• GBD 2019 Stroke Collaborators. Global, regional, and national burden of stroke and its risk factors, 1990–2019: a systematic analysis for the global burden of disease study 2019. Lancet Neurol. 2021;20(10):795–820.


    Google Scholar
     

  • Cushing H. Concerning a definite regulatory mechanism of vasomotor centre which controls blood pressure during cerebral compression. Bull Johns Hopkins Hosp. 1901;12:290–2.


    Google Scholar
     

  • Cushing H. Peptic ulcers and the interbrain. Surg Gynecol Obstet. 1932;55:1–34.


    Google Scholar
     

  • Ziaka M, Exadaktylos A. The heart is at risk: understanding stroke-heart-brain interactions with focus on neurogenic stress cardiomyopathy-a review. J Stroke. 2023;25(1):39–54.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Busl KM, Bleck TP. Neurogenic pulmonary edema. Crit Care Med. 2015;43(8):1710–5.

    PubMed 

    Google Scholar
     

  • Meyfroidt G, Baguley IJ, Menon DK. Paroxysmal sympathetic hyperactivity: the storm after acute brain injury. Lancet Neurol. 2017;16(9):721–9.

    PubMed 

    Google Scholar
     

  • Podell JE, Miller SS, Jaffa MN, Pajoumand M, Armahizer M, Chen H, et al. Admission features associated with paroxysmal sympathetic hyperactivity after traumatic brain injury: a case-control study. Crit Care Med. 2021;49(10):e989–1000.

    CAS 
    PubMed 

    Google Scholar
     

  • Jafari AA, Shah M, Mirmoeeni S, Hassani MS, Nazari S, Fielder T, et al. Paroxysmal sympathetic hyperactivity during traumatic brain injury. Clin Neurol Neurosurg. 2022;212:107081.

    PubMed 

    Google Scholar
     

  • Maesaka JK, Imbriano LJ. Cerebral salt wasting is a real cause of hyponatremia: pro. Kidney360. 2023;4(4):e437–40.

    PubMed 

    Google Scholar
     

  • Wijdicks EFM. Duck or rabbit? Cerebral salt wasting and SIADH in acute brain injury. Neurocrit Care. 2023;39(1):260–3.

    PubMed 

    Google Scholar
     

  • Adrogué HJ, Madias NE. The syndrome of inappropriate antidiuresis. N Engl J Med. 2023;389(16):1499–509.

    PubMed 

    Google Scholar
     

  • Wilson JE, Mart MF, Cunningham C, Shehabi Y, Girard TD, MacLullich AMJ, et al. Delirium. Nat Rev Dis Primers. 2020;6(1):90.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Aita SL, Schuler KR, Isaak SL, Borgogna NC, Moncrief GG, Hollis SD, et al. Posttraumatic stress disorder complicated by traumatic brain injury: a narrative review. SN Compr Clin Med. 2023;5(1):92.


    Google Scholar
     

  • Ressler KJ, Berretta S, Bolshakov VY, Rosso IM, Meloni EG, Rauch SL, et al. Post-traumatic stress disorder: clinical and translational neuroscience from cells to circuits. Nat Rev Neurol. 2022;18(5):273–88.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Smith DH, Johnson VE, Trojanowski JQ, Stewart W. Chronic traumatic encephalopathy – confusion and controversies. Nat Rev Neurol. 2019;15(3):179–83.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Izzy S, Chen PM, Tahir Z, Grashow R, Radmanesh F, Cote DJ, et al. Association of traumatic brain injury with the risk of developing chronic cardiovascular, endocrine, neurological, and psychiatric disorders. JAMA Netw Open. 2022;5(4):e229478.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Asim M, Amin F, El-Menyar A. Multiple organ dysfunction syndrome: contemporary insights on the clinicopathological spectrum. Qatar Med J. 2020;2020(1):22.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Barea-Mendoza JA, Chico-Fernández M, Serviá-Goixart L, Quintana-Díaz M, García-Sáez I, Ballesteros-Sanz M, et al. Associated risk factors and impact in clinical outcomes of multiorgan failure in patients with TBI. Neurocrit Care. 2023;39(2):411–8.

