• Food and Agriculture Organization of the United Nations & UN Environment Programme. in Global Assessment of Soil Pollution – Summary for Policymakers 250 (Food and Agriculture Organization, 2021).

  • Food and Agriculture Organization of the United Nations & UN Environment Programme. in Global Assessment of Soil Pollution – Summary for Policymakers 48 (Food and Agriculture Organization, 2021).

  • Naidu, R. et al. Chemical pollution: a growing peril and potential catastrophic risk to humanity. Environ. Int. 156, 106616 (2021).


    Google Scholar
     

  • Huang, Y. et al. Current status of agricultural soil pollution by heavy metals in China: a meta-analysis. Sci. Total Environ. 651, 3034–3042 (2019).


    Google Scholar
     

  • Qin, G. et al. Soil heavy metal pollution and food safety in China: effects, sources and removing technology. Chemosphere 267, 129205 (2021).


    Google Scholar
     

  • Wan, Y., Liu, J., Zhuang, Z., Wang, Q. & Li, H. Heavy metals in agricultural soils: sources, influencing factors, and remediation strategies. Toxics 12, 63 (2024).


    Google Scholar
     

  • Tóth, G., Hermann, T., Szatmári, G. & Pásztor, L. Maps of heavy metals in the soils of the European Union and proposed priority areas for detailed assessment. Sci. Total Environ. 565, 1054–1062 (2016).


    Google Scholar
     

  • Ballabio, C., Jones, A. & Panagos, P. Cadmium in topsoils of the European Union — an analysis based on LUCAS topsoil database. Sci. Total Environ. 912, 168710 (2024).


    Google Scholar
     

  • Huang, Y. et al. Heavy metal pollution and health risk assessment of agricultural soils in a typical peri-urban area in southeast China. J. Environ. Manag. 207, 159–168 (2018).


    Google Scholar
     

  • Liu, P. et al. Effects of atmospheric deposition on heavy metals accumulation in agricultural soils: evidence from field monitoring and Pb isotope analysis. Environ. Pollut. 330, 121740 (2023).


    Google Scholar
     

  • Tom, M., Fletcher, T. D. & McCarthy, D. T. Heavy metal contamination of vegetables irrigated by urban stormwater: a matter of time? PLoS ONE 9, e112441 (2014).


    Google Scholar
     

  • Shu, Y. et al. Antibiotics-heavy metals combined pollution in agricultural soils: sources, fate, risks, and countermeasures. Green Energy Environ. https://doi.org/10.1016/j.gee.2024.07.007 (2024).


    Google Scholar
     

  • Shen, L. et al. Characterization of the bioavailability of per- and polyfluoroalkyl substances in farmland soils and the factors impacting their translocation to edible plant tissues. Environ. Sci. Technol. 58, 15790–15798 (2024).


    Google Scholar
     

  • Kaur, R. et al. Heavy metal stress in rice: uptake, transport, signaling, and tolerance mechanisms. Physiol. Plant. 173, 430–448 (2021).


    Google Scholar
     

  • Tang, Z., Wang, H.-Q., Chen, J., Chang, J.-D. & Zhao, F.-J. Molecular mechanisms underlying the toxicity and detoxification of trace metals and metalloids in plants. J. Integr. Plant Biol. 65, 570–593 (2023).


    Google Scholar
     

  • Zhao, F.-J., Tang, Z., Song, J.-J., Huang, X.-Y. & Wang, P. Toxic metals and metalloids: uptake, transport, detoxification, phytoremediation, and crop improvement for safer food. Mol. Plant. 15, 27–44 (2022).


    Google Scholar
     

  • Zhu, Z. et al. Foliar uptake, translocation and its contribution to cadmium accumulation in rice. Sci. Total Environ. 958, 177945 (2025).


    Google Scholar
     

  • Wang, C.-C. et al. Heavy metal(loid)s in agricultural soil from main grain production regions of China: bioaccessibility and health risks to humans. Sci. Total Environ. 858, 159819 (2023).


    Google Scholar
     

  • Edelstein, M. & Ben-Hur, M. Heavy metals and metalloids: sources, risks and strategies to reduce their accumulation in horticultural crops. Sci. Horticult. 234, 431–444 (2018).


    Google Scholar
     

  • Rashid, A. et al. Heavy metal contamination in agricultural soil: environmental pollutants affecting crop health. Agronomy https://doi.org/10.3390/agronomy13061521 (2023).

