• Fox-Kemper, B. et al. Ocean, Cryosphere, and Sea Level Change 1211–1362 (Intergovernmental Panel on Climate Change, Cambridge Univ. Press, 2021).

  • Bourquin, M. et al. The microbiome of cryospheric ecosystems. Nat. Commun. 13, 3087 (2022). This data synthesis paper surveys microbial community composition across different cryosphere habitats represented in existing sequence databases.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Boetius, A., Anesio, A. M., Deming, J. W., Mikucki, J. A. & Rapp, J. Z. Microbial ecology of the cryosphere: sea ice and glacial habitats. Nat. Rev. Microbiol. 13, 677–690 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Margesin, R. & Collins, T. Microbial ecology of the cryosphere (glacial and permafrost habitats): current knowledge. Appl. Microbiol. Biotechnol. 103, 2537–2549 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jansson, J. K. & Taş, N. The microbial ecology of permafrost. Nat. Rev. Microbiol. 12, 414–425 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, Y. et al. Advances in cold-adapted enzymes derived from microorganisms. Front. Microbiol. 14, 1152847 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rantanen, M. et al. The Arctic has warmed nearly four times faster than the globe since 1979. Commun. Earth Environ. 3, 168 (2022).

    Article 

    Google Scholar
     

  • Smith, S. L., O’Neill, H. B., Isaksen, K., Noetzli, J. & Romanovsky, V. E. The changing thermal state of permafrost. Nat. Rev. Earth Environ. 3, 10–23 (2022).

    Article 

    Google Scholar
     

  • Antell, G. T. & Saupe, E. E. Bottom-up controls, ecological revolutions and diversification in the oceans through time. Curr. Biol. 31, R1237–R1251 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lenton, T. M. et al. Tipping elements in the Earth’s climate system. Proc. Natl Acad. Sci. USA 105, 1786–1793 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Anesio, A. M., Lutz, S., Chrismas, N. A. M. & Benning, L. G. The microbiome of glaciers and ice sheets. npj Biofilms Microbiomes 3, 10 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tedstone, A. J. et al. Algal growth and weathering crust state drive variability in western Greenland Ice Sheet ice albedo. Cryosphere 14, 521–538 (2020).

    Article 

    Google Scholar
     

  • Hassan, S. et al. Microbial oases in the ice: a state-of-the-art review on cryoconite holes as diversity hotspots and their scientific connotations. Environ. Res. 252, 118963 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bradley, J. A. et al. Active and dormant microorganisms on glacier surfaces. Geobiology 21, 244–261 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jensen, M. B., Turpin-Jelfs, T., Tranter, M., Benning, L. G. & Anesio, A. M. Photophysiological response of glacier ice algae to abiotic stressors. Front. Geochem. 2, 1436488 (2024).

    Article 

    Google Scholar
     

  • Rassner, S. M. E. et al. The distinctive weathering crust habitat of a High Arctic glacier comprises discrete microbial micro-habitats. Environ. Microbiol. 26, e16617 (2024). This study surveys the microbial diversity in different microhabitats within the weathering crust.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pittino, F. et al. Functional and taxonomic diversity of anaerobes in supraglacial microbial communities. Microbiol. Spectr. 11, e0100422 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Murakami, T. et al. Metagenomics reveals global-scale contrasts in nitrogen cycling and cyanobacterial light-harvesting mechanisms in glacier cryoconite. Microbiome 10, 50 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Faber, Q., Davis, C. & Christner, B. Metagenomic inference of microbial community composition and function in the weathering crust aquifer of a temperate glacier. Front. Microbiomes 3, 1488744 (2024).

    Article 

    Google Scholar
     

  • Segawa, T. et al. Redox stratification within cryoconite granules influences the nitrogen cycle on glaciers. FEMS Microbiol. Ecol. 96, fiaa199 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Perini, L. et al. Giant viral signatures on the Greenland ice sheet. Microbiome 12, 91 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bellas, C. M., Schroeder, D. C., Edwards, A., Barker, G. & Anesio, A. M. Flexible genes establish widespread bacteriophage pan-genomes in cryoconite hole ecosystems. Nat. Commun. 11, 4403 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, Y. Q. et al. Diversity and function of mountain and polar supraglacial DNA viruses. Sci. Bull. 68, 2418–2433 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Zhong, Z. P. et al. Glacier ice archives nearly 15,000-year-old microbes and phages. Microbiome 9, 160 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Doyle, S. M. & Christner, B. C. Variation in bacterial composition, diversity, and activity across different subglacial basal ice types. Cryosphere 16, 4033–4051 (2022). This article highlights variation in community composition across different types of basal ice as well as differences between basal and englacial environments.

    Article 

    Google Scholar
     

  • Varliero, G. et al. Glacier clear ice bands indicate englacial channel microbial distribution. J. Glaciol. 67, 811–823 (2021).

    Article 

    Google Scholar
     

  • Dani, K. G. S., Mader, H. M., Wolff, E. W. & Wadham, J. L. Modelling the liquid-water vein system within polar ice sheets as a potential microbial habitat. Earth Planet. Sci. Lett. 333–334, 238–249 (2012).

