Food and Agriculture Organization of the United Nations & UN Environment Programme. in Global Assessment of Soil Pollution – Summary for Policymakers 250 (Food and Agriculture Organization, 2021).
Food and Agriculture Organization of the United Nations & UN Environment Programme. in Global Assessment of Soil Pollution – Summary for Policymakers 48 (Food and Agriculture Organization, 2021).
Naidu, R. et al. Chemical pollution: a growing peril and potential catastrophic risk to humanity. Environ. Int. 156, 106616 (2021).
Huang, Y. et al. Current status of agricultural soil pollution by heavy metals in China: a meta-analysis. Sci. Total Environ. 651, 3034–3042 (2019).
Qin, G. et al. Soil heavy metal pollution and food safety in China: effects, sources and removing technology. Chemosphere 267, 129205 (2021).
Wan, Y., Liu, J., Zhuang, Z., Wang, Q. & Li, H. Heavy metals in agricultural soils: sources, influencing factors, and remediation strategies. Toxics 12, 63 (2024).
Tóth, G., Hermann, T., Szatmári, G. & Pásztor, L. Maps of heavy metals in the soils of the European Union and proposed priority areas for detailed assessment. Sci. Total Environ. 565, 1054–1062 (2016).
Ballabio, C., Jones, A. & Panagos, P. Cadmium in topsoils of the European Union — an analysis based on LUCAS topsoil database. Sci. Total Environ. 912, 168710 (2024).
Huang, Y. et al. Heavy metal pollution and health risk assessment of agricultural soils in a typical peri-urban area in southeast China. J. Environ. Manag. 207, 159–168 (2018).
Liu, P. et al. Effects of atmospheric deposition on heavy metals accumulation in agricultural soils: evidence from field monitoring and Pb isotope analysis. Environ. Pollut. 330, 121740 (2023).
Tom, M., Fletcher, T. D. & McCarthy, D. T. Heavy metal contamination of vegetables irrigated by urban stormwater: a matter of time? PLoS ONE 9, e112441 (2014).
Shu, Y. et al. Antibiotics-heavy metals combined pollution in agricultural soils: sources, fate, risks, and countermeasures. Green Energy Environ. https://doi.org/10.1016/j.gee.2024.07.007 (2024).
Shen, L. et al. Characterization of the bioavailability of per- and polyfluoroalkyl substances in farmland soils and the factors impacting their translocation to edible plant tissues. Environ. Sci. Technol. 58, 15790–15798 (2024).
Kaur, R. et al. Heavy metal stress in rice: uptake, transport, signaling, and tolerance mechanisms. Physiol. Plant. 173, 430–448 (2021).
Tang, Z., Wang, H.-Q., Chen, J., Chang, J.-D. & Zhao, F.-J. Molecular mechanisms underlying the toxicity and detoxification of trace metals and metalloids in plants. J. Integr. Plant Biol. 65, 570–593 (2023).
Zhao, F.-J., Tang, Z., Song, J.-J., Huang, X.-Y. & Wang, P. Toxic metals and metalloids: uptake, transport, detoxification, phytoremediation, and crop improvement for safer food. Mol. Plant. 15, 27–44 (2022).
Zhu, Z. et al. Foliar uptake, translocation and its contribution to cadmium accumulation in rice. Sci. Total Environ. 958, 177945 (2025).
Wang, C.-C. et al. Heavy metal(loid)s in agricultural soil from main grain production regions of China: bioaccessibility and health risks to humans. Sci. Total Environ. 858, 159819 (2023).
Edelstein, M. & Ben-Hur, M. Heavy metals and metalloids: sources, risks and strategies to reduce their accumulation in horticultural crops. Sci. Horticult. 234, 431–444 (2018).
Rashid, A. et al. Heavy metal contamination in agricultural soil: environmental pollutants affecting crop health. Agronomy https://doi.org/10.3390/agronomy13061521 (2023).