  • Islam, S. et al. Variation in arsenic bioavailability in rice genotypes using swine model: an animal study. Sci. Total Environ. 599–600, 324–331 (2017).


    Google Scholar
     

  • Sultana, R., Tanvir, R. U., Hussain, K. A., Chamon, A. S. & Mondol, M. N. Heavy metals in commonly consumed root and leafy vegetables in Dhaka city, Bangladesh, and assessment of associated public health risks. Environ. Syst. Res. 11, 15 (2022).


    Google Scholar
     

  • Mawari, G. et al. Heavy metal accumulation in fruits and vegetables and human health risk assessment: findings from Maharashtra, India. Environ. Health Insights 16, 11786302221119151 (2022).


    Google Scholar
     

  • Tongprung, S., Wibuloutai, J., Dechakhamphu, A. & Samaneein, K. Health risk assessment associated with consumption of heavy metal-contaminated vegetables: a case study in the southern area of Northeast Thailand. Environ. Chall. 14, 100845 (2024).


    Google Scholar
     

  • Zhang, X., Zhong, T., Liu, L. & Ouyang, X. Impact of soil heavy metal pollution on food safety in China. PLoS ONE 10, e0135182 (2015).


    Google Scholar
     

  • Xiao, W. et al. The easily overlooked effect of global warming: diffusion of heavy metals. Toxics 12, 400 (2024).


    Google Scholar
     

  • Drabesch, S. et al. Climate induced microbiome alterations increase cadmium bioavailability in agricultural soils with pH below 7. Commun. Earth Environ. 5, 637 (2024).


    Google Scholar
     

  • Muehe, E. M., Wang, T., Kerl, C. F., Planer-Friedrich, B. & Fendorf, S. Rice production threatened by coupled stresses of climate and soil arsenic. Nat. Commun. 10, 4985 (2019).


    Google Scholar
     

  • Jimenez, P. A., Díaz, X., Silva, M. L., Vega, A. & Curi, N. Assessing and understanding arsenic contamination in agricultural soils and lake sediments from papallacta rural parish, Northeastern Ecuador, via ecotoxicology factors, for environmental embasement. Sustainability 15, 3951 (2023).


    Google Scholar
     

  • Mishra, R. et al. Mapping arsenic contamination and health risk assessment of arsenic in agricultural soils of Eastern India. Water Air Soil Pollut. 235, 559 (2024).


    Google Scholar
     

  • Jiang, T., Wang, M., Zhang, W., Zhu, C. & Wang, F. A comprehensive analysis of agricultural non-point source pollution in China: current status, risk assessment and management strategies. Sustainability 16, 2515 (2024).


    Google Scholar
     

  • Islam, M. M., Saxena, N. & Sharma, D. Phytoremediation as a green and sustainable prospective method for heavy metal contamination: a review. RSC Sustain. 2, 1269–1288 (2024).


    Google Scholar
     

  • Charagh, S. et al. Unveiling innovative approaches to mitigate metals/metalloids toxicity for sustainable agriculture. Physiol. Plant. 176, e14226 (2024).


    Google Scholar
     

  • Manara, A. in Plants and Heavy Metals (ed. Furini, A.) 27–53 (Springer Netherlands, 2012).

  • Ejaz, U. et al. Detoxifying the heavy metals: a multipronged study of tolerance strategies against heavy metals toxicity in plants. Front. Plant Sci. 14, 1154571 (2023).


    Google Scholar
     

  • Hou, D. et al. Metal contamination and bioremediation of agricultural soils for food safety and sustainability. Nat. Rev. Earth Environ. 1, 366–381 (2020).


    Google Scholar
     

  • Yan, A. et al. Phytoremediation: a promising approach for revegetation of heavy metal-polluted land. Front. Plant Sci. 11, 359 (2020).


    Google Scholar
     

  • Espada, J. J., Rodríguez, R., Gari, V., Salcedo-Abraira, P. & Bautista, L. F. Coupling phytoremediation of Pb-contaminated soil and biomass energy production: a comparative life cycle assessment. Sci. Total Environ. 840, 156675 (2022).


    Google Scholar
     

  • Mahar, A. et al. Challenges and opportunities in the phytoremediation of heavy metals contaminated soils: a review. Ecotoxicol. Environ. Saf. 126, 111–121 (2016).


    Google Scholar
     

  • Sladkovska, T., Wolski, K., Bujak, H., Radkowski, A. & Sobol, Ł. A review of research on the use of selected grass species in removal of heavy metals. Agronomy 12, 2587 (2022).


