• Kopittke PM, et al. Soil and the intensification of agriculture for global food security. Environ Int. 2019;132:105078.

    Article 
    PubMed 

    Google Scholar
     

  • Iqbal UN, Moin A, Alam M. Salinity-induced stress in plants vis-à-vis endophytic microorganisms: searching for a sustainable solution to feed the future world. Phytochem Rev, 2024. https://doi.org/10.1007/s11101-024-10057-7.

  • Szymanska S, et al. Bacterial Microbiome of root-associated endophytes of salicornia Europaea in correspondence to different levels of salinity. Environ Sci Pollut Res Int. 2018;25(25):25420–31.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gao L, et al. Insight into endophytic microbial diversity in two halophytes and plant beneficial attributes of Bacillus swezeyi. Front Microbiol. 2024;15:1447755.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Afzal I, Shinwari ZK, Sikandar S, Shahzad S. Plant beneficial endophytic bacteria: mechanisms, diversity, host range and genetic determinants. Microbiol Res. 2019;221:36–49.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pandey SS, et al. Plant probiotics – Endophytes pivotal to plant health. Microbiol Res. 2022;263:127148.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ibáñez F et al. Bacterial Endophytes of Plants: Diversity, Invasion Mechanisms and Effects on the Host, in Endophytes: Biology and Biotechnology. 2017. pp. 25–40.

  • Mushtaq S, et al. Interaction between bacterial endophytes and host plants. Front Plant Sci. 2022;13:1092105.

    Article 
    PubMed 

    Google Scholar
     

  • Zhang Q, et al. Endophytic bacterial communities associated with roots and leaves of plants growing in Chilean extreme environments. Sci Rep. 2019;9(1):4950.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang C, Hamel C, Gan Y, Vujanovic V. Bacterial endophytes mediate positive feedback effects of early legume termination times on the yield of subsequent durum wheat crops. Can J Microbiol. 2012;58(12):1368–77.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mendes R, Pizzirani-Kleiner AA, Araujo WL, Raaijmakers JM. Diversity of cultivated endophytic bacteria from sugarcane: genetic and biochemical characterization of burkholderia Cepacia complex isolates. Appl Environ Microbiol. 2007;73(22):7259–67.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sérgio B, Miguel P, et al. Diversity of endophytic bacteria in the fruits of coffea canephora. Afr J Microbiol Res. 2013;7(7):586–94.

    Article 

    Google Scholar
     

  • Bertani I, et al. Rice bacterial endophytes: isolation of a collection, identification of beneficial strains and Microbiome analysis. Environ Microbiol Rep. 2016;8(3):388–98.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chebotar VK, et al. Endophytic bacteria in microbial preparations that improve plant development (review). Appl Biochem Microbiol. 2015;51(3):271–7.

    Article 
    CAS 

    Google Scholar
     

  • Sahu PK, Singh SZ, Ojha S, Jayalakshmi KTJ, Manzar K N, and, AK SPaS. Colonization potential of endophytes from halophytic plants growing in the runn of Kutch salt marshes and their contribution to mitigating salt stress in tomato cultivation. Front Microbiol. 2023;14:1226149.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang X et al. Diversity and functional insights into endophytic fungi in halophytes from West Ordos desert ecosystems. J Fungi (Basel). 2025;11(1):1–20.

  • Tian XY, Zhang CS. Illumina-Based analysis of endophytic and rhizosphere bacterial diversity of the coastal halophyte messerschmidia sibirica. Front Microbiol. 2017;8:2288.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mora-Ruiz Mdel R et al. Endophytic microbial diversity of the halophyte arthrocnemum macrostachyum across plant compartments. FEMS Microbiol Ecol. 2016;92(9):fiw145. https://doi.org/10.1093/femsec/fiw145.

  • Belhadj-Khedher C, El-Melki T, Mouillot F. Saharan hot and dry Sirocco winds drive extreme fire events in mediterranean Tunisia (North Africa). Atmosphere. 2020;11(6):590. https://doi.org/10.3390/atmos11060590.

  • El Arbi A, et al. The Tunisian Oasis ecosystem is a source of antagonistic Bacillus spp. Producing diverse antifungal lipopeptides. Res Microbiol. 2016;167(1):46–57.

    Article 
    PubMed 

    Google Scholar
     

  • El Hidri D, et al. Cultivation-dependent assessment, diversity, and ecology of haloalkaliphilic bacteria in arid saline systems of Southern Tunisia. Biomed Res Int. 2013;2013:p648141.

    Article 

    Google Scholar
     

  • Mapelli F, et al. Potential for plant growth promotion of rhizobacteria associated with salicornia growing in Tunisian hypersaline soils. Biomed Res Int. 2013;2013:p248078.