Islam, S. et al. Variation in arsenic bioavailability in rice genotypes using swine model: an animal study. Sci. Total Environ. 599–600, 324–331 (2017).
Sultana, R., Tanvir, R. U., Hussain, K. A., Chamon, A. S. & Mondol, M. N. Heavy metals in commonly consumed root and leafy vegetables in Dhaka city, Bangladesh, and assessment of associated public health risks. Environ. Syst. Res. 11, 15 (2022).
Mawari, G. et al. Heavy metal accumulation in fruits and vegetables and human health risk assessment: findings from Maharashtra, India. Environ. Health Insights 16, 11786302221119151 (2022).
Tongprung, S., Wibuloutai, J., Dechakhamphu, A. & Samaneein, K. Health risk assessment associated with consumption of heavy metal-contaminated vegetables: a case study in the southern area of Northeast Thailand. Environ. Chall. 14, 100845 (2024).
Zhang, X., Zhong, T., Liu, L. & Ouyang, X. Impact of soil heavy metal pollution on food safety in China. PLoS ONE 10, e0135182 (2015).
Xiao, W. et al. The easily overlooked effect of global warming: diffusion of heavy metals. Toxics 12, 400 (2024).
Drabesch, S. et al. Climate induced microbiome alterations increase cadmium bioavailability in agricultural soils with pH below 7. Commun. Earth Environ. 5, 637 (2024).
Muehe, E. M., Wang, T., Kerl, C. F., Planer-Friedrich, B. & Fendorf, S. Rice production threatened by coupled stresses of climate and soil arsenic. Nat. Commun. 10, 4985 (2019).
Jimenez, P. A., Díaz, X., Silva, M. L., Vega, A. & Curi, N. Assessing and understanding arsenic contamination in agricultural soils and lake sediments from papallacta rural parish, Northeastern Ecuador, via ecotoxicology factors, for environmental embasement. Sustainability 15, 3951 (2023).
Mishra, R. et al. Mapping arsenic contamination and health risk assessment of arsenic in agricultural soils of Eastern India. Water Air Soil Pollut. 235, 559 (2024).
Jiang, T., Wang, M., Zhang, W., Zhu, C. & Wang, F. A comprehensive analysis of agricultural non-point source pollution in China: current status, risk assessment and management strategies. Sustainability 16, 2515 (2024).
Islam, M. M., Saxena, N. & Sharma, D. Phytoremediation as a green and sustainable prospective method for heavy metal contamination: a review. RSC Sustain. 2, 1269–1288 (2024).
Charagh, S. et al. Unveiling innovative approaches to mitigate metals/metalloids toxicity for sustainable agriculture. Physiol. Plant. 176, e14226 (2024).
Manara, A. in Plants and Heavy Metals (ed. Furini, A.) 27–53 (Springer Netherlands, 2012).
Ejaz, U. et al. Detoxifying the heavy metals: a multipronged study of tolerance strategies against heavy metals toxicity in plants. Front. Plant Sci. 14, 1154571 (2023).
Hou, D. et al. Metal contamination and bioremediation of agricultural soils for food safety and sustainability. Nat. Rev. Earth Environ. 1, 366–381 (2020).
Yan, A. et al. Phytoremediation: a promising approach for revegetation of heavy metal-polluted land. Front. Plant Sci. 11, 359 (2020).
Espada, J. J., Rodríguez, R., Gari, V., Salcedo-Abraira, P. & Bautista, L. F. Coupling phytoremediation of Pb-contaminated soil and biomass energy production: a comparative life cycle assessment. Sci. Total Environ. 840, 156675 (2022).
Mahar, A. et al. Challenges and opportunities in the phytoremediation of heavy metals contaminated soils: a review. Ecotoxicol. Environ. Saf. 126, 111–121 (2016).
Sladkovska, T., Wolski, K., Bujak, H., Radkowski, A. & Sobol, Ł. A review of research on the use of selected grass species in removal of heavy metals. Agronomy 12, 2587 (2022).