    Google Scholar
     

  • Sharma, P., Reitz, T., Singh, S. P., Worrich, A. & Muehe, E. M. Going beyond improving soil health: cover plants as contaminant removers in agriculture. Trends Plant Sci. https://doi.org/10.1016/j.tplants.2025.01.009 (2025).


    Google Scholar
     

  • Chandra, R., Kumar, V. & Singh, K. in Phytoremediation of Environmental Pollutants (eds Chandra, R., Dubey, N. K. & Kumar, V.) 1–38 (CRC Press, 2018).

  • Bhatti, S. S., Sambyal, V. & Nagpal, A. K. Heavy metals bioaccumulation in Berseem (Trifolium alexandrinum) cultivated in areas under intensive agriculture, Punjab, India. SpringerPlus 5, 173 (2016).


    Google Scholar
     

  • Godinho, D. P., Serrano, H. C., Magalhães, S. & Branquinho, C. Concurrent herbivory and metal accumulation: the outcome for plants and herbivores. Plant Environ. Interact. 3, 170–178 (2022).


    Google Scholar
     

  • Lu, J., Lu, H., Wang, W., Feng, S. & Lei, K. Ecological risk assessment of heavy metal contamination of mining area soil based on land type changes: an information network environ analysis. Ecol. Model 455, 109633 (2021).


    Google Scholar
     

  • Guo, Y. et al. Defense of cabbages against herbivore cutworm Spodoptera litura under Cd stress and insect herbivory stress simultaneously. Environ. Pollut. 358, 124519 (2024).


    Google Scholar
     

  • Pollard, A. J. & Baker, A. J. M. Deterrence of herbivory by zinc hyperaccumulation in Thlaspi caerulescens (Brassicaceae). N. Phytol. 135, 655–658 (1997).


    Google Scholar
     

  • Durand, A. et al. Improving nickel phytoextraction by co-cropping hyperaccumulator plants inoculated by plant growth promoting rhizobacteria. Plant Soil 399, 179–192 (2016).


    Google Scholar
     

  • Gao, J. et al. Organic amendments for in situ immobilization of heavy metals in soil: a review. Chemosphere 335, 139088 (2023).


    Google Scholar
     

  • Hamid, Y. et al. An explanation of soil amendments to reduce cadmium phytoavailability and transfer to food chain. Sci. Total Environ. 660, 80–96 (2019).


    Google Scholar
     

  • Burges, A., Alkorta, I., Epelde, L. & Garbisu, C. From phytoremediation of soil contaminants to phytomanagement of ecosystem services in metal contaminated sites. Int. J. Phytoremediat. 20, 384–397 (2018).


    Google Scholar
     

  • Kafle, A. et al. Phytoremediation: mechanisms, plant selection and enhancement by natural and synthetic agents. Environ. Adv. 8, 100203 (2022).


    Google Scholar
     

  • Oladele, S. O., Oladele, B. B., Ajala, R. & Dada, B. F. Emerging contaminants: evaluation of degradable chelators towards enhancing cadmium phytoextraction efficiency of bioenergy crop grown on polluted soil. Emerg. Contam. 7, 139–148 (2021).


    Google Scholar
     

  • Arora, D. et al. Unleashing the feasibility of nanotechnology in phytoremediation of heavy metal-contaminated soil: a critical review towards sustainable approach. Water Air Soil Pollut. https://doi.org/10.1007/s11270-023-06874-9 (2024).


    Google Scholar
     

  • Dhanapal, A. R. et al. Nanotechnology approaches for the remediation of agricultural polluted soils. ACS Omega 9, 13522–13533 (2024).


    Google Scholar
     

  • Huang, D. et al. Nanoscale zero-valent iron assisted phytoremediation of Pb in sediment: impacts on metal accumulation and antioxidative system of Lolium perenne. Ecotoxicol. Environ. Saf. 153, 229–237 (2018).


    Google Scholar
     

  • Vítková, M., Puschenreiter, M. & Komárek, M. Effect of nano zero-valent iron application on As, Cd, Pb, and Zn availability in the rhizosphere of metal(loid) contaminated soils. Chemosphere 200, 217–226 (2018).


    Google Scholar
     

  • Hussan, M. U. et al. Calcium oxide nanoparticles ameliorate cadmium toxicity in alfalfa seedlings by depriving its bioaccumulation, enhancing photosystem II functionality and antioxidant gene expression. Sci. Total Environ. 955, 176797 (2024).