    Article 

    Google Scholar
     

  • Hidri R, et al. Plant Growth-Promoting rhizobacteria alleviate high salinity impact on the halophyte Suaeda fruticosa by modulating antioxidant defense and soil biological activity. Front Plant Sci. 2022;13:821475.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tarek Slatni, W.Z., Amal Razzegui, José Antonio Hernández, … Pedro Díaz-Vivancos,Halophilic Bacillus improve barley growth on calcareous soil via enhanced photosynthetic performance and metabolomic re-programming Journal of Plant Physiology, 2024. 309.

  • Ali B, et al. Role of endophytic bacteria in salinity stress amelioration by physiological and molecular mechanisms of defense: A comprehensive review. South Afr J Bot. 2022;151:33–46.

    Article 
    CAS 

    Google Scholar
     

  • Srinivasan J et al. Endophytic bacteria colonizing the petiole of the desert plant zygophyllum dumosum boiss: possible role in mitigating stress. Plants (Basel). 2022;11(4):484. https://doi.org/10.3390/plants11040484.

  • Ghosh D, Sen S, Mohapatra S. Drought-mitigating Pseudomonas Putida GAP-P45 modulates proline turnover and oxidative status in Arabidopsis Thaliana under water stress. Ann Microbiol. 2018;68(9):579–94.

    Article 
    CAS 

    Google Scholar
     

  • sfahani FM TA, Hoodaji M, Ataabadi M, et Mohammadi A. I influence of exopolysaccharide-producing bacteria and SiO2 nanoparticles on proline content and antioxidant enzyme activities of tomato seedlings (Solanum lycopersicum L.) under salinity stress. Pol J Environ Stud. 2019;28(1):153–63.


    Google Scholar
     

  • Iordachescu M, Imai R. Trehalose biosynthesis in response to abiotic stresses. J Integr Plant Biol. 2008;50(10):1223–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xiaobao Niea CZ, Jiang C, Zhang R, Guo F. Trehalose increases the oxidative stress tolerance and biocontrol efficacy of Candida Oleophila in the microenvironment of Pear wounds. Biol Control. 2019;132:23–8.

    Article 

    Google Scholar
     

  • Knief C. Analysis of plant microbe interactions in the era of next generation sequencing technologies. Front Plant Sci. 2014;5:216.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Selmi R, et al. First report on Bartonella Henselae in dromedary camels (Camelus dromedarius). Infect Genet Evol. 2020;85:104496.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rafaâ Trigui M, Trabelsi R, Zouari K, Agoun A. Implication of hydrogeological and hydrodynamic setting on water quality of the complex terminal aquifer in kebili (southern Tunisia): The use of geochemical indicators and modelling. J Afr Earth Sc. 2021;176:104121. https://doi.org/10.1016/j.jafrearsci.2021.104121.

  • Presley D, Thien S. Estimating soil texture by feel. KS: Kansas State University Agricultural Experiment Station and Cooperative Extension Service; 2008.


    Google Scholar
     

  • Boudoudou H, et al. Physico-chemical parameters and fungal flora of Moroccan rice field soils. Bull Pharm Soc Bordeaux. 2009;148:17–44.


    Google Scholar
     

  • Benslama A et al. Monitoring the variations of soil salinity in a palm grove in Southern Algeria. Sustainability. 2020;12(15):6117. https://doi.org/10.3390/su12156117.

  • Bai X-T, et al. Relative importance of soil properties and heavy metals/metalloids to modulate microbial community and activity at a smelting site. J Soils Sediments. 2020;21(1):1–12.

    Article 

    Google Scholar
     

  • Heiri O, Lotter AF, Lemcke G. J Paleolimnol. 2001;25(1):101–10.

    Article 

    Google Scholar
     

  • Ahn C, Jones S. Assessing organic matter and organic carbon contents in soils of created mitigation wetlands in Virginia. Environ Eng Res. 2013;18(3):151–6.

    Article 

    Google Scholar
     

  • Amin M, Flowers TH. Evaluation of Kjeldahl digestion method. J Res (Science). 2004;15(2):159–79.


    Google Scholar
     

  • Maatoug S, Brahim N, Hatira A. Amendment of saline soils by adding sand in the old Oasis of Nefzaoua in Tunisia. Res J Appl Sci Eng Technol. 2019;16(4):153–9.

    Article 
    CAS 

    Google Scholar
     

  • Horneck D, A, Sullivan DM, Owen. JS. and Hart. J. M, Soil test interpretation guide. Oregon State University Extension Service, 2011(EC 1478).