    Article 

    Google Scholar
     

  • Lamarche-Gagnon, G. et al. Greenland melt drives continuous export of methane from the ice-sheet bed. Nature 565, 73–77 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Vinšová, P. et al. The biogeochemical legacy of Arctic subglacial sediments exposed by glacier retreat. Global Biogeochem. Cycles 36, e2021GB007126 (2022).

    Article 

    Google Scholar
     

  • Toubes-Rodrigo, M. et al. Active microbial ecosystem in glacier basal ice fuelled by iron and silicate comminution-derived hydrogen. Microbiol. Open 10, e1200 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Yang, Z. F. et al. H2 metabolism revealed by metagenomic analysis of subglacial sediment from East Antarctica. J. Microbiol. 57, 1095–1104 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dunham, E. C., Dore, J. E., Skidmore, M. L., Roden, E. E. & Boyd, E. S. Lithogenic hydrogen supports microbial primary production in subglacial and proglacial environments. Proc. Natl Acad. Sci. USA 118, e2007051117 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Davis, C. L. et al. Biogeochemical and historical drivers of microbial community composition and structure in sediments from Mercer Subglacial Lake, West Antarctica. ISME Commun. 3, 8 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vannier, P. et al. Metagenomic analyses of a microbial assemblage in a subglacial lake beneath the Vatnajokull ice cap, Iceland. Front. Microbiol. 14, 1122184 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Christner, B. C. et al. A microbial ecosystem beneath the West Antarctic ice sheet. Nature 512, 310–313 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Vick-Majors, T. J. et al. Biogeochemical connectivity between freshwater ecosystems beneath the West Antarctic Ice Sheet and the sub-ice marine environment. Global Biogeochem. Cycles https://doi.org/10.1029/2019GB006446 (2020).

  • Waller, R. I., Murton, J. B. & Kristensen, L. Glacier–permafrost interactions: processes, products and glaciological implications. Sediment. Geol. 255-256, 1–28 (2012).

    Article 

    Google Scholar
     

  • Braun, K. N. & Andresen, C. G. Heterogeneity in ice-wedge permafrost degradation revealed across spatial scales. Remote Sens. Environ. 311, 114299 (2024).

    Article 

    Google Scholar
     

  • Bottos, E. M. et al. Dispersal limitation and thermodynamic constraints govern spatial structure of permafrost microbial communities. FEMS Microbiol. Ecol. 94, fiy110 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Gilichinsky, D. et al. Biodiversity of cryopegs in permafrost. FEMS Microbiol. Ecol. 53, 117–128 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rapp, J. Z., Sullivan, M. B. & Deming, J. W. Divergent genomic adaptations in the microbiomes of Arctic subzero sea-ice and cryopeg brines. Front. Microbiol. 12, 701186 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu, X. et al. Comparative metagenomics of the active layer and permafrost from low-carbon soil in the Canadian High Arctic. Environ. Sci. Technol. 55, 12683–12693 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hultman, J. et al. Multi-omics of permafrost, active layer and thermokarst bog soil microbiomes. Nature 521, 208–212 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Waldrop, M. P. et al. Permafrost microbial communities and functional genes are structured by latitudinal and soil geochemical gradients. ISME J. 17, 1224–1235 (2023). This study compares 133 permafrost metagenomes from across North America, Europe and Asia to globally assess permafrost microbial community composition and function.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kang, L. et al. Metagenomic insights into microbial community structure and metabolism in alpine permafrost on the Tibetan Plateau. Nat. Commun. 15, 5920 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Woodcroft, B. J. et al. Genome-centric view of carbon processing in thawing permafrost. Nature 560, 49–54 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Emerson, J. B. et al. Host-linked soil viral ecology along a permafrost thaw gradient. Nat. Microbiol. 3, 870–880 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Scheel, M. et al. Abrupt permafrost thaw triggers activity of copiotrophs and microbiome predators. FEMS Microbiol. Ecol. 99, fiad123 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Blume-Werry, G., Klaminder, J., Krab, E. J. & Monteux, S. Ideas and perspectives: alleviation of functional limitations by soil organisms is key to climate feedbacks from arctic soils. Biogeosciences 20, 1979–1990 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Ficetola, G. F. et al. The development of terrestrial ecosystems emerging after glacier retreat. Nature 632, 336–342 (2024). This global study uses structural equation modelling to characterize microbial succession in deglaciating ecosystems.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Franzetti, A. et al. Early ecological succession patterns of bacterial, fungal and plant communities along a chronosequence in a recently deglaciated area of the Italian Alps. FEMS Microbiol. Ecol. 96, fiaa165 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Varliero, G., Anesio, A. M. & Barker, G. L. A. A taxon-wise insight into rock weathering and nitrogen fixation functional profiles of proglacial systems. Front. Microbiol. 12, 627437 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nash, M. V. et al. Metagenomic insights into diazotrophic communities across Arctic glacier forefields. FEMS Microbiol. Ecol. 94, fiy114 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Trejos-Espeleta, J. C. et al. Principal role of fungi in soil carbon stabilization during early pedogenesis in the high Arctic. Proc. Natl Acad. Sci. USA 121, e2402689121 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chiri, E., Nauer, P. A., Henneberger, R., Zeyer, J. & Schroth, M. H. Soil–methane sink increases with soil age in forefields of Alpine glaciers. Soil Biol. Biochem. 84, 83–95 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Tian, C. et al. Microbial community structure and metabolic potential at the initial stage of soil development of the glacial forefields in Svalbard. Microb. Ecol. 86, 933–946 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Deming, J. W. & Eric Collins, R. in Sea Ice (ed. Thomas, D. N.) 326–351 (Wiley, 2017).