Sharma, P., Reitz, T., Singh, S. P., Worrich, A. & Muehe, E. M. Going beyond improving soil health: cover plants as contaminant removers in agriculture. Trends Plant Sci. https://doi.org/10.1016/j.tplants.2025.01.009 (2025).
Chandra, R., Kumar, V. & Singh, K. in Phytoremediation of Environmental Pollutants (eds Chandra, R., Dubey, N. K. & Kumar, V.) 1–38 (CRC Press, 2018).
Bhatti, S. S., Sambyal, V. & Nagpal, A. K. Heavy metals bioaccumulation in Berseem (Trifolium alexandrinum) cultivated in areas under intensive agriculture, Punjab, India. SpringerPlus 5, 173 (2016).
Godinho, D. P., Serrano, H. C., Magalhães, S. & Branquinho, C. Concurrent herbivory and metal accumulation: the outcome for plants and herbivores. Plant Environ. Interact. 3, 170–178 (2022).
Lu, J., Lu, H., Wang, W., Feng, S. & Lei, K. Ecological risk assessment of heavy metal contamination of mining area soil based on land type changes: an information network environ analysis. Ecol. Model 455, 109633 (2021).
Guo, Y. et al. Defense of cabbages against herbivore cutworm Spodoptera litura under Cd stress and insect herbivory stress simultaneously. Environ. Pollut. 358, 124519 (2024).
Pollard, A. J. & Baker, A. J. M. Deterrence of herbivory by zinc hyperaccumulation in Thlaspi caerulescens (Brassicaceae). N. Phytol. 135, 655–658 (1997).
Durand, A. et al. Improving nickel phytoextraction by co-cropping hyperaccumulator plants inoculated by plant growth promoting rhizobacteria. Plant Soil 399, 179–192 (2016).
Gao, J. et al. Organic amendments for in situ immobilization of heavy metals in soil: a review. Chemosphere 335, 139088 (2023).
Hamid, Y. et al. An explanation of soil amendments to reduce cadmium phytoavailability and transfer to food chain. Sci. Total Environ. 660, 80–96 (2019).
Burges, A., Alkorta, I., Epelde, L. & Garbisu, C. From phytoremediation of soil contaminants to phytomanagement of ecosystem services in metal contaminated sites. Int. J. Phytoremediat. 20, 384–397 (2018).
Kafle, A. et al. Phytoremediation: mechanisms, plant selection and enhancement by natural and synthetic agents. Environ. Adv. 8, 100203 (2022).
Oladele, S. O., Oladele, B. B., Ajala, R. & Dada, B. F. Emerging contaminants: evaluation of degradable chelators towards enhancing cadmium phytoextraction efficiency of bioenergy crop grown on polluted soil. Emerg. Contam. 7, 139–148 (2021).
Arora, D. et al. Unleashing the feasibility of nanotechnology in phytoremediation of heavy metal-contaminated soil: a critical review towards sustainable approach. Water Air Soil Pollut. https://doi.org/10.1007/s11270-023-06874-9 (2024).
Dhanapal, A. R. et al. Nanotechnology approaches for the remediation of agricultural polluted soils. ACS Omega 9, 13522–13533 (2024).
Huang, D. et al. Nanoscale zero-valent iron assisted phytoremediation of Pb in sediment: impacts on metal accumulation and antioxidative system of Lolium perenne. Ecotoxicol. Environ. Saf. 153, 229–237 (2018).
Vítková, M., Puschenreiter, M. & Komárek, M. Effect of nano zero-valent iron application on As, Cd, Pb, and Zn availability in the rhizosphere of metal(loid) contaminated soils. Chemosphere 200, 217–226 (2018).
Hussan, M. U. et al. Calcium oxide nanoparticles ameliorate cadmium toxicity in alfalfa seedlings by depriving its bioaccumulation, enhancing photosystem II functionality and antioxidant gene expression. Sci. Total Environ. 955, 176797 (2024).
