• Nadort, A., Zhao, J. & Goldys, E. M. Lanthanide upconversion luminescence at the nanoscale: fundamentals and optical properties. Nanoscale 8, 13099–13130 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Lin, Y. L. et al. Enhanced sub-bandgap efficiency of a solid-state organic intermediate band solar cell using triplet–triplet annihilation. Energy Environ. Sci. 10, 1465–1475 (2017).

    Article 

    Google Scholar
     

  • Sheng, W. et al. Tremendously enhanced photocurrent enabled by triplet–triplet annihilation up-conversion for high-performance perovskite solar cells. Energy Environ. Sci. 14, 3532–3541 (2021).

    Article 

    Google Scholar
     

  • Li, C. et al. Photocurrent enhancement from solid-state triplet–triplet annihilation upconversion of low-intensity, low-energy photons. ACS Photonics 3, 784–790 (2016).

    Article 

    Google Scholar
     

  • Beery, D., Wheeler, J. P., Arcidiacono, A. & Hanson, K. CdSe quantum dot sensitized molecular photon upconversion solar cells. ACS Appl. Energy Mater. 3, 29–37 (2020).

    Article 

    Google Scholar
     

  • Ravetz, B. D. et al. Photoredox catalysis using infrared light via triplet fusion upconversion. Nature 565, 343–346 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Zhu, X., Su, Q., Feng, W. & Li, F. Anti-Stokes shift luminescent materials for bio-applications. Chem. Soc. Rev. 46, 1025–1039 (2017).

    Article 

    Google Scholar
     

  • Sanders, S. N. et al. Triplet fusion upconversion nanocapsules for volumetric 3D printing. Nature 604, 474–478 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Gray, V., Moth-Poulsen, K., Albinsson, B. & Abrahamsson, M. Towards efficient solid-state triplet–triplet annihilation based photon upconversion: supramolecular, macromolecular and self-assembled systems. Coord. Chem. Rev. 362, 54–71 (2018).

    Article 

    Google Scholar
     

  • Alves, J., Feng, J., Nienhaus, L. & Schmidt, T. W. Challenges, progress and prospects in solid state triplet fusion upconversion. J. Mater. Chem. C 10, 7783–7798 (2022).

    Article 

    Google Scholar
     

  • Lin, T.-A., Perkinson, C. F. & Baldo, M. A. Strategies for high-performance solid-state triplet–triplet-annihilation-based photon upconversion. Adv. Mater. 32, 1908175 (2020).

    Article 

    Google Scholar
     

  • Ogawa, T. et al. Donor–acceptor–collector ternary crystalline films for efficient solid-state photon upconversion. J. Am. Chem. Soc. 140, 8788–8796 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Wu, M. et al. Solid-state infrared-to-visible upconversion sensitized by colloidal nanocrystals. Nat. Photon. 10, 31–34 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Wu, T. C., Congreve, D. N. & Baldo, M. A. Solid state photon upconversion utilizing thermally activated delayed fluorescence molecules as triplet sensitizer. Appl. Phys. Lett. 107, 031103 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Izawa, S. & Hiramoto, M. Efficient solid-state photon upconversion enabled by triplet formation at an organic semiconductor interface. Nat. Photon. 15, 895–900 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Hu, M. et al. Bulk heterojunction upconversion thin films fabricated via one-step solution deposition. ACS Nano 17, 22642–22655 (2023).

    Article 

    Google Scholar
     

  • Wu, D. M., García-Etxarri, A., Salleo, A. & Dionne, J. A. Plasmon-enhanced upconversion. J. Phys. Chem. Lett. 5, 4020–4031 (2014).

    Article 

    Google Scholar
     

  • Honda, J., Sugawa, K., Tahara, H. & Otsuki, J. Plasmonic metal nanostructures meet triplet–triplet annihilation-based photon upconversion systems: performance improvements and application trends. Nanomaterials 13, 1559 (2023).