    PubMed 

    Google Scholar
     

  • Åkerlund CAI, Holst A, Stocchetti N, Steyerberg EW, Menon DK, Ercole A, et al. Clustering identifies endotypes of traumatic brain injury in an intensive care cohort: a CENTER-TBI study. Crit Care. 2022;26(1):228.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Krishnamoorthy V, Temkin N, Barber J, Foreman B, Komisarow J, Korley FK, et al. Association of early multiple organ dysfunction with clinical and functional outcomes over the year following traumatic brain injury: a transforming research and clinical knowledge in traumatic brain injury study. Crit Care Med. 2021;49(10):1769–78.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Battaglini D, De Rosa S, Godoy DA. Crosstalk between the nervous system and systemic organs in acute brain injury. Neurocrit Care. 2024;40(1):337–48.

    CAS 
    PubMed 

    Google Scholar
     

  • Wongsripuemtet P, Ohnuma T, Minic Z, Vavilala MS, Miller JB, Laskowitz DT, et al. Early autonomic dysfunction in traumatic brain injury: an article review on the impact on multiple organ dysfunction. J Clin Med. 2025. https://doi.org/10.3390/jcm14020557.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Del Negro CA, Funk GD, Feldman JL. Breathing matters. Nat Rev Neurosci. 2018;19(6):351–67.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Manuel J, Färber N, Gerlach DA, Heusser K, Jordan J, Tank J, et al. Deciphering the neural signature of human cardiovascular regulation. Elife. 2020;9:e55316.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Morrison SF, Nakamura K. Central mechanisms for thermoregulation. Annu Rev Physiol. 2019;81:285–308.

    CAS 
    PubMed 

    Google Scholar
     

  • Ramirez JM, Severs LJ, Ramirez SC, Agosto-Marlin IM. Advances in cellular and integrative control of oxygen homeostasis within the central nervous system. J Physiol. 2018;596(15):3043–65.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ichiki T, Augustine V, Oka Y. Neural populations for maintaining body fluid balance. Curr Opin Neurobiol. 2019;57:134–40.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bernal A, Zafra MA, Simón MJ, Mahía J. Sodium homeostasis, a balance necessary for life. Nutrients. 2023;15(2):395.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Barabási DL, Bianconi G, Bullmore E, Burgess M, Chung S, Eliassi-Rad T, et al. Neuroscience needs network science. J Neurosci. 2023;43(34):5989–95.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bullmore E, Sporns O. Complex brain networks: graph theoretical analysis of structural and functional systems. Nat Rev Neurosci. 2009;10(3):186–98.

    CAS 
    PubMed 

    Google Scholar
     

  • Girvan M, Newman MEJ. Community structure in social and biological networks. Proc Natl Acad Sci U S A. 2002;99(12):7821–6.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sporns O, Honey CJ, Kötter R. Identification and classification of hubs in brain networks. PLoS ONE. 2007;2(10):e1049.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stam CJ, van Straaten ECW. The organization of physiological brain networks. Clin Neurophysiol. 2012;123(6):1067–87.

    CAS 
    PubMed 

    Google Scholar
     

  • Ravasz E, Barabási AL. Hierarchical organization in complex networks. Phys Rev E Stat Nonlin Soft Matter Phys. 2003;67(2 Pt 2):026112.

    PubMed 

    Google Scholar
     

  • Cannon WB. The wisdom of the body. New York, W.W. Norton, 1939.

  • Goldstein DS. How does homeostasis happen? Integrative physiological, systems biological, and evolutionary perspectives. Am J Physiol Regul Integr Comp Physiol. 2019;316(4):R301–17.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sennesh E, Theriault J, Brooks D, van de Meent JW, Barrett LF, Quigley KS. Interoception as modeling, allostasis as control. Biol Psychol. 2022;167:108242.

    PubMed 

    Google Scholar
     

  • Pereira A Jr. Developing the concepts of homeostasis, homeorhesis, allostasis, elasticity, flexibility and plasticity of brain function. NeuroSci. 2021;2(4):372–82.


    Google Scholar
     

  • Bobba-Alves N, Juster RP, Picard M. The energetic cost of allostasis and allostatic load. Psychoneuroendocrinology. 2022;146:105951.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang S, Qin L. Homeostatic medicine: a strategy for exploring health and disease. Curr Med. 2022;1(1):16.


    Google Scholar
     

  • Schulkin J, Sterling P. Allostasis: a brain-centered, predictive mode of physiological regulation. Trends Neurosci. 2019;42(10):740–52.

