• Xu, F., Ma, X., Zhang, Q., Lo, H. K. & Pan, J. W. Secure quantum key distribution with realistic devices. Rev. Mod. Phys. 92, 025002 (2020).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Li, W. et al. High-rate quantum key distribution exceeding 110 Mb s−1. Nat. Photonics 17, 416–421 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Grünenfelder, F. et al. Fast single-photon detectors and real-time key distillation enable high secret-key-rate quantum key distribution systems. Nat. Photonics 17, 422–426 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Humphreys, P. C. et al. Deterministic delivery of remote entanglement on a quantum network. Nature 558, 268–273 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Wang, S. et al. Twin-field quantum key distribution over 830-km fibre. Nat. Photonics 16, 154–161 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Zhong, Y. et al. Deterministic multi-qubit entanglement in a quantum network. Nature 590, 571–575 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Kržič, A. et al. Towards metropolitan free-space quantum networks. NPJ Quantum Inf. 9, 95 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Ribezzo, D. et al. Deploying an inter-European quantum network. Adv. Quantum Technol. 6, 2200061 (2023).

    Article 

    Google Scholar
     

  • Chen, Y. A. et al. An integrated space-to-ground quantum communication network over 4,600 kilometres. Nature 589, 214–219 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Li, Y. et al. Multiuser time-energy entanglement swapping based on dense wavelength division multiplexed and sum-frequency generation. Phys. Rev. Lett. 123, 250505 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Pompili, M. et al. Realization of a multinode quantum network of remote solid-state qubits. Science 372, 259–264 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Wehner, S., Elkouss, D. & Hanson, R. Quantum internet: a vision for the road ahead. Science 362, eaam9288 (2018).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Wei, S.-H. et al. Towards real-world quantum networks: a review. Laser Photonics Rev. 16, 2100219 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Simon, C. Towards a global quantum network. Nat. Photonics 11, 678–680 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Pittaluga, M. et al. Long-distance coherent quantum communications in deployed telecom networks. Nature 640, 911–917 (2025).

    Article 
    ADS 

    Google Scholar
     

  • Chang, X. Y. et al. Hybrid entanglement and bit-flip error correction in a scalable quantum network node. Nat. Phys. 21, 583–589 (2025).

    Article 

    Google Scholar
     

  • Hermans, S. L. N. et al. Qubit teleportation between non-neighbouring nodes in a quantum network. Nature 605, 663–668 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Cacciapuoti, A. S. et al. Quantum internet: networking challenges in distributed quantum computing. IEEE Network 34, 137–143 (2019).

    Article 

    Google Scholar
     

  • Degen, C. L., Reinhard, F. & Cappellaro, P. Quantum sensing. Rev. Mod. Phys. 89, 035002 (2017).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Guo, X. et al. Distributed quantum sensing in a continuous-variable entangled network. Nat. Phys. 16, 281–284 (2020).

    Article 

    Google Scholar
     

  • Polino, E. et al. Experimental nonclassicality in a causal network without assuming freedom of choice. Nat. Commun. 14, 909 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Wang, N. N. et al. Certification of non-classicality in all links of a photonic star network without assuming quantum mechanics. Nat. Commun. 14, 2153 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Sun, Q. C. et al. Experimental demonstration of non-bilocality with truly independent sources and strict locality constraints. Nat. Photonics 13, 687–691 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Wengerowsky, S., Joshi, S. K., Steinlechner, F., Hübel, H. & Ursin, R. An entanglement-based wavelength multiplexed quantum communication network. Nature 564, 225–228 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Joshi, S. K. et al. A trusted node-free eight-user metropolitan quantum communication network. Sci. Adv. 6, eaba0959 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Liu, X. et al. An entanglement-based quantum network based on symmetric dispersive optics quantum key distribution. APL Photonics 5, 076104 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Kim, J. H., Chae, J. W., Jeong, Y. C. & Kim, Y. H. Quantum communication with time-bin entanglement over a wavelength-multiplexed fiber network. APL Photonics 7, 016106 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Pan, J. W., Bouwmeester, D., Weinfurter, H. & Zeilinger, A. Experimental entanglement swapping: entangling photons that never interacted. Phys. Rev. Lett. 80, 3891 (1998).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Samara, F. et al. Entanglement swapping between independent and asynchronous integrated photon-pair sources. Quantum Sci. Technol. 6, 045024 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Liu, S., Lou, Y., Chen, Y. & Jing, J. All-optical entanglement swapping. Phys. Rev. Lett. 128, 060503 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Kaltenbaek, R., Prevedel, R., Aspelmeyer, M. & Zeilinger, A. High-fidelity entanglement swapping with fully independent sources. Phys. Rev. A 79, 040302 (2009).

    Article 
    ADS 

    Google Scholar
     

  • Lu, C. Y., Yang, T. & Pan, J. W. Experimental multiparticle entanglement swapping for quantum networking. Phys. Rev. Lett. 103, 020501 (2009).

    Article 
    ADS 

    Google Scholar
     

  • Shchukin, E. & van Loock, P. Optimal entanglement swapping in quantum repeaters. Phys. Rev. Lett. 128, 150502 (2022).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Guccione, G. et al. Connecting heterogeneous quantum networks by hybrid entanglement swapping. Sci. Adv. 6, eaba4508 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Sun, Q. C. et al. Entanglement swapping over 100 km optical fiber with independent entangled photon-pair sources. Optica 4, 1214–1218 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Hong, C. K., Ou, Z. Y. & Mandel, L. Measurement of subpicosecond time intervals between two photons by interference. Phys. Rev. Lett. 59, 2044 (1987).

    Article 
    ADS 

    Google Scholar
     

  • Xiong, C. et al. Active temporal multiplexing of indistinguishable heralded single photons. Nat. Commun. 7, 10853 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Kwiat, P. G. et al. New high-intensity source of polarization-entangled photon pairs. Phys. Rev. Lett. 75, 4337 (1995).

    Article 
    ADS 

    Google Scholar
     

  • Clauser, J. F., Horne, M. A., Shimony, A. & Holt, R. A. Proposed experiment to test local hidden-variable theories. Phys. Rev. Lett. 23, 880 (1969).

    Article 
    ADS 

    Google Scholar
     

  • Ma, Z. et al. Ultrabright quantum photon sources on chip. Phys. Rev. Lett. 125, 263602 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Fan, Y. et al. Multi-wavelength quantum light sources on silicon nitride micro-ring chip. Laser Photonics Rev. 17, 2300172 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Azuma, K. et al. Quantum repeaters: from quantum networks to the quantum internet. Rev. Mod. Phys. 95, 045006 (2023).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Liu, J. et al. Creation of memory–memory entanglement in a metropolitan quantum network. Nature 629, 579–585 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Knaut, C. M. et al. Entanglement of nanophotonic quantum memory nodes in a telecom network. Nature 629, 573–578 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Azuma, K., Tamaki, K. & Lo, H. K. All-photonic quantum repeaters. Nat. Commun. 6, 1–7 (2015).


    Google Scholar
     

  • Hasegawa, Y. et al. Experimental time-reversed adaptive Bell measurement towards all-photonic quantum repeaters. Nat. Commun. 10, 378 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Li, Z. D. et al. Experimental quantum repeater without quantum memory. Nat. Photonics 13, 644–648 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Li, B., Goodenough, K., Rozpędek, F. & Jiang, L. Generalized quantum repeater graph states. Phys. Rev. Lett. 134, 190801 (2025).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Zhang, Y. et al. Scalable, fiber-compatible lithium-niobate-on-insulator micro-waveguides for efficient nonlinear photonics. Optica 10, 688–693 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Huang, Y. et al. SourceData.zip. figshare https://figshare.com/s/145209fe661ad4bcd80b (2025).