Yang, D. et al. Biochar-supported nanoscale zero-valent iron can simultaneously decrease cadmium and arsenic uptake by rice grains in co-contaminated soil. Sci. Total Environ. 814, 152798 (2022).
Ren, J., Mi, X. & Tao, L. Stabilization of cadmium in polluted soil using palygorskite-coated nanoscale zero-valent iron. J. Soils Sediment. 21, 1001–1009 (2021).
Hannan, F. et al. Remediation of Cd-polluted soil, improving Brassica napus L. growth and soil health with hardystonite synthesized with zeolite, limestone, and green zinc oxide nanoparticles. J. Clean. Prod. 437, 140737 (2024).
Chen, Q. & Wu, F.-b Breeding for low cadmium accumulation cereals. J. Zhejiang Univ. Sci. B 21, 442–459 (2020).
Melotto, M. et al. Breeding crops for enhanced food safety. Front. Plant Sci. 11, 428 (2020).
Clarke, J., McCaig, T., DePauw, R. & Knox, R. Registration of ‘Strongfield’ durum wheat. Crop Sci. 46, 2306 (2006).
Xu, M. et al. Selection of rice and maize varieties with low cadmium accumulation and derivation of soil environmental thresholds in karst. Ecotoxicol. Environ. Saf. 247, 114244 (2022).
Murugaiyan, V. et al. Identification of promising genotypes through systematic evaluation for arsenic tolerance and exclusion in rice (Oryza sativa L.). Front. Plant Sci. 12, 753063 (2021).
Chen, F. et al. Identification of barley genotypes with low grain Cd accumulation and its interaction with four microelements. Chemosphere 67, 2082–2088 (2007).
Hanlon, P. & Sewalt, V. GEMs: genetically engineered microorganisms and the regulatory oversight of their uses in modern food production. Crit. Rev. Food Sci. Nutr. 61, 959–970 (2021).
Singh, J., Mishra, V. & Varshney, V. Arsenic tolerance unveiled in Arabidopsis: CPK23 and PHT1;1 alliance. J. Plant Biochem. Biotechnol. https://doi.org/10.1007/s13562-024-00885-1 (2024).
Peña-Garcia, Y. et al. Arsenic stress-related F-box (ASRF) gene regulates arsenic stress tolerance in Arabidopsis thaliana. J. Hazard. Mater. 407, 124831 (2021).
Nahar, N., Rahman, A., Nawani, N. N., Ghosh, S. & Mandal, A. Phytoremediation of arsenic from the contaminated soil using transgenic tobacco plants expressing ACR2 gene of Arabidopsis thaliana. J. Plant Physiol. 218, 121–126 (2017).
Inamuddin, D., Adetunji, C. O., Ahamed, M. I. & Altalhi, T. (eds) Genetically Engineered Organisms in Bioremediation (CRC Press, 2024).
El-Sappah, A. H. et al. Plants’ molecular behavior to heavy metals: from criticality to toxicity. Front. Plant Sci. 15, 1423625 (2024).
Kakeshpour, T. et al. CGFS-type glutaredoxin mutations reduce tolerance to multiple abiotic stresses in tomato. Physiol. Plant. 173, 1263–1279 (2021).
Khan, I. U. et al. Functional characterization of a new metallochaperone for reducing cadmium concentration in rice crop. J. Clean. Prod. 272, 123152 (2020).
Zhang, B. Q. et al. Developing a cadmium resistant rice genotype with OsHIPP29 locus for limiting cadmium accumulation in the paddy crop. Chemosphere 247, 125958 (2020).
Lin, H. et al. Lsi1-regulated Cd uptake and phytohormones accumulation in rice seedlings in presence of Si. Plant Growth Regul. 86, 149–157 (2018).
Barr, Z. K., Werner, T. & Tilsner, J. Heavy metal-associated isoprenylated plant proteins (HIPPs) at plasmodesmata: exploring the link between localization and function. Plants 12, 3015 (2023).