    CAS 
    PubMed 

    Google Scholar
     

  • Billman GE. Homeostasis: the underappreciated and far too often ignored central organizing principle of physiology. Front Physiol. 2020;11:200.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kleckner IR, Zhang J, Touroutoglou A, Chanes L, Xia C, Simmons WK, et al. Evidence for a large-scale brain system supporting allostasis and interoception in humans. Nat Hum Behav. 2017;1:0069.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Benarroch EE. The central autonomic network: functional organization, dysfunction, and perspective. Mayo Clin Proc. 1993;68(10):988–1001.

    CAS 
    PubMed 

    Google Scholar
     

  • Sklerov M, Dayan E, Browner N. Functional neuroimaging of the central autonomic network: recent developments and clinical implications. Clin Auton Res. 2019;29(6):555–66.

    PubMed 

    Google Scholar
     

  • Thayer JF, Lane RD. A model of neurovisceral integration in emotion regulation and dysregulation. J Affect Disord. 2000;61(3):201–16.

    CAS 
    PubMed 

    Google Scholar
     

  • Thayer JF, Hansen AL, Saus-Rose E, Johnsen BH. Heart rate variability, prefrontal neural function, and cognitive performance: the neurovisceral integration perspective on self-regulation, adaptation, and health. Ann Behav Med. 2009;37(2):141–53.

    PubMed 

    Google Scholar
     

  • Porges SW. The polyvagal theory: new insights into adaptive reactions of the autonomic nervous system. Cleve Clin J Med. 2009;76(Suppl 2):S86-90.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Edlow BL, McNab JA, Witzel T, Kinney HC. The structural connectome of the human central homeostatic network. Brain Connect. 2016;6(3):187–200.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Al-Khazraji BK, Shoemaker JK. The human cortical autonomic network and volitional exercise in health and disease. Appl Physiol Nutr Metab. 2018;43(11):1122–30.

    PubMed 

    Google Scholar
     

  • Reisert M, Weiller C, Hosp JA. Displaying the autonomic processing network in humans – a global tractography approach. Neuroimage. 2021;231:117852.

    CAS 
    PubMed 

    Google Scholar
     

  • Benarroch EE. Insular cortex: functional complexity and clinical correlations. Neurology. 2019;93(21):932–8.

    PubMed 

    Google Scholar
     

  • Tadross JA, Steuernagel L, Dowsett GKC, Kentistou KA, Lundh S, Porniece M, et al. A comprehensive spatio-cellular map of the human hypothalamus. Nature. 2025;639(8055):708–16.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Eguíluz VM, Chialvo DR, Cecchi GA, Baliki M, Apkarian AV. Scale-free brain functional networks. Phys Rev Lett. 2005;94(1):018102.

    PubMed 

    Google Scholar
     

  • Beissner F, Meissner K, Bär KJ, Napadow V. The autonomic brain: an activation likelihood estimation meta-analysis for central processing of autonomic function. J Neurosci. 2013;33(25):10503–11.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Valenza G, Duggento A, Passamonti L, Toschi N, Barbieri R. Resting state neural correlates of cardiac sympathetic dynamics in healthy subjects. IEEE EMBC. 2019;2019(2019):4330–3.

    CAS 
    PubMed 

    Google Scholar
     

  • Valenza G, Passamonti L, Duggento A, Toschi N, Barbieri R. Uncovering complex central autonomic networks at rest: a functional magnetic resonance imaging study on complex cardiovascular oscillations. J R Soc Interface. 2020;17(164):20190878.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Quadt L, Critchley H, Nagai Y. Cognition, emotion, and the central autonomic network. Auton Neurosci. 2022;238:102948.

    PubMed 

    Google Scholar
     

  • Goldstein DS. Stress and the “extended” autonomic system. Auton Neurosci. 2021;236:102889.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fink G. Eighty years of stress. Nature. 2016;539(7628):175–6.

    PubMed 

    Google Scholar
     

  • Goldstein DS. Linking the extended autonomic system with the homeostat theory: new perspectives about dysautonomias. J Pers Med. 2024;14(1):123.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schiller M, Ben-Shaanan TL, Rolls A. Neuronal regulation of immunity: why, how and where? Nat Rev Immunol. 2021;21(1):20–36.

    CAS 
    PubMed 

    Google Scholar
     

  • Chan KL, Poller WC, Swirski FK, Russo SJ. Central regulation of stress-evoked peripheral immune responses. Nat Rev Neurosci. 2023;24(10):591–604.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhou C, Zemanová L, Zamora G, Hilgetag CC, Kurths J. Hierarchical organization unveiled by functional connectivity in complex brain networks. Phys Rev Lett. 2006;97(23):238103.

    PubMed 

    Google Scholar
     

  • Fornito A, Zalesky A, Breakspear M. The connectomics of brain disorders. Nat Rev Neurosci. 2015;16(3):159–72.

    CAS 
    PubMed 

    Google Scholar
     

  • Ge M, Ni X, Qi X, Chen S, Huang J, Kang Y, et al. Synthesizing brain-network-inspired interconnections for large-scale network-on-chips. ACM Trans Des Autom Electron Syst. 2021;27(1):1–30.


    Google Scholar
     

  • Liao X, Vasilakos AV, He Y. Small-world human brain networks: perspectives and challenges. Neurosci Biobehav Rev. 2017;77:286–300.

    PubMed 

    Google Scholar
     

  • Newman MEJ, Girvan M. Finding and evaluating community structure in networks. Phys Rev E Stat Nonlin Soft Matter Phys. 2004;69(2 Pt 2):026113.

    CAS 
    PubMed 

    Google Scholar
     

  • Gallen CL, D’Esposito M. Brain modularity: a biomarker of intervention-related plasticity. Trends Cogn Sci. 2019;23(4):293–304.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pan RK, Sinha S. Modular networks emerge from multiconstraint optimization. Phys Rev E Stat Nonlin Soft Matter Phys. 2007;76(4 Pt 2):045103.

    PubMed 

    Google Scholar
     

  • Sporns O, Betzel RF. Modular brain networks. Annu Rev Psychol. 2016;67:613–40.

    PubMed 

    Google Scholar
     

  • Stam CJ. Modern network science of neurological disorders. Nat Rev Neurosci. 2014;15(10):683–95.

    CAS 
    PubMed 

    Google Scholar
     

  • Ahn YY, Bagrow JP, Lehmann S. Link communities reveal multiscale complexity in networks. Nature. 2010;466(7307):761–4.

    CAS 
    PubMed 

    Google Scholar
     

  • Wig GS. Segregated systems of human brain networks. Trends Cogn Sci. 2017;21(12):981–96.

    PubMed 

    Google Scholar
     

  • Godoy LD, Rossignoli MT, Delfino-Pereira P, Garcia-Cairasco N, de Lima Umeoka EH. A comprehensive overview on stress neurobiology: basic concepts and clinical implications. Front Behav Neurosci. 2018;12:127.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ulrich-Lai YM, Herman JP. Neural regulation of endocrine and autonomic stress responses. Nat Rev Neurosci. 2009;10(6):397–409.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guyenet PG, Stornetta RL, Bochorishvili G, Depuy SD, Burke PG, Abbott SB. C1 neurons: The body’s EMTs. Am J Physiol Regul Integr Comp Physiol. 2013;305(3):R187-204.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Krohn F, Novello M, van der Giessen RS, De Zeeuw CI, Pel JJM, Bosman LWJ. The integrated brain network that controls respiration. Elife. 2023;12:e83654.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Benarroch EE. Brainstem integration of arousal, sleep, cardiovascular, and respiratory control. Neurology. 2018;91(21):958–66.

    PubMed 

    Google Scholar
     

  • Ruud J, Steculorum SM, Brüning JC. Neuronal control of peripheral insulin sensitivity and glucose metabolism. Nat Commun. 2017;8:15259.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tracey KJ. Reflex control of immunity. Nat Rev Immunol. 2009;9(6):418–28.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lowell BB. New neuroscience of homeostasis and drives for food, water, and salt. N Engl J Med. 2019;380(5):459–71.

    CAS 
    PubMed 

    Google Scholar
     

  • van den Heuvel MP, Sporns O. Network hubs in the human brain. Trends Cogn Sci. 2013;17(12):683–96.

    PubMed 

    Google Scholar
     

  • Loewy AD. Descending pathways to sympathetic and parasympathetic preganglionic neurons. J Auton Nerv Syst. 1981;3(2–4):265–75.

    CAS 
    PubMed 

    Google Scholar
     

  • Ondicova K, Mravec B. Multilevel interactions between the sympathetic and parasympathetic nervous systems: a minireview. Endocr Regul. 2010;44(2):69–75.

    CAS 
    PubMed 

    Google Scholar
     

  • Elfaki LA, Sharma B, Meusel LC, So I, Colella B, Wheeler AL, et al. Examining anterior prefrontal cortex resting-state functional connectivity patterns associated with depressive symptoms in chronic moderate-to-severe traumatic brain injury. Front Neurol. 2025;16:1541520.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stern JE. Neuroendocrine-autonomic integration in the paraventricular nucleus: novel roles for dendritically released neuropeptides. J Neuroendocrinol. 2015;27(6):487–97.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Simmons S, Langlois LD, Oyola MG, Gouty S, Wu TJ, Nugent FS. Blast-induced mild traumatic brain injury alterations of corticotropin-releasing factor neuronal activity in the mouse hypothalamic paraventricular nucleus. Front Synaptic Neurosci. 2021;13:804898.

    CAS 
    PubMed 

    Google Scholar
     

  • Watts DJ, Strogatz SH. Collective dynamics of “small-world” networks. Nature. 1998;393(6684):440–2.

    CAS 
    PubMed 

    Google Scholar
     

  • Bassett DS, Bullmore E. Small-world brain networks. Neuroscientist. 2006;12(6):512–23.

    PubMed 

    Google Scholar
     

  • Bassett DS, Bullmore ET. Small-world brain networks revisited. Neuroscientist. 2017;23(5):499–516.

    PubMed 

    Google Scholar
     

  • Chen Y, Wang S, Hilgetag CC, Zhou C. Trade-off between multiple constraints enables simultaneous formation of modules and hubs in neural systems. PLoS Comput Biol. 2013;9(3):e1002937.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bertolero MA, Thomas Yeo BT, D’Esposito M. The modular and integrative functional architecture of the human brain. Proc Natl Acad Sci U S A. 2015;112(49):E6798–807.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Seguin C, Sporns O, Zalesky A. Brain network communication: concepts, models and applications. Nat Rev Neurosci. 2023;24(9):557–74.

    CAS 
    PubMed 

    Google Scholar
     

  • Bullmore E, Sporns O. The economy of brain network organization. Nat Rev Neurosci. 2012;13(5):336–49.

    CAS 
    PubMed 

    Google Scholar
     

  • Chen Y, Wang S, Hilgetag CC, Zhou C. Features of spatial and functional segregation and integration of the primate connectome revealed by trade-off between wiring cost and efficiency. PLoS Comput Biol. 2017;13(9):e1005776.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Deco G, Tononi G, Boly M, Kringelbach ML. Rethinking segregation and integration: contributions of whole-brain modelling. Nat Rev Neurosci. 2015;16(7):430–9.

    CAS 
    PubMed 

    Google Scholar
     

  • Lynn CW, Bassett DS. The physics of brain network structure, function and control. Nat Rev Phys. 2019;1(5):318–32.


    Google Scholar
     

  • van den Heuvel MP, Sporns O. A cross-disorder connectome landscape of brain dysconnectivity. Nat Rev Neurosci. 2019;20(7):435–46.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lyon AR, Citro R, Schneider B, Morel O, Ghadri JR, Templin C, et al. Pathophysiology of takotsubo syndrome: JACC state-of-the-art review. J Am Coll Cardiol. 2021;77(7):902–21.

    CAS 
    PubMed 

    Google Scholar
     

  • Ancona F, Bertoldi LF, Ruggieri F, Cerri M, Magnoni M, Beretta L, et al. Takotsubo cardiomyopathy and neurogenic stunned myocardium: similar albeit different. Eur Heart J. 2016;37(37):2830–2.

    PubMed 

    Google Scholar
     

  • Tavazzi G, Zanierato M, Via G, Iotti GA, Procaccio F. Are neurogenic stress cardiomyopathy and takotsubo different syndromes with common pathways?: etiopathological insights on dysfunctional hearts. JACC Heart Fail. 2017;5(12):940–2.

    PubMed 

    Google Scholar
     

  • Brame AL, Singer M. Stressing the obvious? An allostatic look at critical illness. Crit Care Med. 2010;38(Suppl 10):S600–7.

    PubMed 

    Google Scholar
     

  • Cuesta JM, Singer M. The stress response and critical illness: a review. Crit Care Med. 2012;40(12):3283–9.

    PubMed 

    Google Scholar
     

  • Fisher JP, Young CN, Fadel PJ. Central sympathetic overactivity: maladies and mechanisms. Auton Neurosci. 2009;148(1–2):5–15.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schmidt JM, Crimmins M, Lantigua H, Fernandez A, Zammit C, Falo C, et al. Prolonged elevated heart rate is a risk factor for adverse cardiac events and poor outcome after subarachnoid hemorrhage. Neurocrit Care. 2014;20(3):390–8.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rachfalska N, Putowski Z, Krzych ŁJ. Distant organ damage in acute brain injury. Brain Sci. 2020;10(12):1019.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hasegawa Y, Uchikawa H, Kajiwara S, Morioka M. Central sympathetic nerve activation in subarachnoid hemorrhage. J Neurochem. 2022;160(1):34–50.

    CAS 
    PubMed 

    Google Scholar
     

  • Baguley IJ, Heriseanu RE, Felmingham KL, Cameron ID. Dysautonomia and heart rate variability following severe traumatic brain injury. Brain Inj. 2006;20(4):437–44.

    PubMed 

    Google Scholar
     

  • Prasad Hrishi A, Ruby Lionel K, Prathapadas U. Head rules over the heart: cardiac manifestations of cerebral disorders. Indian J Crit Care Med. 2019;23(7):329–35.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stam CJ. Hub overload and failure as a final common pathway in neurological brain network disorders. Netw Neurosci. 2024;8(1):1–23.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Achard S, Delon-Martin C, Vértes PE, Renard F, Schenck M, Schneider F, et al. Hubs of brain functional networks are radically reorganized in comatose patients. Proc Natl Acad Sci U S A. 2012;109(50):20608–13.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lv LQ, Hou LJ, Yu MK, Qi XQ, Chen HR, Chen JX, et al. Prognostic influence and magnetic resonance imaging findings in paroxysmal sympathetic hyperactivity after severe traumatic brain injury. J Neurotrauma. 2010;27(11):1945–50.

    PubMed 

    Google Scholar
     

  • Podell JE, Moffet EW, Bodanapally UK, Pajoumand M, Silva LM, Hu P, et al. Magnetic resonance imaging lesions associated with paroxysmal sympathetic hyperactivity after traumatic brain injury. Neurotrauma Rep. 2024;5(1):317–29.


    Google Scholar
     

  • Brown HW, Plum F. The neurologic basis of cheyne-stokes respiration. Am J Med. 1961;30(6):849–60.


    Google Scholar
     

  • Mador MJ, Tobin MJ. Apneustic breathing. A characteristic feature of brainstem compression in achondroplasia? Chest. 1990;97(4):877–83.

    CAS 
    PubMed 

    Google Scholar
     

  • Summ O, Hassanpour N, Mathys C, Groß M. Disordered breathing in severe cerebral illness – towards a conceptual framework. Respir Physiol Neurobiol. 2022;300:103869.

    PubMed 

    Google Scholar
     

  • Dobson GP, Morris JL, Letson HL. Traumatic brain injury: symptoms to systems in the 21st century. Brain Res. 2024;1845:149271.

    CAS 
    PubMed 

    Google Scholar
     

  • Robba C, Wahlster S, Newcombe V. Update on acute brain injury. Intensive Care Med. 2025;51(10):1924–6.

    PubMed 

    Google Scholar
     

  • Hill CS, Coleman MP, Menon DK. Traumatic axonal injury: mechanisms and translational opportunities. Trends Neurosci. 2016;39(5):311–24.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jarrahi A, Braun M, Ahluwalia M, Gupta RV, Wilson M, Munie S, et al. Revisiting traumatic brain injury: from molecular mechanisms to therapeutic interventions. Biomedicines. 2020;8(10):389.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shi K, Tian DC, Li ZG, Ducruet AF, Lawton MT, Shi FD. Global brain inflammation in stroke. Lancet Neurol. 2019;18(11):1058–66.

    PubMed 

    Google Scholar
     

  • Sabet N, Soltani Z, Khaksari M. Multipotential and systemic effects of traumatic brain injury. J Neuroimmunol. 2021;357:577619.

    CAS 
    PubMed 

    Google Scholar
     

  • Sammons M, Popescu MC, Chi J, Liberles SD, Gogolla N, Rolls A. Brain-body physiology: local, reflex, and central communication. Cell. 2024;187(21):5877–90.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Busl KM, Bogossian EG, Claassen J, Helbok R, Provencio JJ, Robba C, et al. Beyond the bleed: complications after aneurysmal subarachnoid hemorrhage. Pathophysiology, clinical implications, and management strategies: a review. Crit Care. 2025;29(1):414.

    PubMed 

    Google Scholar
     

  • Zygun DA, Doig CJ, Gupta AK, Whiting G, Nicholas C, Shepherd E, et al. Non-neurological organ dysfunction in neurocritical care. J Crit Care. 2003;18(4):238–44.

    PubMed 

    Google Scholar
     

  • Zygun DA, Kortbeek JB, Fick GH, Laupland KB, Doig CJ. Non-neurologic organ dysfunction in severe traumatic brain injury. Crit Care Med. 2005;33(3):654–60.

    PubMed 

    Google Scholar
     

  • Astarabadi M, Khurrum M, Asmar S, Bible L, Chehab M, Castanon L, et al. The impact of non-neurological organ dysfunction on outcomes in severe isolated traumatic brain injury. J Trauma Acute Care Surg. 2020;89(2):405–10.

    CAS 
    PubMed 

    Google Scholar
     

  • Piek J, Chesnut RM, Marshall LF, van Berkum-Clark M, Klauber MR, Blunt BA, et al. Extracranial complications of severe head injury. J Neurosurg. 1992;77(6):901–7.

    CAS 
    PubMed 

    Google Scholar
     

  • Mascia L, Sakr Y, Pasero D, Payen D, Reinhart K, Vincent JL. Extracranial complications in patients with acute brain injury: a post-hoc analysis of the SOAP study. Intensive Care Med. 2008;34(4):720–7.

    PubMed 

    Google Scholar
     

  • Alberti A, Agnelli G, Caso V, Venti M, Acciarresi M, D’Amore C, et al. Non-neurological complications of acute stroke: frequency and influence on clinical outcome. Intern Emerg Med. 2011;6(Suppl 1):119–23.

    PubMed 

    Google Scholar
     

  • Corral L, Javierre CF, Ventura JL, Marcos P, Herrero JI, Mañez R. Impact of non-neurological complications in severe traumatic brain injury outcome. Crit Care. 2012;16(2):R44.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Goyal K, Hazarika A, Khandelwal A, Sokhal N, Bindra A, Kumar N, et al. Non- neurological complications after traumatic brain injury: a prospective observational study. Indian J Crit Care Med. 2018;22(9):632–8.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kumaria A, Kirkman MA, Scott RA, Dow GR, Leggate AJ, Macarthur DC, et al. A reappraisal of the pathophysiology of cushing ulcer: a narrative review. J Neurosurg Anesthesiol. 2024;36(3):211–7.

    PubMed 

    Google Scholar
     

  • Šedý J, Kuneš J, Zicha J. Pathogenetic mechanisms of neurogenic pulmonary edema. J Neurotrauma. 2015;32(15):1135–45.

    PubMed 

    Google Scholar
     

  • Tuzi S, Kranawetter B, Moerer O, Rohde V, Mielke D, Malinova V. Logistic organ dysfunction system as an early risk stratification tool after aneurysmal subarachnoid hemorrhage. Sci Rep. 2024;14(1):27639.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brown EN, Lydic R, Schiff ND. General anesthesia, sleep, and coma. N Engl J Med. 2010;363(27):2638–50.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hu Y, Wang Y, Zhang L, Luo M, Wang Y. Neural network mechanisms underlying general anesthesia: cortical and subcortical nuclei. Neurosci Bull. 2024;40(12):1995–2011.

    PubMed 

    Google Scholar
     

  • Hawryluk GWJ, Aguilera S, Buki A, Bulger E, Citerio G, Cooper DJ, et al. A management algorithm for patients with intracranial pressure monitoring: the Seattle International Severe Traumatic Brain Injury Consensus Conference (SISBICC). Intensive Care Med. 2019;45(12):1783–94.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Varley TF, Sporns O, Puce A, Beggs J. Differential effects of propofol and ketamine on critical brain dynamics. PLoS Comput Biol. 2020;16(12):e1008418.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Varley TF, Denny V, Sporns O, Patania A. Topological analysis of differential effects of ketamine and propofol anaesthesia on brain dynamics. R Soc Open Sci. 2021;8(6):201971.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Grände PO. The “lund concept” for the treatment of severe head trauma–physiological principles and clinical application. Intensive Care Med. 2006;32(10):1475–84.

    PubMed 

    Google Scholar
     

  • Réen L, Cederberg D, Radman A, Marklund N, Visse E, Siesjö P. Low morbidity and mortality in children with severe traumatic brain injury treated according to the lund concept: a population-based study. J Neurotrauma. 2023;40(7–8):720–9.

    PubMed 

    Google Scholar
     

  • Khalili H, Ahl R, Paydar S, Sjolin G, Cao Y, Abdolrahimzadeh Fard H, et al. Beta-blocker therapy in severe traumatic brain injury: a prospective randomized controlled trial. World J Surg. 2020;44(6):1844–53.

    PubMed 

    Google Scholar
     

  • Nordness MF, Maiga AW, Wilson LD, Koyama T, Rivera EL, Rakhit S, et al. Effect of propranolol and clonidine after severe traumatic brain injury: a pilot randomized clinical trial. Crit Care. 2023;27(1):228.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Alshaya AI, Aldhaeefi M, Alodhaiyan N, Alqahtani M, Althewaibi S, Alshahrani W, et al. Clonidine safety and effectiveness in the management of suspected paroxysmal sympathetic hyperactivity post-traumatic brain injury: A retrospective cohort study. Sci Prog. 2023;106(4):368504231201298.

    CAS 
    PubMed 

    Google Scholar
     

  • Mansour MS, Seidy NSE, Fathey YI. Evaluation of beta-blocker effects on patients with traumatic brain injury: interventional double-blinded randomized controlled trial. Ain Shams J Anesthesiol. 2023;15(1):65.


    Google Scholar
     

  • Hart S, Lannon M, Chen A, Martyniuk A, Sharma S, Engels PT. Beta blockers in traumatic brain injury: a systematic review and meta-analysis. Trauma Surg Acute Care Open. 2023;8(1):e001051.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Borgmann D, Rigoux L, Kuzmanovic B, Edwin Thanarajah S, Münte TF, Fenselau H, et al. Technical note: modulation of fMRI brainstem responses by transcutaneous vagus nerve stimulation. Neuroimage. 2021;244:118566.

    PubMed 

    Google Scholar
     

  • Lee MC, Bartuska A, Chen J, Kim RK, Jaradeh S, Mihm F. Stellate ganglion block catheter for paroxysmal sympathetic hyperactivity: calming the “neuro-storm.” Reg Anesth Pain Med. 2023;48(10):522–5.

    PubMed 

    Google Scholar
     

  • Sharp DJ, Scott G, Leech R. Network dysfunction after traumatic brain injury. Nat Rev Neurol. 2014;10(3):156–66.

    PubMed 

    Google Scholar
     

  • Petrella JR. Use of graph theory to evaluate brain networks: a clinical tool for a small world? Radiology. 2011;259(2):317–20.

    PubMed 

    Google Scholar
     

  • Filippi M, van den Heuvel MP, Fornito A, He Y, Hulshoff Pol HE, Agosta F, et al. Assessment of system dysfunction in the brain through MRI-based connectomics. Lancet Neurol. 2013;12(12):1189–99.

    PubMed 

    Google Scholar
     

  • Pandit AS, Expert P, Lambiotte R, Bonnelle V, Leech R, Turkheimer FE, et al. Traumatic brain injury impairs small-world topology. Neurology. 2013;80(20):1826–33.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Swanson LW, Hahn JD, Sporns O. Neural network architecture of a mammalian brain. Proc Natl Acad Sci U S A. 2024;121(39):e2413422121.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Swanson LW, Hahn JD, Sporns O. The intrinsic neuronal network of the central nervous system and its modular (subsystem) architecture in a mammal. Proc Natl Acad Sci U S A. 2025;122(40):e2519768122.

    PubMed 

    Google Scholar
     

  • Fukushima M, Betzel RF, He Y, van den Heuvel MP, Zuo XN, Sporns O. Structure-function relationships during segregated and integrated network states of human brain functional connectivity. Brain Struct Funct. 2018;223(3):1091–106.

    PubMed 

    Google Scholar
     

  • Thayer JF, Lane RD. Claude Bernard and the heart-brain connection: further elaboration of a model of neurovisceral integration. Neurosci Biobehav Rev. 2009;33(2):81–8.

    PubMed 

    Google Scholar
     

  • De Raedt S, De Vos A, De Keyser J. Autonomic dysfunction in acute ischemic stroke: an underexplored therapeutic area? J Neurol Sci. 2015;348(1–2):24–34.

    PubMed 

    Google Scholar