    Google Scholar
     

  • Yang, D. et al. Biochar-supported nanoscale zero-valent iron can simultaneously decrease cadmium and arsenic uptake by rice grains in co-contaminated soil. Sci. Total Environ. 814, 152798 (2022).


    Google Scholar
     

  • Ren, J., Mi, X. & Tao, L. Stabilization of cadmium in polluted soil using palygorskite-coated nanoscale zero-valent iron. J. Soils Sediment. 21, 1001–1009 (2021).


    Google Scholar
     

  • Hannan, F. et al. Remediation of Cd-polluted soil, improving Brassica napus L. growth and soil health with hardystonite synthesized with zeolite, limestone, and green zinc oxide nanoparticles. J. Clean. Prod. 437, 140737 (2024).


    Google Scholar
     

  • Chen, Q. & Wu, F.-b Breeding for low cadmium accumulation cereals. J. Zhejiang Univ. Sci. B 21, 442–459 (2020).


    Google Scholar
     

  • Melotto, M. et al. Breeding crops for enhanced food safety. Front. Plant Sci. 11, 428 (2020).


    Google Scholar
     

  • Clarke, J., McCaig, T., DePauw, R. & Knox, R. Registration of ‘Strongfield’ durum wheat. Crop Sci. 46, 2306 (2006).


    Google Scholar
     

  • Xu, M. et al. Selection of rice and maize varieties with low cadmium accumulation and derivation of soil environmental thresholds in karst. Ecotoxicol. Environ. Saf. 247, 114244 (2022).


    Google Scholar
     

  • Murugaiyan, V. et al. Identification of promising genotypes through systematic evaluation for arsenic tolerance and exclusion in rice (Oryza sativa L.). Front. Plant Sci. 12, 753063 (2021).


    Google Scholar
     

  • Chen, F. et al. Identification of barley genotypes with low grain Cd accumulation and its interaction with four microelements. Chemosphere 67, 2082–2088 (2007).


    Google Scholar
     

  • Hanlon, P. & Sewalt, V. GEMs: genetically engineered microorganisms and the regulatory oversight of their uses in modern food production. Crit. Rev. Food Sci. Nutr. 61, 959–970 (2021).


    Google Scholar
     

  • Singh, J., Mishra, V. & Varshney, V. Arsenic tolerance unveiled in Arabidopsis: CPK23 and PHT1;1 alliance. J. Plant Biochem. Biotechnol. https://doi.org/10.1007/s13562-024-00885-1 (2024).


    Google Scholar
     

  • Peña-Garcia, Y. et al. Arsenic stress-related F-box (ASRF) gene regulates arsenic stress tolerance in Arabidopsis thaliana. J. Hazard. Mater. 407, 124831 (2021).


    Google Scholar
     

  • Nahar, N., Rahman, A., Nawani, N. N., Ghosh, S. & Mandal, A. Phytoremediation of arsenic from the contaminated soil using transgenic tobacco plants expressing ACR2 gene of Arabidopsis thaliana. J. Plant Physiol. 218, 121–126 (2017).


    Google Scholar
     

  • Inamuddin, D., Adetunji, C. O., Ahamed, M. I. & Altalhi, T. (eds) Genetically Engineered Organisms in Bioremediation (CRC Press, 2024).

  • El-Sappah, A. H. et al. Plants’ molecular behavior to heavy metals: from criticality to toxicity. Front. Plant Sci. 15, 1423625 (2024).


    Google Scholar
     

  • Kakeshpour, T. et al. CGFS-type glutaredoxin mutations reduce tolerance to multiple abiotic stresses in tomato. Physiol. Plant. 173, 1263–1279 (2021).


    Google Scholar
     

  • Khan, I. U. et al. Functional characterization of a new metallochaperone for reducing cadmium concentration in rice crop. J. Clean. Prod. 272, 123152 (2020).


    Google Scholar
     

  • Zhang, B. Q. et al. Developing a cadmium resistant rice genotype with OsHIPP29 locus for limiting cadmium accumulation in the paddy crop. Chemosphere 247, 125958 (2020).


    Google Scholar
     

  • Lin, H. et al. Lsi1-regulated Cd uptake and phytohormones accumulation in rice seedlings in presence of Si. Plant Growth Regul. 86, 149–157 (2018).


    Google Scholar
     

  • Barr, Z. K., Werner, T. & Tilsner, J. Heavy metal-associated isoprenylated plant proteins (HIPPs) at plasmodesmata: exploring the link between localization and function. Plants 12, 3015 (2023).


    Google Scholar
     

  • Sharma, P., Sirohi, R., Tong, Y. W., Kim, S. H. & Pandey, A. Metal and metal(loids) removal efficiency using genetically engineered microbes: applications and challenges. J. Hazard. Mater. 416, 125855 (2021).


    Google Scholar
     

  • Thai, T. D., Lim, W. & Na, D. Synthetic bacteria for the detection and bioremediation of heavy metals. Front. Bioeng. Biotechnol. 11, 1178680 (2023).


    Google Scholar
     

  • Wang, Y. et al. Plant growth-promoting bacteria in metal-contaminated soil: current perspectives on remediation mechanisms. Front. Microbiol. 13, 966226 (2022).


    Google Scholar
     

  • Pande, V., Pandey, S. C., Sati, D., Bhatt, P. & Samant, M. Microbial interventions in bioremediation of heavy metal contaminants in agroecosystem. Front. Microbiol. 13, 824084 (2022).


    Google Scholar
     

  • Azad, M. A. K., Amin, L. & Sidik, N. M. Genetically engineered organisms for bioremediation of pollutants in contaminated sites. Chin. Sci. Bull. 59, 703–714 (2014).


    Google Scholar
     

  • Rojas, L. A. et al. Characterization of the metabolically modified heavy metal-resistant Cupriavidus metallidurans strain MSR33 generated for mercury bioremediation. PLoS ONE 6, e17555 (2011).


    Google Scholar
     

  • Bravo, G., Vega-Celedón, P., Gentina, J. C. & Seeger, M. Bioremediation by Cupriavidus metallidurans strain MSR33 of mercury-polluted agricultural soil in a rotary drum bioreactor and its effects on nitrogen cycle microorganisms. Microorganisms 8, 1952 (2020).


    Google Scholar
     

  • Jia, X., Li, Y., Xu, T. & Wu, K. Display of lead-binding proteins on Escherichia coli surface for lead bioremediation. Biotechnol. Bioeng. 117, 3820–3834 (2020).


    Google Scholar
     

  • Weyens, N. et al. Potential of willow and its genetically engineered associated bacteria to remediate mixed Cd and toluene contamination. J. Soils Sediment. 13, 176–188 (2013).


    Google Scholar
     

  • Cotta, S. R., Dias, A. C. F., Mendes, R. & Andreote, F. D. Role of horizontal gene transfer and cooperation in rhizosphere microbiome assembly. Braz. J. Microbiol. https://doi.org/10.1007/s42770-024-01583-9 (2024).


    Google Scholar
     

  • Ruan, Z. et al. Engineering natural microbiomes toward enhanced bioremediation by microbiome modeling. Nat. Commun. 15, 4694 (2024).


    Google Scholar
     

  • Qiu, Z., Egidi, E., Liu, H., Kaur, S. & Singh, B. K. New frontiers in agriculture productivity: optimised microbial inoculants and in situ microbiome engineering. Biotechnol. Adv. 37, 107371 (2019).


    Google Scholar
     

  • Narayanan, M. & Ma, Y. Mitigation of heavy metal stress in the soil through optimized interaction between plants and microbes. J. Environ. Manag. 345, 118732 (2023).


    Google Scholar
     

  • Narayanan, M. & Ma, Y. Metal tolerance mechanisms in plants and microbe-mediated bioremediation. Environ. Res. 222, 115413 (2023).


    Google Scholar
     

  • Tang, H., Xiang, G., Xiao, W., Yang, Z. & Zhao, B. Microbial mediated remediation of heavy metals toxicity: mechanisms and future prospects. Front. Plant Sci. 15, 1420408 (2024).


    Google Scholar
     

  • Bai, X. et al. A meta-analysis on crop growth and heavy metals accumulation with PGPB inoculation in contaminated soils. J. Hazard. Mater. 471, 134370 (2024).


    Google Scholar
     

  • Liu, Y.-Q. et al. Plant growth-promoting bacteria improve the Cd phytoremediation efficiency of soils contaminated with PE–Cd complex pollution by influencing the rhizosphere microbiome of sorghum. J. Hazard. Mater. 469, 134085 (2024).


    Google Scholar
     

  • Zhou, Y. et al. Superiority of native soil core microbiomes in supporting plant growth. Nat. Commun. 15, 6599 (2024).


    Google Scholar
     

  • Wang, Z., Hu, X., Solanki, M. K. & Pang, F. A synthetic microbial community of plant core microbiome can be a potential biocontrol tool. J. Agric. Food Chem. 71, 5030–5041 (2023).


    Google Scholar
     

  • Solomon, W., Janda, T. & Molnár, Z. Unveiling the significance of rhizosphere: implications for plant growth, stress response, and sustainable agriculture. Plant Physiol. Biochem. 206, 108290 (2024).


    Google Scholar
     

  • Shayanthan, A., Ordoñez, P. A. C. & Oresnik, I. J. The role of synthetic microbial communities (SynCom) in sustainable agriculture. Front. Agron. https://doi.org/10.3389/fagro.2022.896307 (2022).

  • Afridi, M. S. et al. Harnessing root exudates for plant microbiome engineering and stress resistance in plants. Microbiol. Res. 279, 127564 (2024).


    Google Scholar
     

  • Shi, A. et al. Enhancement of cadmium uptake in Sedum alfredii through interactions between salicylic acid/jasmonic acid and rhizosphere microbial communities. Sci. Total Environ. 947, 174585 (2024).


    Google Scholar
     

  • Guzmán-Moreno, J. et al. Bacillus megaterium HgT21: a promising metal multiresistant plant growth-promoting bacteria for soil biorestoration. Microbiol. Spectr. 10, e0065622 (2022).


    Google Scholar
     

  • Jamil, M. et al. Inoculation of heavy metal resistant bacteria alleviated heavy metal-induced oxidative stress biomarkers in spinach (Spinacia oleracea L.). BMC Plant Biol. 24, 221 (2024).


    Google Scholar
     

  • Wu, J. et al. Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes (II). Chem. Soc. Rev. 48, 1004–1076 (2019).


    Google Scholar
     

  • Zhao, L. et al. Nanobiotechnology-based strategies for enhanced crop stress resilience. Nat. Food 3, 829–836 (2022).


    Google Scholar
     

  • Yao, J. et al. ROS scavenging Mn3O4 nanozymes for in vivo anti-inflammation. Chem. Sci. 9, 2927–2933 (2018).


    Google Scholar
     

  • Celardo, I., Pedersen, J. Z., Traversa, E. & Ghibelli, L. Pharmacological potential of cerium oxide nanoparticles. Nanoscale 3, 1411–1420 (2011).


    Google Scholar
     

  • Saleem, M., Fariduddin, Q. & Castroverde, C. D. M. Salicylic acid: a key regulator of redox signalling and plant immunity. Plant Physiol. Biochem. 168, 381–397 (2021).


    Google Scholar
     

  • Sachdev, S., Ansari, S. A., Ansari, M. I., Fujita, M. & Hasanuzzaman, M. Abiotic stress and reactive oxygen species: generation, signaling, and defense mechanisms. Antioxidants 10, 277 (2021).


    Google Scholar
     

  • Ragab, G. & Saad-Allah, K. Seed priming with greenly synthesized sulfur nanoparticles enhances antioxidative defense machinery and restricts oxidative injury under manganese stress in Helianthus annuus (L.) seedlings. J. Plant Growth Regul. 40, 1894–1902 (2021).


    Google Scholar
     

  • Anwar, A. et al. Zero-valent iron (nZVI) nanoparticles mediate SlERF1 expression to enhance cadmium stress tolerance in tomato. J. Hazard. Mater. 468, 133829 (2024).


    Google Scholar
     

  • Khan, I. et al. Amelioration of salt induced toxicity in pearl millet by seed priming with silver nanoparticles (AgNPs): the oxidative damage, antioxidant enzymes and ions uptake are major determinants of salt tolerant capacity. Plant Physiol. Biochem. 156, 221–232 (2020).


    Google Scholar
     

  • He, W., Zhou, Y.-T., Wamer, W. G., Boudreau, M. D. & Yin, J.-J. Mechanisms of the pH dependent generation of hydroxyl radicals and oxygen induced by Ag nanoparticles. Biomaterials 33, 7547–7555 (2012).


    Google Scholar
     

  • Yan, X. et al. Rice exposure to silver nanoparticles in a life cycle study: effect of dose responses on grain metabolomic profile, yield, and soil bacteria. Environ. Sci. Nano 9, 2195–2206 (2022).


    Google Scholar
     

  • Al-Khayri, J. M. et al. The role of nanoparticles in response of plants to abiotic stress at physiological, biochemical, and molecular levels. Plants 12, 292 (2023).


    Google Scholar
     

  • Guha, T., Das, H., Mukherjee, A. & Kundu, R. Elucidating ROS signaling networks and physiological changes involved in nanoscale zero valent iron primed rice seed germination sensu stricto. Free Radic. Biol. Med. 171, 11–25 (2021).


    Google Scholar
     

  • Hong, J. et al. Foliar application of nanoparticles: mechanisms of absorption, transfer, and multiple impacts. Environ. Sci. Nano 8, 1196–1210 (2021).


    Google Scholar
     

  • Wu, H. & Li, Z. Nano-enabled agriculture: how do nanoparticles cross barriers in plants? Plant Commun. 3, 100346 (2022).


    Google Scholar
     

  • Su, Y. et al. Delivery, uptake, fate, and transport of engineered nanoparticles in plants: a critical review and data analysis. Environ. Sci. Nano 6, 2311–2331 (2019).


    Google Scholar
     

  • Lv, J., Christie, P. & Zhang, S. Uptake, translocation, and transformation of metal-based nanoparticles in plants: recent advances and methodological challenges. Environ. Sci. Nano 6, 41–59 (2019).


    Google Scholar
     

  • Kasote, D. M., Lee, J. H. J., Jayaprakasha, G. K. & Patil, B. S. Seed priming with iron oxide nanoparticles modulate antioxidant potential and defense-linked hormones in watermelon seedlings. ACS Sustain. Chem. Eng. 7, 5142–5151 (2019).


    Google Scholar
     

  • Cao, Y. et al. Engineered nanomaterials reduce metal(loid) accumulation and enhance staple food production for sustainable agriculture. Nat. Food https://doi.org/10.1038/s43016-024-01063-1 (2024).


    Google Scholar
     

  • Feng, J.-R., Deng, Q.-X., Han, S.-K. & Ni, H.-G. Use of nanoparticle-coated bacteria for the bioremediation of organic pollution: a mini review. Chemosphere 313, 137391 (2023).


    Google Scholar
     

  • Bhatt, P. et al. Nanobioremediation: a sustainable approach for the removal of toxic pollutants from the environment. J. Hazard. Mater. 427, 128033 (2022).


    Google Scholar
     

  • Saravanan, A. et al. A review on biosynthesis of metal nanoparticles and its environmental applications. Chemosphere 264, 128580 (2021).


    Google Scholar
     

  • AbdelRahim, K. et al. Extracellular biosynthesis of silver nanoparticles using Rhizopus stolonifer. Saudi J. Biol. Sci. 24, 208–216 (2017).


    Google Scholar
     

  • Ameen, F. et al. Soil bacteria Cupriavidus sp. mediates the extracellular synthesis of antibacterial silver nanoparticles. J. Mol. Struct. 1202, 127233 (2020).


    Google Scholar
     

  • Ahmed, E., Kalathil, S., Shi, L., Alharbi, O. & Wang, P. Synthesis of ultra-small platinum, palladium and gold nanoparticles by Shewanella loihica PV-4 electrochemically active biofilms and their enhanced catalytic activities. J. Saudi Chem. Soc. 22, 919–929 (2018).


    Google Scholar
     

  • Zhang, Y. et al. Nano-sized Fe2O3/Fe3O4 facilitate anaerobic transformation of hexavalent chromium in soil–water systems. J. Environ. Sci. 57, 329–337 (2017).


    Google Scholar
     

  • Ahmed, F. et al. Development of selenium nanoparticle based agriculture sensor for heavy metal toxicity detection. Agriculture 10, 610 (2020).


    Google Scholar
     

  • Maity, S., Bose, S., Dokania, P., Lohar, S. & Sarkar, A. A comprehensive review of arsenic contamination in India with an emphasis on its detection through biosensors and bioremediation from the aqueous system. Environ. Qual. Manag. 33, 427–457 (2024).


    Google Scholar
     

  • Lea-Smith, D. J. et al. Engineering biology applications for environmental solutions: potential and challenges. Nat. Commun. 16, 3538 (2025).


    Google Scholar
     

  • Feng, H. & Cheng, J. Whole-process risk management of soil amendments for remediation of heavy metals in agricultural soil — a review. Int. J. Environ. Res. Public Health 20, 1869 (2023).


    Google Scholar
     

  • Hou, D., Bolan, N. S., Tsang, D. C. W., Kirkham, M. B. & O’Connor, D. Sustainable soil use and management: an interdisciplinary and systematic approach. Sci. Total Environ. 729, 138961 (2020).


    Google Scholar
     

  • Thijs, S., Sillen, W., Rineau, F., Weyens, N. & Vangronsveld, J. Towards an enhanced understanding of plant–microbiome interactions to improve phytoremediation: engineering the metaorganism. Front. Microbiol. 7, 341 (2016).


    Google Scholar
     

  • Huang, H. et al. Comprehensive bioremediation effect of phosphorus-mineralized bacterium Enterobacter sp. PMB-5 on cadmium contaminated soil–crop system. J. Hazard. Mater. 470, 134227 (2024).


    Google Scholar
     

  • D’Hondt, K. et al. Microbiome innovations for a sustainable future. Nat. Microbiol. 6, 138–142 (2021).


    Google Scholar
     

  • Jurburg, S. D. et al. Potential of microbiome-based solutions for agrifood systems. Nat. Food 3, 557–560 (2022).


    Google Scholar
     

  • Hu, Y. et al. Revolutionizing soil heavy metal remediation: cutting-edge innovations in plant disposal technology. Sci. Total Environ. 918, 170577 (2024).


    Google Scholar
     

  • Li, F., Fang, L. & Wu, F. A roadmap for sustainable agricultural soil remediation under China’s carbon neutrality vision. Engineering 25, 28–31 (2023).


    Google Scholar
     

  • Baritz, R., Wiese, L., Verbeke, I. & Vargas, R. Voluntary guidelines for sustainable soil management: global action for healthy soils. in International Yearbook of Soil Law and Policy 2017 (eds Ginzky, H. et al.) 17–36 (Springer International Publishing, 2018).

  • Macklin, M. G. et al. Impacts of metal mining on river systems: a global assessment. Science 381, 1345–1350 (2023).


    Google Scholar
     

  • Zhang, S. et al. Escalating arsenic contamination throughout Chinese soils. Nat. Sustain. 7, 766–775 (2024).


    Google Scholar
     

  • Kalve, S., Sarangi, B. K., Pandey, R. A. & Chakrabarti, T. Arsenic and chromium hyperaccumulation by an ecotype of Pteris vittata — prospective for phytoextraction from contaminated water and soil. Curr. Sci. 100, 888–894 (2011).


    Google Scholar
     

  • Xu, M. et al. Effects of copper and arsenic on their uptake and distribution in As-hyperaccumulator Pteris vittata. Environ. Pollut. 300, 118982 (2022).


    Google Scholar
     

  • Li, S., Gu, X., Zhou, J., Wu, L. & Christie, P. Prediction of cadmium and zinc phytoextraction by the hyperaccumulator Sedum plumbizincicola using a dynamic geochemical mechanical combination model. Sci. Total Environ. 906, 167627 (2024).


    Google Scholar
     

  • Atta, M. I. et al. Assessing the effect of heavy metals on maize (Zea mays L.) growth and soil characteristics: plants-implications for phytoremediation. PeerJ 11, e16067 (2023).


    Google Scholar
     

  • Alaboudi, K. A., Ahmed, B. & Brodie, G. Phytoremediation of Pb and Cd contaminated soils by using sunflower (Helianthus annuus) plant. Ann. Agric. Sci. 63, 123–127 (2018).


    Google Scholar
     

  • Bassegio, C. et al. Growth and accumulation of Pb by roots and shoots of Brassica juncea L. Int. J. Phytoremediat. 22, 134–139 (2020).


    Google Scholar
     

  • Vamerali, T., Bandiera, M., Lucchini, P., Dickinson, N. M. & Mosca, G. Long-term phytomanagement of metal-contaminated land with field crops: integrated remediation and biofortification. Eur. J. Agron. 53, 56–66 (2014).


    Google Scholar
     

  • Ofori-Agyemang, F. et al. Phytomanagement of a metal-contaminated agricultural soil with Sorghum bicolor, humic/fulvic acids and arbuscular mycorrhizal fungi near the former Pb/Zn metaleurop Nord smelter. Chemosphere 362, 142624 (2024).


    Google Scholar
     

  • Smyth, S. J. Regulatory barriers to improving global food security. Glob. Food Sec. 26, 100440 (2020).


    Google Scholar
     

  • Rozas, P., Kessi-Pérez, E. I. & Martínez, C. Genetically modified organisms: adapting regulatory frameworks for evolving genome editing technologies. Biol. Res. 55, 31 (2022).


    Google Scholar
     

  • Cheng, X. et al. Trends in the global commercialization of genetically modified crops in 2023. J. Integr. Agricult. 23, 3943–3952 (2024).


    Google Scholar
     

  • Goodman, R. E. Twenty-eight years of GM Food and feed without harm: why not accept them? GM Crop Food 15, 40–50 (2024).


    Google Scholar