• Fox-Kemper, B. et al. in Climate Change 2021: The Physical Science Basis (eds Masson-Delmotte, V. et al.) 1211–1362 (Cambridge Univ. Press, 2021).

  • Climate Change 2023: Synthesis Report (eds Core Writing Team, Lee, H. & Romero, J.) 35–115 (IPCC, 2023).

  • Haasnoot, M. et al. Long-term sea-level rise necessitates a commitment to adaptation: a first order assessment. Clim. Risk Manag. 34, 100355 (2021).

    Article 

    Google Scholar
     

  • Nauels, A. et al. Attributing long-term sea-level rise to Paris Agreement emission pledges. Proc. Natl Acad. Sci. USA 116, 23487–23492 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Jones, C. D. et al. The Zero Emissions Commitment Model Intercomparison Project (ZECMIP) contribution to C4MIP: quantifying committed climate changes following zero carbon emissions. Geosci. Model Dev. 12, 4375–4385 (2019).

    Article 

    Google Scholar
     

  • Sigmond, M., Fyfe, J. C., Saenko, O. A. & Swart, N. C. Ongoing AMOC and related sea-level and temperature changes after achieving the Paris targets. Nat. Clim. Change 10, 672–677 (2020).

    Article 
    CAS 

    Google Scholar
     

  • King, A. D. et al. Exploring climate stabilisation at different global warming levels in ACCESS-ESM-1.5. Earth Syst. Dynam. 15, 1353–1383 (2024).

    Article 

    Google Scholar
     

  • Mengel, M. et al. Future sea level rise constrained by observations and long-term commitment. Proc. Natl Acad. Sci. USA 113, 201500515 (2016).

    Article 

    Google Scholar
     

  • Nauels, A., Meinshausen, M., Mengel, M., Lorbacher, K. & Wigley, T. M. L. Synthesizing long-term sea level rise projections—the MAGICC sea level model v2.0. Geosci. Model Dev. 10, 2495–2524 (2017).

    Article 

    Google Scholar
     

  • Wong, T. E. et al. BRICK v0.1, a simple, accessible, and transparent model framework for climate and regional sea-level projections. Geosci. Model Dev. Discuss. 2017, 1–36 (2017).


    Google Scholar
     

  • Kopp, R. E. et al. Evolving understanding of Antarctic ice-sheet physics and ambiguity in probabilistic sea-level projections. Earth’s Future 5, 1217–1233 (2017).

    Article 

    Google Scholar
     

  • Palmer, M. D. et al. Exploring the drivers of global and local sea-level change over the 21st century and beyond. Earth’s Future 8, e2019EF001413 (2020).

  • van de Wal, R. S. W. et al. A high-end estimate of sea level rise for practitioners. Earth’s Future 10, e2022EF002751 (2022).

    Article 

    Google Scholar
     

  • Turner, F. E. et al. Illustrative multi-centennial projections of global mean sea-level rise and their application. Earth’s Future 11, e2023EF003550 (2023).

    Article 

    Google Scholar
     

  • Clark, P. U. et al. Consequences of twenty-first-century policy for multi-millennial climate and sea-level change. Nat. Clim. Change 6, 360–369 (2016).

    Article 

    Google Scholar
     

  • Nauels, A., Rogelj, J., Schleussner, C.-F., Meinshausen, M. & Mengel, M. Linking sea level rise and socioeconomic indicators under the Shared Socioeconomic Pathways. Environ. Res. Lett. 12, 114002 (2017).

    Article 

    Google Scholar
     

  • Slangen, A. B. A. et al. Projecting twenty-first century regional sea-level changes. Clim. Change 124, 317–332 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Forster, P. et al. in Climate Change 2021: The Physical Science Basis (eds Masson-Delmotte, V. et al.) 923–1054 (Cambridge Univ. Press, 2021).

  • Greve, R. & Chambers, C. Mass loss of the Greenland ice sheet until the year 3000 under a sustained late-21st-century climate. J. Glaciol. 68, 618–624 (2022).

    Article 

    Google Scholar
     

  • Edwards, T. L. et al. Revisiting Antarctic ice loss due to marine ice-cliff instability. Nature 566, 58–64 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Golledge, N. R. et al. Global environmental consequences of twenty-first-century ice-sheet melt. Nature 566, 65–72 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Lehner, F. et al. Partitioning climate projection uncertainty with multiple large ensembles and CMIP5/6. Earth Syst. Dynam. 11, 491–508 (2020).

    Article 

    Google Scholar
     

  • Hermans, T. H. J. et al. Projecting global mean sea-level change using CMIP6 models. Geophys. Res. Lett. 48, e2020GL092064 (2021).

    Article 

    Google Scholar
     

  • Sadai, S., Spector, R. A., DeConto, R. & Gomez, N. The Paris Agreement and Climate Justice: inequitable impacts of sea level rise associated with temperature targets. Earth’s Future 10, e2022EF002940 (2022).

    Article 

    Google Scholar
     

  • Mengel, M., Nauels, A., Rogelj, J. & Schleussner, C.-F. Committed sea-level rise under the Paris Agreement and the legacy of delayed mitigation action. Nat. Commun. 9, 601 (2018).

    Article 

    Google Scholar
     

  • Lee, J.-Y. et al. in Climate Change 2021: The Physical Science Basis (eds Masson-Delmotte, V. et al.) 553–672 (Cambridge Univ. Press, 2021).

  • Chen, D. et al. in Climate Change 2021: The Physical Science Basis (eds Masson-Delmotte, V. et al.) 147–286 (Cambridge Univ. Press, 2021).

  • Seroussi, H. et al. Evolution of the Antarctic ice sheet over the next three centuries from an ISMIP6 model ensemble. Earth’s Future 12, e2024EF004561 (2024).

  • Van Den Akker, T. et al. Present-day mass loss rates are a precursor for West Antarctic ice sheet collapse. Cryosphere 19, 283–301 (2025).

    Article 

    Google Scholar
     

  • Malagón-Santos, V. et al. Improving statistical projections of ocean dynamic sea-level change using pattern recognition techniques. Ocean Sci. 19, 499–515 (2023).

    Article 

    Google Scholar
     

  • Yuan, J. & Kopp, R. E. Emulating ocean dynamic sea level by two-layer pattern scaling. J. Adv. Model. Earth Syst. 13, e2020MS002323 (2021).

    Article 

    Google Scholar
     

  • Hermans, T. H. J. et al. Drivers of interannual sea level variability on the Northwestern European Shelf. J. Geophys. Res. Oceans 125, e2020JC016325 (2020).

  • Chaigneau, A. A. et al. Impact of sea level changes on future wave conditions along the coasts of western Europe. Ocean Sci. 19, 1123–1143 (2023).

    Article 

    Google Scholar
     

  • Martyr-Koller, R., Thomas, A., Schleussner, C.-F., Nauels, A. & Lissner, T. Loss and damage implications of sea-level rise on small island developing states. Curr. Opin. Environ. Sustain. 50, 245–259 (2021).

    Article 

    Google Scholar
     

  • Martyr-Koller, R. & Schleussner, C.-F. Coastal loss and damage for small islands. Nat. Sustain. 6, 1508–1509 (2023).

    Article 

    Google Scholar
     

  • Forster, P. M. et al. Indicators of Global Climate Change 2023: annual update of key indicators of the state of the climate system and human influence. Earth Syst. Sci. Data 16, 2625–2658 (2024).

    Article 

    Google Scholar
     

  • Meinshausen, M. et al. The shared socio-economic pathway (SSP) greenhouse gas concentrations and their extensions to 2500. Geosci. Model Dev. 13, 3571–3605 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Meinshausen, M. et al. Greenhouse-gas emission targets for limiting global warming to 2 °C. Nature 458, 1158–1162 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Noël, B., Van Kampenhout, L., Lenaerts, J. T. M., Van De Berg, W. J. & Van Den Broeke, M. R. A 21st century warming threshold for sustained Greenland ice sheet mass loss. Geophys. Res. Lett. 48, e2020GL090471 (2021).

    Article 

    Google Scholar
     

  • Perrette, M., Landerer, F., Riva, R., Frieler, K. & Meinshausen, M. A scaling approach to project regional sea level rise and its uncertainties. Earth Syst. Dynam. 4, 11–29 (2013).

    Article 

    Google Scholar
     

  • Bilbao, R. A. F., Gregory, J. M. & Bouttes, N. Analysis of the regional pattern of sea level change due to ocean dynamics and density change for 1993–2099 in observations and CMIP5 AOGCMs. Clim. Dynam. 45, 2647–2666 (2015).

    Article 

    Google Scholar
     

  • Palmer, M. D. et al. UKCP18 Marine Report (Met Office, 2018); https://www.metoffice.gov.uk/pub/data/weather/uk/ukcp18/science-reports/UKCP18-Marine-report.pdf

  • Church, J. A. et al. in Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) 1137–1216 (Cambridge Univ. Press, 2013).

  • Levermann, A. et al. Projecting Antarctic ice discharge using response functions from SeaRISE ice-sheet models. Earth Syst. Dynam. 5, 271–293 (2014).

    Article 

    Google Scholar
     

  • DeConto, R. M. & Pollard, D. Contribution of Antarctica to past and future sea-level rise. Nature 531, 591–597 (2016).

    Article 
    CAS 

    Google Scholar
     

  • DeConto, R. M. et al. The Paris Climate Agreement and future sea-level rise from Antarctica. Nature 593, 83–89 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Meinshausen, M. et al. The RCP greenhouse gas concentrations and their extensions from 1765 to 2300. Clim. Change 109, 213–241 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Nauels, A. et al. Multi-century global and regional sea-level rise commitments from cumulative greenhouse gas emissions in the coming decades [Dataset]. Zenodo https://doi.org/10.5281/zenodo.16572777 (2025).