  • Peverill KI, Sparrow LA, Reuter DJ. Soil analysis: an interpretation manual. Australia; 1999.

  • Ren X-C, Lai Y-M, Zhang F-Y, Hu K. Test method for determination of optimum moisture content of soil and maximum dry density. KSCE J Civ Eng. 2015;19(7):2061–6.

    Article 

    Google Scholar
     

  • Ramalashmi K, Magesh PVK, Sanjana K, Siril Joe R S and, K aR. A potential surface sterilization technique and culture media for the isolation of endophytic bacteria from acalypha indica and its antibacterial activity. J Med Plants Stud. 2018;6(1):181–4.


    Google Scholar
     

  • Cheng T, et al. Barcoding the Kingdom plantae: new PCR primers for ITS regions of plants with improved universality and specificity. Mol Ecol Resour. 2016;16(1):138–49.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ikeda S, et al. Development of a bacterial cell enrichment method and its application to the community analysis in soybean stems. Microb Ecol. 2009;58(4):703–14.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liotti RG, et al. Diversity of cultivable bacterial endophytes in Paullinia Cupana and their potential for plant growth promotion and phytopathogen control. Microbiol Res. 2018;207:8–18.

    Article 
    PubMed 

    Google Scholar
     

  • Klindworth A, et al. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res. 2013;41(1):e1.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bolyen E, et al. Reproducible, interactive, scalable and extensible Microbiome data science using QIIME 2. Nat Biotechnol. 2019;37(8):852–7.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Øyvind Hammer DATH, Ryan PD. PAST: Paleontological Statistics software package for education and data analysis Palaeontologia Electronica, 2001. 4(1): p. 9.

  • Douglas GM, et al. PICRUSt2 for prediction of metagenome functions. Nat Biotechnol. 2020;38(6):685–8.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Parks DH, Tyson GW, Hugenholtz P, Beiko RG. STAMP: statistical analysis of taxonomic and functional profiles. Bioinformatics. 2014;30(21):3123–4.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gaiero JR, et al. Inside the root microbiome: bacterial root endophytes and plant growth promotion. Am J Bot. 2013;100(9):1738–50.

    Article 
    PubMed 

    Google Scholar
     

  • van den Burg S, et al. Knowledge gaps on how to adapt crop production under changing saline circumstances in the Netherlands. Sci Total Environ. 2024;915:170118.

    Article 
    PubMed 

    Google Scholar
     

  • Choi K, Khan R, Lee SW. Dissection of plant microbiota and plant-microbiome interactions. J Microbiol. 2021;59(3):281–91.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Compant S, Clément C, Sessitsch A. Plant growth-promoting bacteria in the rhizo- and endosphere of plants: their role, colonization, mechanisms involved and prospects for utilization. Soil Biol Biochem. 2010;42(5):669–78.

    Article 
    CAS 

    Google Scholar
     

  • Martínez-Romero MRaE. Bacterial endophytes and their interactions with hosts. Mol Plant Microbe Interact. 2006;19:827–37.

    Article 
    PubMed 

    Google Scholar
     

  • Koberl M, et al. The Microbiome of medicinal plants: diversity and importance for plant growth, quality and health. Front Microbiol. 2013;4:400.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Läuchli A, Grattan SR. Soil pH extremes, in Plant stress physiology. 2012. pp. 194–209.

  • Borowik A, Wyszkowska J. Soil moisture as a factor affecting the Microbiological and biochemical activity of soil. Plant Soil Environ. 2016;62(6):250–5.

    Article 
    CAS 

    Google Scholar
     

  • Kushwaha P, et al. Bacterial endophyte mediated plant tolerance to salinity: growth responses and mechanisms of action. World J Microbiol Biotechnol. 2020;36(2):26.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Vaishnav A, et al. Endophytic bacteria in plant salt stress tolerance: current and future prospects. J Plant Growth Regul. 2018;38(2):650–68.

    Article 

    Google Scholar
     

  • Gao L et al. Diversity and biocontrol potential of cultivable endophytic bacteria associated with halophytes from the West Aral sea basin. Microorganisms. 2021;9(7):1448. https://doi.org/10.3390/microorganisms9071448.

  • Naylor D, Coleman-Derr D. Drought stress and Root-Associated bacterial communities. Front Plant Sci. 2017;8:2223.

    Article 
    PubMed 

    Google Scholar
     

  • Xu L, et al. Drought delays development of the sorghum root Microbiome and enriches for monoderm bacteria. Proc Natl Acad Sci U S A. 2018;115(18):E4284–93.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu X et al. Limited impact of soil microorganisms on the endophytic bacteria of Tartary buckwheat (Fagopyrum tataricum). Microorganisms. 2023;11(8):2085. https://doi.org/10.3390/microorganisms11082085.

  • Bulgarelli D, et al. Revealing structure and assembly cues for Arabidopsis root-inhabiting bacterial microbiota. Nature. 2012;488(7409):91–5.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zarraonaindia I et al. The soil Microbiome influences grapevine-associated microbiota. mBio. 2015;6(2):e02527–14. https://doi.org/10.1128/mBio.02527-14.

  • Edwards J, et al. Structure, variation, and assembly of the root-associated microbiomes of rice. Proc Natl Acad Sci U S A. 2015;112(8):E911–20.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kearl J, et al. Salt-Tolerant halophyte rhizosphere bacteria stimulate growth of alfalfa in salty soil. Front Microbiol. 2019;10:1849.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Colin R, Jackson KCR, Shelly L, Osborn HL, Tyler. Culture dependent and independent analysis of bacterial communities associated with commercial salad leaf vegetables. BMC Microbiol. 2013;13:274.

    Article 

    Google Scholar
     

  • Dissanayake AJ, et al. Direct comparison of culture-dependent and culture-independent molecular approaches reveal the diversity of fungal endophytic communities in stems of grapevine (Vitis vinifera). Fungal Divers. 2018;90(1):85–107.

    Article 

    Google Scholar
     

  • Goulart MC, et al. Comparison of specific endophytic bacterial communities in different developmental stages of passiflora incarnata using culture-dependent and culture-independent analysis. Microbiologyopen. 2019;8(10):e896.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang M, et al. Comparison of the diversity of cultured and total bacterial communities in marine sediment using culture-dependent and sequencing methods. PeerJ. 2020;8:e10060.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Youseif SH, et al. Comparative analysis of the cultured and total bacterial community in the wheat rhizosphere Microbiome using Culture-Dependent and Culture-Independent approaches. Microbiol Spectr. 2021;9(2):e0067821.

    Article 
    PubMed 

    Google Scholar
     

  • Navarro-Torre S, et al. Assessing the role of endophytic bacteria in the halophyte arthrocnemum macrostachyum salt tolerance. Plant Biol (Stuttg). 2017;19(2):249–56.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dey P, Buragohain T, Osborne WJ. Inhibition of microbial pathogens and toxicity assessment of noformicin synthesized by psychrobacter faecalis: an endophyte of averrhoa Carambola. Process Biochem. 2023;134:329–40.

    Article 
    CAS 

    Google Scholar
     

  • Ashitha A, et al. Bacterial endophytes from Artemisia nilagirica (Clarke) pamp., with antibacterial efficacy against human pathogens. Microb Pathog. 2019;135:103624.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Busoms S, Fischer S, Yant L. Chasing the mechanisms of ecologically adaptive salinity tolerance. Plant Commun. 2023;4(6):100571.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • CHAKRABORTY. A.P CHOWHANP. Harnessing endophytic bacteria as plant growth promoters and biocontrol agents against pests and phytopathogens. J Mycopathol Res. 2023;61(4):435–51.


    Google Scholar
     

  • Laha A, et al. Unraveling the potential of acinetobacter calcoaceticus for arsenic resistance and plant growth promotion in contaminated lentil field. South Afr J Bot. 2024;168:61–70.

    Article 
    CAS 

    Google Scholar
     

  • Alexander A, Singh VK, Mishra A. Halotolerant PGPR Stenotrophomonas maltophilia BJ01 induces salt tolerance by modulating physiology and biochemical activities of Arachis Hypogaea. Front Microbiol. 2020;11:568289.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guendouz D, et al. Performance of halotolerant bacteria associated with Sahara-inhabiting halophytes atriplex Halimus L. and lygeum spartum L. ameliorate tomato plant growth and tolerance to saline stress: from selective isolation to genomic analysis of potential determinants. World J Microbiol Biotechnol Biotechnol Equip. 2022;38(16):1–30.


    Google Scholar
     

  • Solomon Enquahone G, van Marle, Simachew A. Plant growth-promoting characteristics of halotolerant endophytic bacteria isolated from sporobolus specatus (Vahr) Kunth and Cyperus laevigatus L. of Ethiopian rift Valley lakes. Archives of Microbiology, 2022. 204: pp. 1–24.

  • Egamberdieva D et al. Diversity and plant Growth-Promoting ability of endophytic, halotolerant bacteria associated with tetragonia tetragonioides (Pall.) Kuntze. Plants (Basel). 2021;11(1):49. https://doi.org/10.3390/plants11010049.

  • Vyacheslav, Shurigin, et al. Endophytic bacteria associated with halophyte Seidlitzia Rosmarinus ehrenb. Ex boiss. From saline soil of Uzbekistan and their plant beneficial traits. J Arid Land. 2020;12:730–40.

    Article 

    Google Scholar
     

  • Ulrich K, et al. Genomic analysis of the endophytic Stenotrophomonas strain 169 reveals features related to Plant-Growth promotion and stress tolerance. Front Microbiol. 2021;12:1–14.

    Article 

    Google Scholar
     

  • Kumar A, et al. Stenotrophomonas in diversified cropping systems: friend or foe? Front Microbiol. 2023;14:1214680.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang Z, Shao Y. Effects of microbial diversity on nitrite concentration in Pao cai, a naturally fermented cabbage product from China. Food Microbiol. 2018;72:185–92.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xu X, Zhang M, Tao Y, Wei W. Analysis of Microbial Diversity Dominating Nitrite Enzymatic Degradation and Acidic Degradation in the Fermentation Broth of Northeast Sauerkraut. Foods, 2024. 13(24).

  • Grady EN, et al. Current knowledge and perspectives of paenibacillus: a review. Microb Cell Fact. 2016;15(1):203.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim Y-T, Monkhung S, Lee YS, Kim KY. Effects of Lysobacter antibioticus HS124, an effective biocontrol agent 2 against fusarium graminearum, on crown rot disease and growth promotion 3 of wheat. Can J Microbiol. 2019;65(12):904–12.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lahlali R et al. Biological control of plant pathogens: A global perspective. Microorganisms. 2022;10(3):596. https://doi.org/10.3390/microorganisms10030596.

  • Prajwal Nimbulkar GG, Virkhare U, Althubiani AS, Dutta A, Kher D. Bacterial endophytes and their secondary metabolites: mechanisms of biosynthesis and applications in sustainable agriculture. Journal of Umm Al-Qura University for Applied Sciences; 2025.

  • Ameen M et al. The role of endophytes to combat abiotic stress in plants. Plant Stress, 2024;12:100435. https://doi.org/10.1016/j.stress.2024.100435.

  • Wozniak M, et al. Metabolic profiling of endophytic bacteria in relation to their potential application as components of Multi-Task biopreparations. Microb Ecol. 2023;86(4):2527–40.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pan L, Cai B. Phosphate-Solubilizing bacteria: advances in their physiology, molecular mechanisms and microbial community effects. Microorganisms. 2023;11(12):2904. https://doi.org/10.3390/microorganisms11122904.

  • Rawat P, Das S, Shankhdhar D, Shankhdhar SC. Phosphate-Solubilizing microorganisms: mechanism and their role in phosphate solubilization and uptake. J Soil Sci Plant Nutr. 2020;21(1):49–68.

    Article 

    Google Scholar
     

  • Behairi S, et al. Bacterial diversity and community structure in the rhizosphere of the halophyte halocnemum strobilaceum in an Algerian arid saline soil. Extremophiles. 2022;26(2):18.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gao L et al. Bacterial community structure and potential microbial coexistence mechanism associated with three halophytes adapting to the extremely hypersaline environment. Microorganisms. 2022;10(6):1124. https://doi.org/10.3390/microorganisms10061124.

  • Lu Y, et al. Analysis of endophytic and rhizosphere bacterial diversity and function in the endangered plant paeonia ludlowii. Arch Microbiol. 2020;202(7):1717–28.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee E-S, et al. Distribution and characteristics of Geosmin and 2-MIB-producing actinobacteria in the Han river, Korea. Water Supply. 2020;20(5):1975–87.

    Article 
    CAS 

    Google Scholar
     

  • Navarro-Torre S, et al. Kushneria phyllosphaerae sp. Nov. And Kushneria endophytica sp. Nov., plant growth promoting endophytes isolated from the halophyte plant arthrocnemum macrostachyum. Int J Syst Evol Microbiol. 2018;68(9):2800–6.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Moi IM, et al. The biology and the importance of Photobacterium species. Appl Microbiol Biotechnol. 2017;101(11):4371–85.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kushkevych I et al. Distribution of Sulfate-Reducing bacteria in the environment:cryopreservation techniques and their potentialstorage application. Processes. 2021;9:1843. https://doi.org/10.3390/pr9101843.

  • Wang H, Cronan JE. Haemophilus influenzae Rd lacks a stringently conserved fatty acid biosynthetic enzyme and thermal control of membrane lipid composition. J Bacteriol. 2003;185(16):4930–7.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Parsons JB, Rock CO. Bacterial lipids: metabolism and membrane homeostasis. Prog Lipid Res. 2013;52(3):249–76.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar