• Bor, Z. Distortion of femtosecond laser pulses in lenses and lens systems. J. Mod. Opt. 35, 1907–1918 (1988).

    Article 
    ADS 

    Google Scholar
     

  • Krausz, F. & Ivanov, M. Y. Attosecond physics. Rev. Mod. Phys. 81, 163–234 (2009).

  • Hentschel, M. et al. Attosecond metrology. Nature 414, 509–513 (2001).

    Article 
    ADS 

    Google Scholar
     

  • Gaumnitz, T. et al. Streaking of 43-attosecond soft-X-ray pulses generated by a passively CEP-stable mid-infrared driver. Opt. Express 25, 27506–27518 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Duris, J. et al. Tunable isolated attosecond X-ray pulses with gigawatt peak power from a free-electron laser. Nat. Photon. 14, 30–36 (2020).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Yan, J. et al. Terawatt-attosecond hard X-ray free-electron laser at high repetition rate. Nat. Photon. 18, 1293–1298 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Drescher, L. et al. Extreme-ultraviolet refractive optics. Nature 564, 91–94 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Ossiander, M. et al. Extreme ultraviolet metalens by vacuum guiding. Science 380, 59–63 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Larruquert, J. I. & Keski-Kuha, R. A. M. Multilayer coatings with high reflectance in the extreme-ultraviolet spectral range of 50 to 121.6 nm. Appl. Opt. 38, 1231–1236 (1999).

    Article 
    ADS 

    Google Scholar
     

  • Bourassin-Bouchet, C., Mang, M. M., Delmotte, F., Chavel, P. & de Rossi, S. How to focus an attosecond pulse. Opt. Express 21, 2506–2520 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Muschet, A. A., De Andres, A., Smijesh, N. & Veisz, L. An easy technique for focus characterization and optimization of XUV and soft X-ray pulses. Appl. Sci. 12, 5652 (2022).

    Article 

    Google Scholar
     

  • Appleton, E. V. Wireless studies of the ionosphere. Proc. Wireless Sect. Inst. Electr. Eng. 7, 257–265 (1932).


    Google Scholar
     

  • Bobrova, N. A. et al. Simulations of a hydrogen-filled capillary discharge waveguide. Phys. Rev. E 65, 016407 (2001).

    Article 
    ADS 

    Google Scholar
     

  • Gordon, D. F. et al. Ideal form of optical plasma lenses. Phys. Plasmas 25, 063101 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Hubbard, R. F. et al. High intensity focusing of laser pulses using a short plasma channel lens. Phys. Plasmas 9, 1431–1442 (2002).

    Article 
    ADS 

    Google Scholar
     

  • Katzir, Y., Eisenmann, S., Ferber, Y., Zigler, A. & Hubbard, R. F. A plasma microlens for ultrashort high power lasers. Appl. Phys. Lett. 95, 031101 (2009).

    Article 
    ADS 

    Google Scholar
     

  • Edwards, M. R. et al. Holographic plasma lenses. Phys. Rev. Lett. 128, 065003 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Spence, D. J. & Hooker, S. M. Investigation of a hydrogen plasma waveguide. Phys. Rev. E 63, 015401 (2000).

    Article 
    ADS 

    Google Scholar
     

  • Spence, D. J., Butler, A. & Hooker, S. M. First demonstration of guiding of high-intensity laser pulses in a hydrogen-filled capillary discharge waveguide. J. Phys. B 34, 4103 (2001).

    Article 
    ADS 

    Google Scholar
     

  • Sjobak, K. N. et al. Strong focusing gradient in a linear active plasma lens. Phys. Rev. Accel. Beams 24, 121306 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Lindstrøm, C. A. et al. Emittance preservation in a plasma-wakefield accelerator. Nat. Commun. 15, 6097 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Broks, B. H. P., van Dijk, W. & van der Mullen, J. J. A. M. Parameter study of a pulsed capillary discharge waveguide. J. Phys. D 39, 2377 (2006).

    Article 
    ADS 

    Google Scholar
     

  • Sobolev, E. et al. Terawatt-level three-stage pulse compression for all-attosecond pump-probe spectroscopy. Opt. Express 32, 46251–46258 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Senfftleben, B. et al. Highly non-linear ionization of atoms induced by intense high-harmonic pulses. J. Phys. Photonics 2, 034001 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Drescher, M. et al. Time-resolved atomic inner-shell spectroscopy. Nature 419, 803–807 (2002).

    Article 
    ADS 

    Google Scholar
     

  • Schnorr, K. et al. Electron rearrangement dynamics in dissociating In+2 molecules accessed by extreme ultraviolet pump-probe experiments. Phys. Rev. Lett. 113, 073001 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Fomenkov, I. et al. Light sources for high-volume manufacturing EUV lithography: technology, performance, and power scaling. Adv. Opt. Technol. 6, 173–186 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Pirati, A. et al. EUV lithography performance for manufacturing: status and outlook. In Proc. SPIE 78–92 (SPIE, 2016).

  • Butler, A., Spence, D. J. & Hooker, S. M. Guiding of high-intensity laser pulses with a hydrogen-filled capillary discharge waveguide. Phys. Rev. Lett. 89, 185003 (2002).

    Article 
    ADS 

    Google Scholar
     

  • Bobrova, N. A. et al. Laser-heater assisted plasma channel formation in capillary discharge waveguides. Phys. Plasmas 20, 020703 (2013).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Gonsalves, A. J. et al. Petawatt laser guiding and electron beam acceleration to 8 GeV in a laser-heated capillary discharge waveguide. Phys. Rev. Lett. 122, 084801 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Gonsalves, A. J. et al. Laser-heated capillary discharge plasma waveguides for electron acceleration to 8 GeV. Phys. Plasmas 27, 053102 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Chang, Z. Fundamentals of Attosecond Optics (CRC Press, 2011).

  • Chang, Z. Attosecond chirp compensation in water window by plasma dispersion. Opt. Express 26, 33238–33244 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Manschwetus, B. et al. Two-photon double ionization of neon using an intense attosecond pulse train. Phys. Rev. A 93, 061402 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Ye, P. et al. High-flux 100 kHz attosecond pulse source driven by a high-average power annular laser beam. Ultrafast Sci. 2022, 9823783 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Calegari, F. et al. Ultrafast electron dynamics in phenylalanine initiated by attosecond pulses. Science 346, 336–339 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Merritt, I. C. D., Jacquemin, D. & Vacher, M. Attochemistry: is controlling electrons the future of photochemistry? J. Phys. Chem. Lett. 12, 8404–8415 (2021).

    Article 

    Google Scholar
     

  • Calegari, F. & Martin, F. Open questions in attochemistry. Commun. Chem. 6, 184 (2023).

    Article 

    Google Scholar
     

  • Takahashi, E. J., Hasegawa, H., Nabekawa, Y. & Midorikawa, K. High-throughput, high-damage-threshold broadband beam splitter for high-order harmonics in the extreme-ultraviolet region. Opt. Lett. 29, 507–509 (2004).

    Article 
    ADS 

    Google Scholar
     

  • Gonsalves, A. J. et al. Demonstration of a high repetition rate capillary discharge waveguide. J. Appl. Phys. 119, 033302 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Paul, P. M. et al. Observation of a train of attosecond pulses from high harmonic generation. Science 292, 1689–1692 (2001).

    Article 
    ADS 

    Google Scholar
     

  • Durfee, C. G. & Milchberg, H. M. Light pipe for high intensity laser pulses. Phys. Rev. Lett. 71, 2409–2412 (1993).

    Article 
    ADS 

    Google Scholar
     

  • Nikitin, S. P., Alexeev, I., Fan, J. & Milchberg, H. M. High efficiency coupling and guiding of intense femtosecond laser pulses in preformed plasma channels in an elongated gas jet. Phys. Rev. E 59, R3839–R3842 (1999).

    Article 
    ADS 

    Google Scholar
     

  • Picksley, A. et al. Meter-scale conditioned hydrodynamic optical-field-ionized plasma channels. Phys. Rev. E 102, 053201 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Alejo, A., Cowley, J., Picksley, A., Walczak, R. & Hooker, S. M. Demonstration of kilohertz operation of hydrodynamic optical-field-ionized plasma channels. Phys. Rev. Accel. Beams 25, 011301 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Khurelbaatar, T. et al. Realization of a continuously phase-locked few-cycle deep-UV/XUV pump-probe beamline with attosecond precision for ultrafast spectroscopy. Appl. Sci. 11, 6840 (2021).

    Article 

    Google Scholar
     

  • Travers, J. C., Grigorova, T. F., Brahms, C. & Belli, F. High-energy pulse self-compression and ultraviolet generation through soliton dynamics in hollow capillary fibres. Nat. Photon. 13, 547–554 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Travers, J. C. Optical solitons in hollow-core fibres. Opt. Commun. 555, 130191 (2024).

    Article 

    Google Scholar
     

  • Reduzzi, M. et al. Direct temporal characterization of sub-3-fs deep UV pulses generated by resonant dispersive wave emission. Opt. Express 31, 26854–26864 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Lee, J. P. et al. Few-femtosecond soft X-ray transient absorption spectroscopy with tuneable DUV-vis pump pulses. Optica 11, 1320–1323 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Andrade, J. R. C. et al. Temporal characterization of tunable few-cycle vacuum ultraviolet pulses. Nat. Photon. (2025).

  • Henke, B. L., Gullikson, E. M. & Davis, J. C. X-ray interactions: photoabsorption, scattering, transmission, and reflection at E = 50-30,000 eV, Z = 1-92. At. Data Nucl. Data Tables 54, 181–342 (1993).

    Article 
    ADS 

    Google Scholar
     

  • Samson, J. A. R. & Haddad, G. N. Total photoabsorption cross sections of H2 from 18 to 113 eV. J. Opt. Soc. Am. B 11, 277–279 (1994).

    Article 
    ADS 

    Google Scholar
     

  • Svirplys, E. et al. Plasma lens for focusing attosecond pulses. Zenodo https://doi.org/10.5281/zenodo.15180960 (2025).