    Article 

    Google Scholar
     

  • Bangle, R. E., Li, H. & Mikkelsen, M. H. Uncovering the mechanisms of triplet–triplet annihilation upconversion enhancement via plasmonic nanocavity tuning. ACS Nano 17, 24022–24032 (2023).

    Article 

    Google Scholar
     

  • Bujak, Ł, Narushima, K., Sharma, D. K., Hirata, S. & Vacha, M. Plasmon enhancement of triplet exciton diffusion revealed by nanoscale imaging of photochemical fluorescence upconversion. J. Phys. Chem. C 121, 25479–25486 (2017).

    Article 

    Google Scholar
     

  • Baluschev, S. et al. Metal-enhanced up-conversion fluorescence: effective triplet−triplet annihilation near silver surface. Nano Lett. 5, 2482–2484 (2005).

    Article 
    ADS 

    Google Scholar
     

  • Park, J. K. et al. Enhanced triplet–triplet annihilation in bicomponent organic systems by using a gap plasmon resonator. Nanoscale 7, 12828–12832 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Poorkazem, K., Hesketh, A. V. & Kelly, T. L. Plasmon-enhanced triplet–triplet annihilation using silver nanoplates. J. Phys. Chem. C 118, 6398–6404 (2014).

    Article 

    Google Scholar
     

  • Wisch, J. A. et al. Plasmon mediated near-field energy transfer from solid-state, electrically injected excitons to solution phase chromophores. Adv. Funct. Mater. 33, 2214367 (2023).

    Article 
    ADS 

    Google Scholar
     

  • An, K. H., Shtein, M. & Pipe, K. P. Surface plasmon mediated energy transfer of electrically-pumped excitons. Opt. Express 18, 4041–4048 (2010).

    Article 
    ADS 

    Google Scholar
     

  • Andrew, P. & Barnes, W. L. Energy transfer across a metal film mediated by surface plasmon polaritons. Science 306, 1002–1005 (2004).

    Article 
    ADS 

    Google Scholar
     

  • Chen, Y., Chen, J., Zhao, Y. & Ma, D. High efficiency blue phosphorescent organic light-emitting diode based on blend of hole- and electron-transporting materials as a co-host. Appl. Phys. Lett. 100, 213301 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Baldo, M. A., Lamansky, S., Burrows, P. E., Thompson, M. E. & Forrest, S. R. Very high-efficiency green organic light-emitting devices based on electrophosphorescence. Appl. Phys. Lett. 75, 4–6 (1999).

    Article 
    ADS 

    Google Scholar
     

  • Sambles, J. R., Bradbery, G. W. & Yang, F. Optical excitation of surface plasmons: an introduction. Contemp. Phys. 32, 173–183 (1991).

    Article 
    ADS 

    Google Scholar
     

  • Giebink, N. C. et al. Intrinsic luminance loss in phosphorescent small-molecule organic light emitting devices due to bimolecular annihilation reactions. J. Appl. Phys. 103, 044509 (2008).

    Article 
    ADS 

    Google Scholar
     

  • Giebink, N. C., D’Andrade, B. W., Weaver, M. S., Brown, J. J. & Forrest, S. R. Direct evidence for degradation of polaron excited states in organic light emitting diodes. J. Appl. Phys. 105, 124514 (2009).

    Article 
    ADS 

    Google Scholar
     

  • Fusella, M. A. et al. Plasmonic enhancement of stability and brightness in organic light-emitting devices. Nature 585, 379–382 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Fusella, M. et al. Optimizing plasmonic PHOLEDs for efficiency, stability, and angular profile. In Proc. International Display Workshops 544 (IDW, 2023).

  • Zhao, H., Arneson, C. E., Fan, D. & Forrest, S. R. Stable blue phosphorescent organic LEDs that use polariton-enhanced Purcell effects. Nature 626, 300–305 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Aldrich, M. pspectro: photometric and colorimetric calculations (MATLAB, 2025); https://www.mathworks.com/matlabcentral/fileexchange/28185-pspectro-photometric-and-colorimetric-calculations