  • Lund-Hansen, L. C. et al. Sea ice as habitat for microalgae, bacteria, virus, fungi, meio- and macrofauna: a review of an extreme environment. Polar Biol. 47, 1275–1306 (2024). This recent review describes the physical environment of sea ice and the microorganisms that colonize this unique habitat.

    Article 

    Google Scholar
     

  • Hatam, I. et al. Distinct bacterial assemblages reside at different depths in Arctic multiyear sea ice. FEMS Microbiol. Ecol. 90, 115–125 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cono, V. L. et al. Wintertime simulations induce changes in the structure, diversity and function of Antarctic sea ice-associated microbial communities. Microorganisms 10, 623 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Arrigo, K. R. Sea ice ecosystems. Annu. Rev. Mar. Sci. 6, 439–467 (2014).

    Article 

    Google Scholar
     

  • Frey, K. E. et al. Arctic Report Card 2016: Arctic Ocean Primary Productivity (National Oceanic and Atmospheric Administration, 2016).

  • Bowman, J. S. The relationship between sea ice bacterial community structure and biogeochemistry: a synthesis of current knowledge and known unknowns. Elementa https://doi.org/10.12952/journal.elementa.000072 (2015).

  • Koch, C. W. et al. Year-round utilization of sea ice-associated carbon in Arctic ecosystems. Nat. Commun. 14, 1964 (2023). This study emphasizes the perennial importance of ice algal carbon to the Arctic food web and highlights expected shifts with declining seasonal sea ice.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Teng, Z.-J. et al. Biogeographic traits of dimethyl sulfide and dimethylsulfoniopropionate cycling in polar oceans. Microbiome 9, 207 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Thiele, S., Storesund, J. E., Fernández-Méndez, M., Assmy, P. & Øvreås, L. A winter-to-summer transition of bacterial and archaeal communities in Arctic sea ice. Microorganisms 10, 1618 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hatam, I., Lange, B., Beckers, J., Haas, C. & Lanoil, B. Bacterial communities from Arctic seasonal sea ice are more compositionally variable than those from multi-year sea ice. ISME J. 10, 2543–2552 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Eronen-Rasimus, E. et al. An active bacterial community linked to high chl-a concentrations in Antarctic winter-pack ice and evidence for the development of an anaerobic sea-ice bacterial community. ISME J. 11, 2345–2355 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rysgaard, S., Glud, R. N., Sejr, M. K., Blicher, M. E. & Stahl, H. J. Denitrification activity and oxygen dynamics in Arctic sea ice. Polar Biol. 31, 527–537 (2008).

    Article 

    Google Scholar
     

  • Keuschnig, C. et al. Selection processes of Arctic seasonal glacier snowpack bacterial communities. Microbiome 11, 35 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Antony, R. et al. Microbial communities associated with Antarctic snow pack and their biogeochemical implications. Microbiol. Res. 192, 192–202 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Winkel, M. et al. Seasonality of glacial snow and ice microbial communities. Front. Microbiol. 13, 876848 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Malard, L. A. et al. Snow microorganisms colonise Arctic soils following snow melt. Microb. Ecol. 86, 1661–1675 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hugelius, G. et al. Estimated stocks of circumpolar permafrost carbon with quantified uncertainty ranges and identified data gaps. Biogeosciences 11, 6573–6593 (2014).

    Article 

    Google Scholar
     

  • Vonk, J. E. et al. The land–ocean Arctic carbon cycle. Nat. Rev. Earth Environ. 6, 86–105 (2025).

    Article 

    Google Scholar
     

  • Schuur, E. A. G. et al. Permafrost and climate change: carbon cycle feedbacks from the warming Arctic. Annu. Rev. Environ. Resour. 47, 343–371 (2022).

    Article 

    Google Scholar
     

  • Hood, E., Battin, T. J., Fellman, J., O’Neel, S. & Spencer, R. G. M. Storage and release of organic carbon from glaciers and ice sheets. Nat. Geosci. 8, 91–96 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Wadham, J. L. et al. Ice sheets matter for the global carbon cycle. Nat. Commun. 10, 3567 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kou, D. et al. Spatially-explicit estimate of soil nitrogen stock and its implication for land model across Tibetan alpine permafrost region. Sci. Total Environ. 650, 1795–1804 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Strauss, J. et al. A globally relevant stock of soil nitrogen in the Yedoma permafrost domain. Nat. Commun. 13, 6074 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wolff, E. W. Ice sheets and nitrogen. Philos. Trans. R. Soc. B Biol. Sci. 368, 20130127 (2013).

    Article 

    Google Scholar
     

  • Moon, T. A., Druckenmiller, M. L. & Thoman, R. L. Arctic Report Card 2024 (National Oceanic and Atmospheric Administration, 2024).

  • Harden, J. W. et al. Field information links permafrost carbon to physical vulnerabilities of thawing. Geophys. Res. Lett. https://doi.org/10.1029/2012GL051958 (2012).

  • Mueller, C. W. et al. Large amounts of labile organic carbon in permafrost soils of northern Alaska. Global Change Biol. 21, 2804–2817 (2015).

    Article 

    Google Scholar
     

  • Huss, M. & Hock, R. Global-scale hydrological response to future glacier mass loss. Nat. Clim. Change 8, 135–140 (2018).

    Article 

    Google Scholar
     

  • Rawlins, M. A. & Karmalkar, A. V. Regime shifts in Arctic terrestrial hydrology manifested from impacts of climate warming. Cryosphere 18, 1033–1052 (2024).

    Article 

    Google Scholar
     

  • Hood, E. et al. Glaciers as a source of ancient and labile organic matter to the marine environment. Nature 462, 1044–1047 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • He, M. et al. Priming effect stimulates carbon release from thawed permafrost. Global Change Biol. 29, 4638–4651 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Bianchi, T. S. The role of terrestrially derived organic carbon in the coastal ocean: a changing paradigm and the priming effect. Proc. Natl Acad. Sci. USA 108, 19473–19481 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Darcy, J. L. et al. Phosphorus, not nitrogen, limits plants and microbial primary producers following glacial retreat. Sci. Adv. 4, eaaq0942 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Burpee, B., Saros, J., Northington, R. & Simon, K. Microbial nutrient limitation in Arctic lakes in a permafrost landscape of southwest Greenland. Biogeosciences 13, 365–374 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Sørensen, H. L., Thamdrup, B., Jeppesen, E., Rysgaard, S. & Glud, R. N. Nutrient availability limits biological production in Arctic sea ice melt ponds. Polar Biol. 40, 1593–1606 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, D. et al. Microbial nitrogen and phosphorus co-limitation across permafrost region. Global Change Biol. 29, 3910–3923 (2023). This article identifies both nitrogen and phosphorus as limiting factors for microbial activity in permafrost and tundra ecosystems.

    Article 
    CAS 

    Google Scholar
     

  • Schmidt, S. K. et al. Microbial biogeochemistry and phosphorus limitation in cryoconite holes on glaciers across the Taylor Valley, McMurdo Dry Valleys, Antarctica. Biogeochemistry 158, 313–326 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Guo, L. et al. Acceleration of phosphorus weathering under warm climates. Sci. Adv. 10, eadm7773 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Reyes, F. R. & Lougheed, V. L. Rapid nutrient release from permafrost thaw in arctic aquatic ecosystems. Arct. Antarct. Alp. Res. 47, 35–48 (2015).

    Article 

    Google Scholar
     

  • Keuper, F. et al. A frozen feast: thawing permafrost increases plant-available nitrogen in subarctic peatlands. Global Change Biol. 18, 1998–2007 (2012).

    Article 

    Google Scholar
     

  • Wang, S., Bailey, D., Lindsay, K., Moore, J. K. & Holland, M. Impact of sea ice on the marine iron cycle and phytoplankton productivity. Biogeosciences 11, 4713–4731 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Oziel, L. et al. Climate change and terrigenous inputs decrease the efficiency of the future Arctic Ocean’s biological carbon pump. Nat. Clim. Change 15, 171–179 (2025).

    Article 

    Google Scholar
     

  • von Friesen, L. W. & Riemann, L. Nitrogen fixation in a changing Arctic Ocean: an overlooked source of nitrogen? Front. Microbiol. 11, 596426 (2020).

    Article 

    Google Scholar
     

  • Koven, C. D., Hugelius, G., Lawrence, D. M. & Wieder, W. R. Higher climatological temperature sensitivity of soil carbon in cold than warm climates. Nat. Clim. Change 7, 817–822 (2017). This study shows that Q10 values at in situ conditions are higher in polar environments, indicating a higher sensitivity to warming temperatures.

    Article 
    CAS 

    Google Scholar
     

  • Leles, S. G. & Levine, N. M. Mechanistic constraints on the trade-off between photosynthesis and respiration in response to warming. Sci. Adv. 9, eadh8043 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Barton, S. et al. Evolutionary temperature compensation of carbon fixation in marine phytoplankton. Ecol. Lett. 23, 722–733 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Maes, S. L. et al. Environmental drivers of increased ecosystem respiration in a warming tundra. Nature 629, 105–113 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jeong, S.-J. et al. Accelerating rates of Arctic carbon cycling revealed by long-term atmospheric CO2 measurements. Sci. Adv. 4, eaao1167 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zheng, J. et al. Impacts of temperature and soil characteristics on methane production and oxidation in Arctic tundra. Biogeosciences 15, 6621–6635 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Kane, E. S. et al. Response of anaerobic carbon cycling to water table manipulation in an Alaskan rich fen. Soil Biol. Biochem. 58, 50–60 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Maslov, M. N. & Maslova, O. A. Nitrogen limitation of microbial activity in alpine tundra soils along an environmental gradient: intra-seasonal variations and effect of rising temperature. Soil Biol. Biochem. 156, 108234 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Maslov, M. N. & Maslova, O. A. Soil nitrogen mineralization and its sensitivity to temperature and moisture in temperate peatlands under different land-use management practices. CATENA 210, 105922 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Fowler, D. et al. Effects of global change during the 21st century on the nitrogen cycle. Atmos. Chem. Phys. 15, 13849–13893 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Wang, J. et al. Energetic supply regulates heterotrophic nitrogen fixation along a glacial chronosequence. Soil Biol. Biochem. 154, 108150 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Qin, S. et al. Temperature sensitivity of permafrost carbon release mediated by mineral and microbial properties. Sci. Adv. 7, eabe3596 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schädel, C. et al. Potential carbon emissions dominated by carbon dioxide from thawed permafrost soils. Nat. Clim. Change 6, 950–953 (2016).

    Article 

    Google Scholar
     

  • Li, Y. et al. Genomic insights into redox-driven microbial processes for carbon decomposition in thawing Arctic soils and permafrost. mSphere 9, e00259-00224 (2024). This study demonstrates how microbial community composition and activity following permafrost thaw depend on the redox potential of the thawed habitat.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schuur, E. A. G. et al. Climate change and the permafrost carbon feedback. Nature 520, 171–179 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • van Bodegom, P. M., Scholten, J. C. M. & Stams, A. J. M. Direct inhibition of methanogenesis by ferric iron. FEMS Microbiol. Ecol. 49, 261–268 (2004).

    Article 
    PubMed 

    Google Scholar
     

  • Čapek, P. et al. The effect of warming on the vulnerability of subducted organic carbon in arctic soils. Soil. Biol. Biochem. 90, 19–29 (2015).

    Article 

    Google Scholar
     

  • Livingstone, S. J. et al. Subglacial lakes and their changing role in a warming climate. Nat. Rev. Earth Environ. 3, 106–124 (2022).

    Article 

    Google Scholar
     

  • Singleton, C. M. et al. Methanotrophy across a natural permafrost thaw environment. ISME J. 12, 2544–2558 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Michaud, A. B. et al. Microbial oxidation as a methane sink beneath the West Antarctic Ice Sheet. Nat. Geosci. 10, 582–586 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Herndon, E., Kinsman-Costello, L. & Godsey, S. in Biogeochemical Cycles: Ecological Drivers and Environmental Impact (eds Dontsova, K. et al.) 245–265 (American Geophysical Union, 2020).

  • Lee, J. et al. Attenuation of methane oxidation by nitrogen availability in arctic tundra soils. Environ. Sci. Technol. 57, 2647–2659 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tájmel, D., Cruz-Paredes, C. & Rousk, J. Heat wave-induced microbial thermal trait adaptation and its reversal in the Subarctic. Global Change Biol. 30, e17032 (2024).

    Article 

    Google Scholar
     

  • Allison, S. D., Wallenstein, M. D. & Bradford, M. A. Soil-carbon response to warming dependent on microbial physiology. Nat. Geosci. 3, 336–340 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Bradford, M. A. et al. Cross-biome patterns in soil microbial respiration predictable from evolutionary theory on thermal adaptation. Nat. Ecol. Evol. 3, 223–231 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Heslop, J. K., Walter Anthony, K. M., Grosse, G., Liebner, S. & Winkel, M. Century-scale time since permafrost thaw affects temperature sensitivity of net methane production in thermokarst-lake and talik sediments. Sci. Total Environ. 691, 124–134 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Walker, T. W. N. et al. Microbial temperature sensitivity and biomass change explain soil carbon loss with warming. Nat. Clim. Change 8, 885–889 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Li, J. et al. Reduced carbon use efficiency and increased microbial turnover with soil warming. Global Change Biol. 25, 900–910 (2019).

    Article 

    Google Scholar
     

  • Li, L. et al. Asymmetric winter warming reduces microbial carbon use efficiency and growth more than symmetric year-round warming in alpine soils. Proc. Natl Acad. Sci. USA 121, e2401523121 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Qin, S., Zhang, D., Wei, B. & Yang, Y. Dual roles of microbes in mediating soil carbon dynamics in response to warming. Nat. Commun. 15, 6439 (2024). This study shows how rapid increases in microbial respiration following warming may attenuate over time as microbial carbon use efficiency decreases.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fanin, N. et al. Soil enzymes in response to climate warming: mechanisms and feedbacks. Funct. Ecol. 36, 1378–1395 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Chen, J. et al. Soil carbon loss with warming: new evidence from carbon-degrading enzymes. Global Change Biol. 26, 1944–1952 (2020).

    Article 

    Google Scholar
     

  • Feng, J. et al. Long-term warming in Alaska enlarges the diazotrophic community in deep soils. mBio 10, e02521-18 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bárcena, T. G., Yde, J. C. & Finster, K. W. Methane flux and high-affinity methanotrophic diversity along the chronosequence of a receding glacier in Greenland. Ann. Glaciol. 51, 23–31 (2010).

    Article 

    Google Scholar
     

  • Ernakovich, J. G. et al. Microbiome assembly in thawing permafrost and its feedbacks to climate. Global Change Biol. 28, 5007–5026 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Kohler, T. J. et al. Global emergent responses of stream microbial metabolism to glacier shrinkage. Nat. Geosci. 17, 309–315 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Eronen-Rasimus, E. et al. Ice formation and growth shape bacterial community structure in Baltic Sea drift ice. FEMS Microbiol. Ecol. 91, 1–13 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Biskaborn, B. K. et al. Permafrost is warming at a global scale. Nat. Commun. 10, 264 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stackhouse, B. T. et al. Effects of simulated spring thaw of permafrost from mineral cryosol on CO2 emissions and atmospheric CH4 uptake. J. Geophys. Res. Biogeosci. 120, 1764–1784 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Schuur, E. A. G. et al. Ecosystem and soil respiration radiocarbon detects old carbon release as a fingerprint of warming and permafrost destabilization with climate change. Philos. Trans. R. Soc. A 381, 20220201 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Voigt, C. et al. Nitrous oxide emissions from permafrost-affected soils. Nat. Rev. Earth Environ. 1, 420–434 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Romanowicz, K. J., Crump, B. C. & Kling, G. W. Genomic evidence that microbial carbon degradation is dominated by iron redox metabolism in thawing permafrost. ISME Commun. 3, 124 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tarbier, B., Hugelius, G., Kristina Sannel, A. B., Baptista-Salazar, C. & Jonsson, S. Permafrost thaw increases methylmercury formation in subarctic Fennoscandia. Environ. Sci. Technol. 55, 6710–6717 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • O’Donnell, J. A. et al. Metal mobilization from thawing permafrost to aquatic ecosystems is driving rusting of Arctic streams. Commun. Earth Environ. 5, 268 (2024).

    Article 

    Google Scholar
     

  • Barbato, R. A. et al. Not all permafrost microbiomes are created equal: influence of permafrost thaw on the soil microbiome in a laboratory incubation study. Soil Biol. Biochem. 167, 108605 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Lee, H., Schuur, E. A. G., Inglett, K. S., Lavoie, M. & Chanton, J. P. The rate of permafrost carbon release under aerobic and anaerobic conditions and its potential effects on climate. Global Change Biol. 18, 515–527 (2012).

    Article 

    Google Scholar
     

  • Walter Anthony, K. M. et al. Upland Yedoma taliks are an unpredicted source of atmospheric methane. Nat. Commun. 15, 6056 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Perryman, C. R. et al. Thaw transitions and redox conditions drive methane oxidation in a permafrost peatland. J. Geophys. Res. Biogeosci. 125, e2019JG005526 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Duspayev, A., Flanner, M. G. & Riihelä, A. Earth’s sea ice radiative effect from 1980 to 2023. Geophys. Res. Lett. https://doi.org/10.1029/2024GL109608 (2024).

  • Feng, S. A., Cook, J. M., Anesio, A. M., Benning, L. G. & Tranter, M. Long time series (1984–2020) of albedo variations on the Greenland ice sheet from harmonized Landsat and Sentinel 2 imagery. J. Glaciol. 69, 1225–1240 (2023).

    Article 

    Google Scholar
     

  • McCutcheon, J. et al. Mineral phosphorus drives glacier algal blooms on the Greenland Ice Sheet. Nat. Commun. 12, 673614 (2021).

    Article 

    Google Scholar
     

  • Williamson, C. J. et al. Macro-nutrient stoichiometry of glacier algae from the southwestern margin of the Greenland Ice Sheet. Front. Plant. Sci. 12, 673614 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hotaling, S. et al. Biological albedo reduction on ice sheets, glaciers, and snowfields. Earth-Sci. Rev. 220, 103728 (2021).

    Article 

    Google Scholar
     

  • Maréchal, E. & Nedbalová, L. Editorial: ice and snow algae. Front. Plant Sci. 13, 868467 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Halbach, L. et al. Single-cell imaging reveals efficient nutrient uptake and growth of microalgae darkening the Greenland Ice Sheet. Nat. Commun. 16, 1521 (2025).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Millar, J. L. et al. Alpine glacier algal bloom during a record melt year. Front. Microbiol. 15, 1356376 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Khan, A. L., Dierssen, H. M., Scambos, T. A., Höfer, J. & Cordero, R. R. Spectral characterization, radiative forcing and pigment content of coastal Antarctic snow algae: approaches to spectrally discriminate red and green communities and their impact on snowmelt. Cryosphere 15, 133–148 (2021).

    Article 

    Google Scholar
     

  • Chevrollier, L. A. et al. Light absorption and albedo reduction by pigmented microalgae on snow and ice. J. Glaciol. 69, 333–341 (2023).

    Article 

    Google Scholar
     

  • Cook, J. M. et al. Glacier algae accelerate melt rates on the south-western Greenland Ice Sheet. Cryosphere 14, 309–330 (2020).

    Article 

    Google Scholar
     

  • Williamson, C. J. et al. Algal photophysiology drives darkening and melt of the Greenland Ice Sheet. Proc. Natl Acad. Sci. USA 117, 5694–5705 (2020). This article describes the biological contribution to albedo reduction on the Greenland Ice Sheet.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Milner, A. M. et al. Glacier shrinkage driving global changes in downstream systems. Proc. Natl Acad. Sci. USA 114, 9770–9778 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nardelli, S. C., Gray, P. C., Stammerjohn, S. E. & Schofield, O. Characterizing coastal phytoplankton seasonal succession patterns on the West Antarctic Peninsula. Limnol. Oceanogr. 68, 845–861 (2023).

    Article 

    Google Scholar
     

  • Nielsen, J. M. et al. Spring phytoplankton bloom phenology during recent climate warming on the Bering Sea shelf. Prog. Oceanogr. 220, 103176 (2024).

    Article 

    Google Scholar
     

  • Ferreira, A. et al. Climate change is associated with higher phytoplankton biomass and longer blooms in the West Antarctic Peninsula. Nat. Commun. 15, 6536 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ardyna, M. & Arrigo, K. R. Phytoplankton dynamics in a changing Arctic Ocean. Nat. Clim. Change 10, 892–903 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Castagno, A. P. et al. Increased sea ice melt as a driver of enhanced Arctic phytoplankton blooming. Global Change Biol. 29, 5087–5098 (2023). This study investigates an unprecedented phytoplankton bloom in Fram Strait, highlighting a two-decade trend of intensifying Arctic primary production.

    Article 
    CAS 

    Google Scholar
     

  • Ardyna, M. et al. Recent Arctic Ocean sea ice loss triggers novel fall phytoplankton blooms. Geophys. Res. Lett. 41, 6207–6212 (2014).

    Article 

    Google Scholar
     

  • Renaud, P. E. et al. Extreme mismatch between phytoplankton and grazers during Arctic spring blooms and consequences for the pelagic food-web. Prog. Oceanogr. 229, 103365 (2024).

    Article 

    Google Scholar
     

  • Castellani, G. et al. Shine a light: under-ice light and its ecological implications in a changing Arctic Ocean. Ambio 51, 307–317 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Ardyna, M. et al. Wildfire aerosol deposition likely amplified a summertime Arctic phytoplankton bloom. Commun. Earth Environ. 3, 201 (2022).

    Article 

    Google Scholar
     

  • Lefebvre, K. A. et al. Prevalence of algal toxins in Alaskan marine mammals foraging in a changing arctic and subarctic environment. Harmful Algae 55, 13–24 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tang, J. et al. Occurrence and distribution of phycotoxins in the Antarctic Ocean. Mar. Pollut. Bull. 201, 116250 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • McKenzie, C. H. et al. Three decades of Canadian marine harmful algal events: phytoplankton and phycotoxins of concern to human and ecosystem health. Harmful Algae 102, 101852 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fachon, E. et al. Tracking a large-scale and highly toxic Arctic algal bloom: rapid detection and risk communication. Limnol. Oceanogr. Lett. 10, 62–72 (2024).

    Article 
    PubMed 

    Google Scholar
     

  • Diaz, R. J. & Rosenberg, R. Spreading dead zones and consequences for marine ecosystems. Science 321, 926–929 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Metcalfe, D. B. et al. Patchy field sampling biases understanding of climate change impacts across the Arctic. Nat. Ecol. Evol. 2, 1443–1448 (2018). This article calls for wider geographical sampling to better account for spatial variability across the cryosphere.

    Article 
    PubMed 

    Google Scholar
     

  • Maure, D., Kittel, C., Lambin, C., Delhasse, A. & Fettweis, X. Spatially heterogeneous effect of climate warming on the Arctic land ice. Cryosphere 17, 4645–4659 (2023).

    Article 

    Google Scholar
     

  • Pritchard, H. D. Global data gaps in our knowledge of the terrestrial cryosphere. Front. Clim. 3, 689823 (2021).

    Article 

    Google Scholar
     

  • Ezzat, L. et al. Diversity and biogeography of the bacterial microbiome in glacier-fed streams. Nature 637, 622–630 (2025).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Reuss-Schmidt, K. et al. Understanding spatial variability of methane fluxes in Arctic wetlands through footprint modelling. Environ. Res. Lett. 14, 125010 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Lyu, Z. et al. Seasonal dynamics of Arctic soils: capturing year-round processes in measurements and soil biogeochemical models. Earth-Sci. Rev. 254, 104820 (2024). This review synthesizes recent findings on seasonal changes in Arctic soil microbial activity and calls for further research into microbial activity during the winter season.

    Article 
    CAS 

    Google Scholar
     

  • Poppeliers, S. W. M., Hefting, M., Dorrepaal, E. & Weedon, J. T. Functional microbial ecology in Arctic soils: the need for a year-round perspective. FEMS Microbiol. Ecol. 98, fiac134 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Baker, C. C. M., Barker, A. J., Douglas, T. A., Doherty, S. J. & Barbato, R. A. Seasonal variation in near-surface seasonally thawed active layer and permafrost soil microbial communities. Environ. Res. Lett. 18, 055001 (2023).

    Article 

    Google Scholar
     

  • Vigneron, A. et al. Contrasting winter versus summer microbial communities and metabolic functions in a permafrost thaw lake. Front. Microbiol. 10, 1656 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pittino, F. et al. Bacterial communities of cryoconite holes of a temperate alpine glacier show both seasonal trends and year-to-year variability. Ann. Glaciol. 59, 1–9 (2018).

    Article 

    Google Scholar
     

  • Liu, S. et al. Seasonal and spatial variations in riverine DOC exports in permafrost-dominated Arctic river basins. J. Hydrol. 612, 128060 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Hopwood, M. J. et al. How does glacier discharge affect marine biogeochemistry and primary production in the Arctic? Cryosphere 14, 1347–1383 (2020).

    Article 

    Google Scholar
     

  • Pedron, S. A. et al. More snow accelerates legacy carbon emissions from Arctic permafrost. AGU Adv. 4, e2023AV000942 (2023).

    Article 

    Google Scholar
     

  • Natali, S. M. et al. Large loss of CO2 in winter observed across the northern permafrost region. Nat. Clim. Change 9, 852–857 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Zona, D. et al. Cold season emissions dominate the Arctic tundra methane budget. Proc. Natl Acad. Sci. USA 113, 40–45 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Trubl, G. et al. Active virus–host interactions at sub-freezing temperatures in Arctic peat soil. Microbiome 9, 208 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kraemer, S. A., Ramachandran, A., Onana, V. E., Li, W. K. W. & Walsh, D. A. A multiyear time series (2004–2012) of bacterial and archaeal community dynamics in a changing Arctic Ocean. ISME Commun. 4, ycad004 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Henry, G. H. R. et al. The International Tundra Experiment (ITEX): 30 years of research on tundra ecosystems. Arct. Sci. 8, 550–571 (2022).

    Article 

    Google Scholar
     

  • Bagshaw, E. A. et al. Response of Antarctic cryoconite microbial communities to light. FEMS Microbiol. Ecol. 92, fiw076 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hughes, B. B. et al. Long-term studies contribute disproportionately to ecology and policy. BioScience 67, 271–281 (2017).

    Article 

    Google Scholar
     

  • Randolph Glacier Inventory Consortium. Randolph Glacier Inventory — a dataset of global glacier outlines. Natl Snow Ice Data Cent. https://doi.org/10.7265/CC6E-ZP12 (2012).

    Article 

    Google Scholar
     

  • Fetterer, F. et al. Sea ice index, version 4. Natl Snow Ice Data Cent. https://doi.org/10.7265/a98x-0f50 (2025).

    Article 

    Google Scholar
     

  • Heginbottom, J., Brown, J., Ferrians, O. & Melnikov, E. S. Circum-Arctic map of permafrost and ground-ice conditions, version 2. Natl Snow Ice Data Cent. https://doi.org/10.7265/SKBG-KF16 (2002).

    Article 

    Google Scholar
     

  • Raymond-Bouchard, I. et al. Conserved genomic and amino acid traits of cold adaptation in subzero-growing Arctic permafrost bacteria. FEMS Microbiol. Ecol. 94, fiy023 (2018).

    Article 

    Google Scholar
     

  • Mackelprang, R. et al. Microbial survival strategies in ancient permafrost: insights from metagenomics. ISME J. 11, 2305–2318 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bakermans, C. in Psychrophiles: From Biodiversity to Biotechnology (ed. Margesin, R.) 21–38 (Springer International Publishing, 2017).

  • Junge, K., Eicken, H. & Deming, J. W. Bacterial activity at −2 to −20 degrees C in Arctic wintertime sea ice. Appl. Environ. Microbiol. 70, 550–557 (2004).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Panikov, N. S., Flanagan, P. W., Oechel, W. C., Mastepanov, M. A. & Christensen, T. R. Microbial activity in soils frozen to below −39 °C. Soil Biol. Biochem. 38, 785–794 (2006).

    Article 
    CAS 

    Google Scholar
     

  • Mykytczuk, N. C. S. et al. Bacterial growth at −15 °C; molecular insights from the permafrost bacterium Planococcus halocryophilus Or1. ISME J. 7, 1211–1226 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Andrzejowska, A., Hájek, J., Puhovkin, A., Harańczyk, H. & Barták, M. Freezing temperature effects on photosystem II in Antarctic lichens evaluated by chlorophyll fluorescence. J. Plant Physiol. 294, 154192 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Magnuson, E. et al. Active lithoautotrophic and methane-oxidizing microbial community in an anoxic, sub-zero, and hypersaline High Arctic spring. ISME J. 16, 1798–1808 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mikucki, J. A. & Priscu, J. C. Bacterial diversity associated with Blood Falls, a subglacial outflow from the Taylor Glacier, Antarctica. Appl. Environ. Microbiol. 73, 4029–4039 (2007).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee, H. B. Y. et al. Microbial assemblages and associated biogeochemical processes in Lake Bonney, a permanently ice-covered lake in the McMurdo Dry Valleys, Antarctica. Environ. Microbiome 19, 60 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wood, C. et al. Active microbiota persist in dry permafrost and active layer from Elephant Head, Antarctica. ISME Commun. 4, ycad002 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Goordial, J. et al. Nearing the cold-arid limits of microbial life in permafrost of an upper dry valley, Antarctica. ISME J. 10, 1613–1624 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar