 022306 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Majer, J. et al. Coupling superconducting qubits via a cavity bus. Nature 449, 443–447 (2007).

    Article 
    ADS 

    Google Scholar
     

  • Landig, A. J. et al. Virtual-photon-mediated spin-qubit-transmon coupling. Nat. Commun. 10, 5037 (2019).

    Article 
    ADS 

    Google Scholar
     

  • O’Sullivan, J. et al. Individual solid-state nuclear spin qubits with coherence exceeding seconds. Figshare https://doi.org/10.6084/m9.figshare.29635709 (2025).