Sharma, P., Sirohi, R., Tong, Y. W., Kim, S. H. & Pandey, A. Metal and metal(loids) removal efficiency using genetically engineered microbes: applications and challenges. J. Hazard. Mater. 416, 125855 (2021).
Thai, T. D., Lim, W. & Na, D. Synthetic bacteria for the detection and bioremediation of heavy metals. Front. Bioeng. Biotechnol. 11, 1178680 (2023).
Wang, Y. et al. Plant growth-promoting bacteria in metal-contaminated soil: current perspectives on remediation mechanisms. Front. Microbiol. 13, 966226 (2022).
Pande, V., Pandey, S. C., Sati, D., Bhatt, P. & Samant, M. Microbial interventions in bioremediation of heavy metal contaminants in agroecosystem. Front. Microbiol. 13, 824084 (2022).
Azad, M. A. K., Amin, L. & Sidik, N. M. Genetically engineered organisms for bioremediation of pollutants in contaminated sites. Chin. Sci. Bull. 59, 703–714 (2014).
Rojas, L. A. et al. Characterization of the metabolically modified heavy metal-resistant Cupriavidus metallidurans strain MSR33 generated for mercury bioremediation. PLoS ONE 6, e17555 (2011).
Bravo, G., Vega-Celedón, P., Gentina, J. C. & Seeger, M. Bioremediation by Cupriavidus metallidurans strain MSR33 of mercury-polluted agricultural soil in a rotary drum bioreactor and its effects on nitrogen cycle microorganisms. Microorganisms 8, 1952 (2020).
Jia, X., Li, Y., Xu, T. & Wu, K. Display of lead-binding proteins on Escherichia coli surface for lead bioremediation. Biotechnol. Bioeng. 117, 3820–3834 (2020).
Weyens, N. et al. Potential of willow and its genetically engineered associated bacteria to remediate mixed Cd and toluene contamination. J. Soils Sediment. 13, 176–188 (2013).
Cotta, S. R., Dias, A. C. F., Mendes, R. & Andreote, F. D. Role of horizontal gene transfer and cooperation in rhizosphere microbiome assembly. Braz. J. Microbiol. https://doi.org/10.1007/s42770-024-01583-9 (2024).
Ruan, Z. et al. Engineering natural microbiomes toward enhanced bioremediation by microbiome modeling. Nat. Commun. 15, 4694 (2024).
Qiu, Z., Egidi, E., Liu, H., Kaur, S. & Singh, B. K. New frontiers in agriculture productivity: optimised microbial inoculants and in situ microbiome engineering. Biotechnol. Adv. 37, 107371 (2019).
Narayanan, M. & Ma, Y. Mitigation of heavy metal stress in the soil through optimized interaction between plants and microbes. J. Environ. Manag. 345, 118732 (2023).
Narayanan, M. & Ma, Y. Metal tolerance mechanisms in plants and microbe-mediated bioremediation. Environ. Res. 222, 115413 (2023).
Tang, H., Xiang, G., Xiao, W., Yang, Z. & Zhao, B. Microbial mediated remediation of heavy metals toxicity: mechanisms and future prospects. Front. Plant Sci. 15, 1420408 (2024).
Bai, X. et al. A meta-analysis on crop growth and heavy metals accumulation with PGPB inoculation in contaminated soils. J. Hazard. Mater. 471, 134370 (2024).
Liu, Y.-Q. et al. Plant growth-promoting bacteria improve the Cd phytoremediation efficiency of soils contaminated with PE–Cd complex pollution by influencing the rhizosphere microbiome of sorghum. J. Hazard. Mater. 469, 134085 (2024).
Zhou, Y. et al. Superiority of native soil core microbiomes in supporting plant growth. Nat. Commun. 15, 6599 (2024).
Wang, Z., Hu, X., Solanki, M. K. & Pang, F. A synthetic microbial community of plant core microbiome can be a potential biocontrol tool. J. Agric. Food Chem. 71, 5030–5041 (2023).
Solomon, W., Janda, T. & Molnár, Z. Unveiling the significance of rhizosphere: implications for plant growth, stress response, and sustainable agriculture. Plant Physiol. Biochem. 206, 108290 (2024).
Shayanthan, A., Ordoñez, P. A. C. & Oresnik, I. J. The role of synthetic microbial communities (SynCom) in sustainable agriculture. Front. Agron. https://doi.org/10.3389/fagro.2022.896307 (2022).
Afridi, M. S. et al. Harnessing root exudates for plant microbiome engineering and stress resistance in plants. Microbiol. Res. 279, 127564 (2024).
Shi, A. et al. Enhancement of cadmium uptake in Sedum alfredii through interactions between salicylic acid/jasmonic acid and rhizosphere microbial communities. Sci. Total Environ. 947, 174585 (2024).
Guzmán-Moreno, J. et al. Bacillus megaterium HgT21: a promising metal multiresistant plant growth-promoting bacteria for soil biorestoration. Microbiol. Spectr. 10, e0065622 (2022).
Jamil, M. et al. Inoculation of heavy metal resistant bacteria alleviated heavy metal-induced oxidative stress biomarkers in spinach (Spinacia oleracea L.). BMC Plant Biol. 24, 221 (2024).
Wu, J. et al. Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes (II). Chem. Soc. Rev. 48, 1004–1076 (2019).
Zhao, L. et al. Nanobiotechnology-based strategies for enhanced crop stress resilience. Nat. Food 3, 829–836 (2022).
Yao, J. et al. ROS scavenging Mn3O4 nanozymes for in vivo anti-inflammation. Chem. Sci. 9, 2927–2933 (2018).
Celardo, I., Pedersen, J. Z., Traversa, E. & Ghibelli, L. Pharmacological potential of cerium oxide nanoparticles. Nanoscale 3, 1411–1420 (2011).
Saleem, M., Fariduddin, Q. & Castroverde, C. D. M. Salicylic acid: a key regulator of redox signalling and plant immunity. Plant Physiol. Biochem. 168, 381–397 (2021).
Sachdev, S., Ansari, S. A., Ansari, M. I., Fujita, M. & Hasanuzzaman, M. Abiotic stress and reactive oxygen species: generation, signaling, and defense mechanisms. Antioxidants 10, 277 (2021).
Ragab, G. & Saad-Allah, K. Seed priming with greenly synthesized sulfur nanoparticles enhances antioxidative defense machinery and restricts oxidative injury under manganese stress in Helianthus annuus (L.) seedlings. J. Plant Growth Regul. 40, 1894–1902 (2021).
Anwar, A. et al. Zero-valent iron (nZVI) nanoparticles mediate SlERF1 expression to enhance cadmium stress tolerance in tomato. J. Hazard. Mater. 468, 133829 (2024).
Khan, I. et al. Amelioration of salt induced toxicity in pearl millet by seed priming with silver nanoparticles (AgNPs): the oxidative damage, antioxidant enzymes and ions uptake are major determinants of salt tolerant capacity. Plant Physiol. Biochem. 156, 221–232 (2020).
He, W., Zhou, Y.-T., Wamer, W. G., Boudreau, M. D. & Yin, J.-J. Mechanisms of the pH dependent generation of hydroxyl radicals and oxygen induced by Ag nanoparticles. Biomaterials 33, 7547–7555 (2012).
Yan, X. et al. Rice exposure to silver nanoparticles in a life cycle study: effect of dose responses on grain metabolomic profile, yield, and soil bacteria. Environ. Sci. Nano 9, 2195–2206 (2022).
Al-Khayri, J. M. et al. The role of nanoparticles in response of plants to abiotic stress at physiological, biochemical, and molecular levels. Plants 12, 292 (2023).
Guha, T., Das, H., Mukherjee, A. & Kundu, R. Elucidating ROS signaling networks and physiological changes involved in nanoscale zero valent iron primed rice seed germination sensu stricto. Free Radic. Biol. Med. 171, 11–25 (2021).
Hong, J. et al. Foliar application of nanoparticles: mechanisms of absorption, transfer, and multiple impacts. Environ. Sci. Nano 8, 1196–1210 (2021).
Wu, H. & Li, Z. Nano-enabled agriculture: how do nanoparticles cross barriers in plants? Plant Commun. 3, 100346 (2022).
Su, Y. et al. Delivery, uptake, fate, and transport of engineered nanoparticles in plants: a critical review and data analysis. Environ. Sci. Nano 6, 2311–2331 (2019).
Lv, J., Christie, P. & Zhang, S. Uptake, translocation, and transformation of metal-based nanoparticles in plants: recent advances and methodological challenges. Environ. Sci. Nano 6, 41–59 (2019).
Kasote, D. M., Lee, J. H. J., Jayaprakasha, G. K. & Patil, B. S. Seed priming with iron oxide nanoparticles modulate antioxidant potential and defense-linked hormones in watermelon seedlings. ACS Sustain. Chem. Eng. 7, 5142–5151 (2019).
Cao, Y. et al. Engineered nanomaterials reduce metal(loid) accumulation and enhance staple food production for sustainable agriculture. Nat. Food https://doi.org/10.1038/s43016-024-01063-1 (2024).
Feng, J.-R., Deng, Q.-X., Han, S.-K. & Ni, H.-G. Use of nanoparticle-coated bacteria for the bioremediation of organic pollution: a mini review. Chemosphere 313, 137391 (2023).
Bhatt, P. et al. Nanobioremediation: a sustainable approach for the removal of toxic pollutants from the environment. J. Hazard. Mater. 427, 128033 (2022).
Saravanan, A. et al. A review on biosynthesis of metal nanoparticles and its environmental applications. Chemosphere 264, 128580 (2021).
AbdelRahim, K. et al. Extracellular biosynthesis of silver nanoparticles using Rhizopus stolonifer. Saudi J. Biol. Sci. 24, 208–216 (2017).
Ameen, F. et al. Soil bacteria Cupriavidus sp. mediates the extracellular synthesis of antibacterial silver nanoparticles. J. Mol. Struct. 1202, 127233 (2020).
Ahmed, E., Kalathil, S., Shi, L., Alharbi, O. & Wang, P. Synthesis of ultra-small platinum, palladium and gold nanoparticles by Shewanella loihica PV-4 electrochemically active biofilms and their enhanced catalytic activities. J. Saudi Chem. Soc. 22, 919–929 (2018).
Zhang, Y. et al. Nano-sized Fe2O3/Fe3O4 facilitate anaerobic transformation of hexavalent chromium in soil–water systems. J. Environ. Sci. 57, 329–337 (2017).
Ahmed, F. et al. Development of selenium nanoparticle based agriculture sensor for heavy metal toxicity detection. Agriculture 10, 610 (2020).
Maity, S., Bose, S., Dokania, P., Lohar, S. & Sarkar, A. A comprehensive review of arsenic contamination in India with an emphasis on its detection through biosensors and bioremediation from the aqueous system. Environ. Qual. Manag. 33, 427–457 (2024).
Lea-Smith, D. J. et al. Engineering biology applications for environmental solutions: potential and challenges. Nat. Commun. 16, 3538 (2025).
Feng, H. & Cheng, J. Whole-process risk management of soil amendments for remediation of heavy metals in agricultural soil — a review. Int. J. Environ. Res. Public Health 20, 1869 (2023).
Hou, D., Bolan, N. S., Tsang, D. C. W., Kirkham, M. B. & O’Connor, D. Sustainable soil use and management: an interdisciplinary and systematic approach. Sci. Total Environ. 729, 138961 (2020).
Thijs, S., Sillen, W., Rineau, F., Weyens, N. & Vangronsveld, J. Towards an enhanced understanding of plant–microbiome interactions to improve phytoremediation: engineering the metaorganism. Front. Microbiol. 7, 341 (2016).
Huang, H. et al. Comprehensive bioremediation effect of phosphorus-mineralized bacterium Enterobacter sp. PMB-5 on cadmium contaminated soil–crop system. J. Hazard. Mater. 470, 134227 (2024).
D’Hondt, K. et al. Microbiome innovations for a sustainable future. Nat. Microbiol. 6, 138–142 (2021).
Jurburg, S. D. et al. Potential of microbiome-based solutions for agrifood systems. Nat. Food 3, 557–560 (2022).
Hu, Y. et al. Revolutionizing soil heavy metal remediation: cutting-edge innovations in plant disposal technology. Sci. Total Environ. 918, 170577 (2024).
Li, F., Fang, L. & Wu, F. A roadmap for sustainable agricultural soil remediation under China’s carbon neutrality vision. Engineering 25, 28–31 (2023).
Baritz, R., Wiese, L., Verbeke, I. & Vargas, R. Voluntary guidelines for sustainable soil management: global action for healthy soils. in International Yearbook of Soil Law and Policy 2017 (eds Ginzky, H. et al.) 17–36 (Springer International Publishing, 2018).
Macklin, M. G. et al. Impacts of metal mining on river systems: a global assessment. Science 381, 1345–1350 (2023).
Zhang, S. et al. Escalating arsenic contamination throughout Chinese soils. Nat. Sustain. 7, 766–775 (2024).
Kalve, S., Sarangi, B. K., Pandey, R. A. & Chakrabarti, T. Arsenic and chromium hyperaccumulation by an ecotype of Pteris vittata — prospective for phytoextraction from contaminated water and soil. Curr. Sci. 100, 888–894 (2011).
Xu, M. et al. Effects of copper and arsenic on their uptake and distribution in As-hyperaccumulator Pteris vittata. Environ. Pollut. 300, 118982 (2022).
Li, S., Gu, X., Zhou, J., Wu, L. & Christie, P. Prediction of cadmium and zinc phytoextraction by the hyperaccumulator Sedum plumbizincicola using a dynamic geochemical mechanical combination model. Sci. Total Environ. 906, 167627 (2024).
Atta, M. I. et al. Assessing the effect of heavy metals on maize (Zea mays L.) growth and soil characteristics: plants-implications for phytoremediation. PeerJ 11, e16067 (2023).
Alaboudi, K. A., Ahmed, B. & Brodie, G. Phytoremediation of Pb and Cd contaminated soils by using sunflower (Helianthus annuus) plant. Ann. Agric. Sci. 63, 123–127 (2018).
Bassegio, C. et al. Growth and accumulation of Pb by roots and shoots of Brassica juncea L. Int. J. Phytoremediat. 22, 134–139 (2020).
Vamerali, T., Bandiera, M., Lucchini, P., Dickinson, N. M. & Mosca, G. Long-term phytomanagement of metal-contaminated land with field crops: integrated remediation and biofortification. Eur. J. Agron. 53, 56–66 (2014).
Ofori-Agyemang, F. et al. Phytomanagement of a metal-contaminated agricultural soil with Sorghum bicolor, humic/fulvic acids and arbuscular mycorrhizal fungi near the former Pb/Zn metaleurop Nord smelter. Chemosphere 362, 142624 (2024).
Smyth, S. J. Regulatory barriers to improving global food security. Glob. Food Sec. 26, 100440 (2020).
Rozas, P., Kessi-Pérez, E. I. & Martínez, C. Genetically modified organisms: adapting regulatory frameworks for evolving genome editing technologies. Biol. Res. 55, 31 (2022).
Cheng, X. et al. Trends in the global commercialization of genetically modified crops in 2023. J. Integr. Agricult. 23, 3943–3952 (2024).
Goodman, R. E. Twenty-eight years of GM Food and feed without harm: why not accept them? GM Crop Food 15, 40–50 (2024).