• Yi CX, la Fleur SE, Fliers E, Kalsbeek A. The role of the autonomic nervous liver innervation in the control of energy metabolism. Biochim Biophys Acta. 2010;1802(4):416–31.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kandilis AN, Papadopoulou IP, Koskinas J, Sotiropoulos G, Tiniakos DG. Liver innervation and hepatic function: new insights. J Surg Res. 2015;194(2):511–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Berthoud HR. Anatomy and function of sensory hepatic nerves. Anat Rec A Discov Mol Cell Evol Biol. 2004;280(1):827–35.

    Article 
    PubMed 

    Google Scholar
     

  • Ahren B. Autonomic regulation of islet hormone secretion–implications for health and disease. Diabetologia. 2000;43(4):393–410.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hampton RF, Jimenez-Gonzalez M, Stanley SA. Unravelling innervation of pancreatic islets. Diabetologia. 2022;65(7):1069–84.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Taborsky GJ Jr, Mundinger TO. Minireview: The role of the autonomic nervous system in mediating the glucagon response to hypoglycemia. Endocrinology. 2012;153(3):1055–62.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vinik AI, Maser RE, Mitchell BD, Freeman R. Diabetic autonomic neuropathy. Diabetes Care. 2003;26(5):1553–79.

    Article 
    PubMed 

    Google Scholar
     

  • McCall AL. Insulin therapy and hypoglycemia. Endocrinol Metab Clin North Am. 2012;41(1):57–87.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wehrwein EA, Orer HS, Barman SM. Overview of the anatomy, physiology, and pharmacology of the autonomic nervous system. Compr Physiol. 2016;6(3):1239–78.

    Article 
    PubMed 

    Google Scholar
     

  • Goldstein DS. Adrenal responses to stress. Cell Mol Neurobiol. 2010;30(8):1433–40.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Drucker DJ. The biology of incretin hormones. Cell Metab. 2006;3(3):153–65.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gilon P, Henquin JC. Mechanisms and physiological significance of the cholinergic control of pancreatic beta-cell function. Endocr Rev. 2001;22(5):565–604.

    CAS 
    PubMed 

    Google Scholar
     

  • Miller BM, Oderberg IM, Goessling W. Hepatic nervous system in development, regeneration, and disease. Hepatology. 2021;74(6):3513–22.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Uyama N, Geerts A, Reynaert H. Neural connections between the hypothalamus and the liver. Anat Rec A Discov Mol Cell Evol Biol. 2004;280(1):808–20.

    Article 
    PubMed 

    Google Scholar
     

  • Fukuda Y, Imoto M, Koyama Y, Miyazawa Y, Hayakawa T. Demonstration of noradrenaline-immunoreactive nerve fibres in the liver. J Int Med Res. 1996;24(6):466–72.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tsuneki K, Ichihara K. Electron microscope study of vertebrate liver innervation. Arch Histol Jpn. 1981;44(1):1–13.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Smits MM, van Geenen EJ. The clinical significance of pancreatic steatosis. Nat Rev Gastroenterol Hepatol. 2011;8(3):169–77.

    Article 
    PubMed 

    Google Scholar
     

  • Ramkissoon R, Gardner TB. Pancreatic steatosis: an emerging clinical entity. Am J Gastroenterol. 2019;114(11):1726–34.

    Article 
    PubMed 

    Google Scholar
     

  • Tang SC, Baeyens L, Shen CN, Peng SJ, Chien HJ, Scheel DW, et al. Human pancreatic neuro-insular network in health and fatty infiltration. Diabetologia. 2018;61(1):168–81.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rebours V, Gaujoux S, d’Assignies G, Sauvanet A, Ruszniewski P, Levy P, et al. Obesity and fatty pancreatic infiltration are risk factors for pancreatic precancerous lesions (PanIN). Clin Cancer Res. 2015;21(15):3522–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schaefer PM, Kalinina S, Rueck A, von Arnim CAF, von Einem B. NADH autofluorescence-a marker on its way to boost bioenergetic research. Cytometry A. 2019;95(1):34–46.

    Article 
    PubMed 

    Google Scholar
     

  • Wallrabe H, Svindrych Z, Alam SR, Siller KH, Wang T, Kashatus D, et al. Segmented cell analyses to measure redox states of autofluorescent NAD(P)H, FAD & Trp in cancer cells by FLIM. Sci Rep. 2018;8(1):79.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Croce AC, Ferrigno A, Bottiroli G, Vairetti M. Autofluorescence-based optical biopsy: an effective diagnostic tool in hepatology. Liver Int. 2018;38(7):1160–74.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Croce AC, Ferrigno A, Santin G, Vairetti M, Bottiroli G. Bilirubin: an autofluorescence bile biomarker for liver functionality monitoring. J Biophotonics. 2014;7(10):810–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schnell SA, Staines WA, Wessendorf MW. Reduction of lipofuscin-like autofluorescence in fluorescently labeled tissue. J Histochem Cytochem. 1999;47(6):719–30.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Di Guardo G. Lipofuscin, lipofuscin-like pigments and autofluorescence. Eur J Histochem. 2015;59(1):2485.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ueda Y, Kobayashi M. Spectroscopic studies of autofluorescence substances existing in human tissue: influences of lactic acid and porphyrins. Appl Opt. 2004;43(20):3993–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shrirao AB, Schloss RS, Fritz Z, Shrirao MV, Rosen R, Yarmush ML. Autofluorescence of blood and its application in biomedical and clinical research. Biotechnol Bioeng. 2021;118(12):4550–76.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Baschong W, Suetterlin R, Laeng RH. Control of autofluorescence of archival formaldehyde-fixed, paraffin-embedded tissue in confocal laser scanning microscopy (CLSM). J Histochem Cytochem. 2001;49(12):1565–72.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Erben T, Ossig R, Naim HY, Schnekenburger J. What to do with high autofluorescence background in pancreatic tissues – an efficient Sudan black B quenching method for specific immunofluorescence labelling. Histopathology. 2016;69(3):406–22.

    Article 
    PubMed 

    Google Scholar
     

  • Chien HJ, Chiang TC, Peng SJ, Chung MH, Chou YH, Lee CY, et al. Human pancreatic afferent and efferent nerves: mapping and 3-D illustration of exocrine, endocrine, and adipose innervation. Am J Physiol Gastrointest Liver Physiol. 2019;317(5):G694–706.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chung MH, Chien HJ, Peng SJ, Chou YH, Chiang TC, Chang HP, et al. Multimodal 3-D/2-D human islet and duct imaging in exocrine and endocrine lesion environment: associated pancreas tissue remodeling. Am J Physiol Endocrinol Metab. 2022;323(4):E354–65.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sakr N, Glazova O, Shevkova L, Onyanov N, Kaziakhmedova S, Shilova A, et al. Characterizing and quenching autofluorescence in fixed mouse adrenal cortex tissue. Int J Mol Sci. 2023;24(4):3432.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang Z, Fan H, Richardson W, Gao BZ, Ye T. Management of autofluorescence in formaldehyde-fixed myocardium: choosing the right treatment. Eur J Histochem. 2023;67(4):3812.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Oliveira VC, Carrara RC, Simoes DL, Saggioro FP, Carlotti CG Jr, Covas DT, et al. Sudan Black B treatment reduces autofluorescence and improves resolution of in situ hybridization specific fluorescent signals of brain sections. Histol Histopathol. 2010;25(8):1017–24.

    CAS 
    PubMed 

    Google Scholar
     

  • Sun Y, Yu H, Zheng D, Cao Q, Wang Y, Harris D. Sudan black B reduces autofluorescence in murine renal tissue. Arch Pathol Lab Med. 2011;135(10):1335–42.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Radtke AJ, Chu CJ, Yaniv Z, Yao L, Marr J, Beuschel RT, et al. IBEX: an iterative immunolabeling and chemical bleaching method for high-content imaging of diverse tissues. Nat Protoc. 2022;17(2):378–401.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu CH, Lin CH, Tsai MJ, Chen WT, Chai CY, Huang YC, et al. Melanin bleaching with dilute hydrogen peroxide: a simple and rapid method. Appl Immunohistochem Mol Morphol. 2013;21(3):275–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chung JY, Choi J, Sears JD, Ylaya K, Perry C, Choi CH, et al. A melanin-bleaching methodology for molecular and histopathological analysis of formalin-fixed paraffin-embedded tissue. Lab Invest. 2016;96(10):1116–27.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Duong H, Han M. A multispectral LED array for the reduction of background autofluorescence in brain tissue. J Neurosci Methods. 2013;220(1):46–54.

    Article 
    PubMed 

    Google Scholar
     

  • Nolta NF, Liberti A, Makol R, Han M. Gelatin embedding and LED autofluorescence reduction for rodent spinal cord histology. J Neurosci Methods. 2020;1(346):108924.

    Article 

    Google Scholar
     

  • Zheng J, Wu YC, Phillips EH, Cai X, Wang X, Seung-Young Lee S. Increased multiplexity in optical tissue clearing-based three-dimensional immunofluorescence microscopy of the tumor microenvironment by light-emitting diode photobleaching. Lab Invest. 2024;104(6):102072.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ueda HR, Erturk A, Chung K, Gradinaru V, Chedotal A, Tomancak P, et al. Tissue clearing and its applications in neuroscience. Nat Rev Neurosci. 2020;21(2):61–79.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Richardson DS, Guan W, Matsumoto K, Pan C, Chung K, Erturk A, et al. Tissue clearing. Nat Rev Methods Primers. 2021. https://doi.org/10.1038/s43586-021-00080-9.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tainaka K, Kuno A, Kubota SI, Murakami T, Ueda HR. Chemical principles in tissue clearing and staining protocols for whole-body cell profiling. Annu Rev Cell Dev Biol. 2016;6(32):713–41.

    Article 

    Google Scholar
     

  • Holtzer RL, Van Lancker JL. Early changes in pancreas autolysis. Am J Pathol. 1962;40(3):331–6.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shimizu M, Hayashi T, Saitoh Y, Ohta K, Itoh H. Postmortem autolysis in the pancreas: multivariate statistical study. The influence of clinicopathological conditions. Pancreas. 1990;5(1):91–4.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Walker AE. The adult pancreas in trauma and disease. Acad Forensic Pathol. 2018;8(2):192–218.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Alwelaie Y, Point du Jour KS, Pandya S, Goodman AL, Centeno BA, Adsay V, et al. Acinar cell induced autolysis is a frequent occurrence in CytoLyt-fixed pancreatic fine needle aspiration specimens: an analysis of 157 cytology samples. Cancer Cytopathol. 2021;129(4):283–90.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Qadir MMF, Alvarez-Cubela S, Weitz J, Panzer JK, Klein D, Moreno-Hernandez Y, et al. Long-term culture of human pancreatic slices as a model to study real-time islet regeneration. Nat Commun. 2020;11(1):3265.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Alver CG, Alvarez-Cubela S, Altilio I, Hutchison E, Warrner E, Viso ME, et al. SliceChip: a benchtop fluidic platform for organotypic culture and serial assessment of human and rodent pancreatic slices. Lab Chip. 2024;24(6):1557–72.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Monici M. Cell and tissue autofluorescence research and diagnostic applications. Biotechnol Annu Rev. 2005;11:227–56.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • DiMaio VJ, DiMaio D. Forensic pathology. 2nd ed. Boca Raton: CRC Press; 2001.


    Google Scholar
     

  • Demchenko AP. Photobleaching of organic fluorophores: quantitative characterization, mechanisms, protection. Methods Appl Fluoresc. 2020;8(2):022001.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bernas T, Zarebski M, Dobrucki JW, Cook PR. Minimizing photobleaching during confocal microscopy of fluorescent probes bound to chromatin: role of anoxia and photon flux. J Microsc. 2004;215(Pt 3):281–96.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kwon J, Elgawish MS, Shim SH. Bleaching-resistant super-resolution fluorescence microscopy. Adv Sci (Weinh). 2022;9(9):e2101817.

    Article 
    PubMed 

    Google Scholar
     

  • Patterson GH, Piston DW. Photobleaching in two-photon excitation microscopy. Biophys J. 2000;78(4):2159–62.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dasgupta A, Koerfer A, Kokot B, Urbancic I, Eggeling C, Carravilla P. Effects and avoidance of photoconversion-induced artifacts in confocal and STED microscopy. Nat Methods. 2024;21(7):1171–4.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Haugland RP. The handbook: a guide to fluorescent probes and labeling technologies. 10th ed. Waltham: Invitrogen Corp; 2005.


    Google Scholar
     

  • Aitken CE, Marshall RA, Puglisi JD. An oxygen scavenging system for improvement of dye stability in single-molecule fluorescence experiments. Biophys J. 2008;94(5):1826–35.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huisken J, Swoger J, Del Bene F, Wittbrodt J, Stelzer EH. Optical sectioning deep inside live embryos by selective plane illumination microscopy. Science. 2004;305(5686):1007–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Keller PJ, Schmidt AD, Wittbrodt J, Stelzer EH. Reconstruction of zebrafish early embryonic development by scanned light sheet microscopy. Science. 2008;322(5904):1065–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Power RM, Huisken J. A guide to light-sheet fluorescence microscopy for multiscale imaging. Nat Methods. 2017;14(4):360–73.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Adori C, Daraio T, Kuiper R, Barde S, Horvathova L, Yoshitake T, et al. Disorganization and degeneration of liver sympathetic innervations in nonalcoholic fatty liver disease revealed by 3D imaging. Sci Adv. 2021. https://doi.org/10.1126/sciadv.abg5733.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu K, Yang L, Wang G, Liu J, Zhao X, Wang Y, et al. Metabolic stress drives sympathetic neuropathy within the liver. Cell Metab. 2021;33(3):666-75 e4.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Durgam S, Singh B, Cole SL, Brokken MT, Stewart M. Quantitative assessment of tendon hierarchical structure by combined second harmonic generation and immunofluorescence microscopy. Tissue Eng Part C Methods. 2020;26(5):253–62.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chapman KB, Filipsky F, Peschke N, Gelleri M, Weinhardt V, Braun A, et al. A comprehensive method to study the DNA’s association with Lamin And Chromatin compaction in intact cell nuclei at super resolution. Nanoscale. 2023;15(2):742–56.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Florijn RJ, Slats J, Tanke HJ, Raap AK. Analysis of antifading reagents for fluorescence microscopy. Cytometry. 1995;19(2):177–82.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Arsic A, Stajkovic N, Spiegel R, Nikic-Spiegel I. Effect of Vectashield-induced fluorescence quenching on conventional and super-resolution microscopy. Sci Rep. 2020;10(1):6441.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hsiao FT, Chien HJ, Chou YH, Peng SJ, Chung MH, Huang TH, et al. Transparent tissue in solid state for solvent-free and antifade 3D imaging. Nat Commun. 2023;14(1):3395.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen CC, Peng SJ, Chou YH, Lee CY, Lee PH, Hu RH, et al. Human liver afferent and efferent nerves revealed by 3-D/Airyscan super-resolution imaging. Am J Physiol Endocrinol Metab. 2024;326(2):E107–23.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lee CY, Kuo TC, Chou YH, Peng SJ, Hsiao FT, Chung MH, et al. 3D imaging resolves human pancreatic duct-beta-cell clusters during cystic change. Diabetes. 2025;74(5):734–48.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • ZEISS Lattice SIM 5. Resolve the details hiding in the depth. https://www.zeiss.com/microscopy/us/products/light-microscopes/super-resolution-microscopes/lattice-sim-5.html. Accessed 30 September 2025.

  • Nikon Instruments Inc. Application note: precision imaging in complex tissue Structures. https://www.microscope.healthcare.nikon.com/resources/application-notes/precision-imaging-in-complex-tissue-structures. Accessed 30 September 2025.

  • Farrell GC, Larter CZ. Nonalcoholic fatty liver disease: from steatosis to cirrhosis. Hepatology. 2006;43(2 Suppl 1):S99–112.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Burt AD, Mutton A, Day CP. Diagnosis and interpretation of steatosis and steatohepatitis. Semin Diagn Pathol. 1998;15(4):246–58.

    CAS 
    PubMed 

    Google Scholar
     

  • Tilg H, Moschen AR. Evolution of inflammation in nonalcoholic fatty liver disease: the multiple parallel hits hypothesis. Hepatology. 2010;52(5):1836–46.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pavlov VA, Tracey KJ. The vagus nerve and the inflammatory reflex–linking immunity and metabolism. Nat Rev Endocrinol. 2012;8(12):743–54.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tien YW, Chien HJ, Chiang TC, Chung MH, Lee CY, Peng SJ, et al. Local islet remodelling associated with duct lesion-islet complex in adult human pancreas. Diabetologia. 2021;64(10):2266–78.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dodt HU, Leischner U, Schierloh A, Jahrling N, Mauch CP, Deininger K, et al. Ultramicroscopy: three-dimensional visualization of neuronal networks in the whole mouse brain. Nat Methods. 2007;4(4):331–6.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Erturk A, Becker K, Jahrling N, Mauch CP, Hojer CD, Egen JG, et al. Three-dimensional imaging of solvent-cleared organs using 3DISCO. Nat Protoc. 2012;7(11):1983–95.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kandel ER, Schwartz JH, Jessell TM, Siegelbaum SA, Hudspeth AJ. Principles of neural science. 5th ed. Columbus: McGraw-Hill; 2013.


    Google Scholar
     

  • Usdin TB, Eiden LE, Bonner TI, Erickson JD. Molecular biology of the vesicular ACh transporter. Trends Neurosci. 1995;18(5):218–24.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Arvidsson U, Riedl M, Elde R, Meister B. Vesicular acetylcholine transporter (VAChT) protein: a novel and unique marker for cholinergic neurons in the central and peripheral nervous systems. J Comp Neurol. 1997;378(4):454–67.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schafer MK, Eiden LE, Weihe E. Cholinergic neurons and terminal fields revealed by immunohistochemistry for the vesicular acetylcholine transporter. II. The peripheral nervous system. Neuroscience. 1998;84(2):361–76.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Amenta F, Cavallotti C, Ferrante F, Tonelli F. Cholinergic nerves in the human liver. Histochem J. 1981;13(3):419–24.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Akiyoshi H, Gonda T, Terada T. A comparative histochemical and immunohistochemical study of aminergic, cholinergic and peptidergic innervation in rat, hamster, guinea pig, dog and human livers. Liver. 1998;18(5):352–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Berthoud HR, Kressel M, Neuhuber WL. An anterograde tracing study of the vagal innervation of rat liver, portal vein and biliary system. Anat Embryol (Berl). 1992;186(5):431–42.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Berthoud HR, Powley TL. Morphology and distribution of efferent vagal innervation of rat pancreas as revealed with anterograde transport of Dil. Brain Res. 1991;553(2):336–41.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hwang J, Okada J, Liu L, Pessin JE, Schwartz GJ, Jo YH. The development of hepatic steatosis depends on the presence of liver-innervating parasympathetic cholinergic neurons in mice fed a high-fat diet. PLoS Biol. 2024;22(10):e3002865.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Metz CN, Pavlov VA. Vagus nerve cholinergic circuitry to the liver and the gastrointestinal tract in the neuroimmune communicatome. Am J Physiol Gastrointest Liver Physiol. 2018;315(5):G651–8.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Berthoud HR, Munzberg H, Morrison CD, Neuhuber WL. Hepatic interoception in health and disease. Auton Neurosci. 2024;253:103174.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Berthoud HR, Fox EA, Munzberg H, Yu S, Kim A, Lowell BB, et al. Direct vagal input to the gastrointestinal tract and other viscera: Re-definition of autonomic neuroscience or experimental artifacts? Auton Neurosci. 2025;260:103310.

    Article 
    PubMed 

    Google Scholar
     

  • Furness JB. The enteric nervous system and neurogastroenterology. Nat Rev Gastroenterol Hepatol. 2012;9(5):286–94.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li ZS, Fox-Threlkeld JE, Furness JB. Innervation of intestinal arteries by axons with immunoreactivity for the vesicular acetylcholine transporter (VAChT). J Anat. 1998;192(Pt 1):107–17.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tang SC, Shen CN, Lin PY, Peng SJ, Chien HJ, Chou YH, et al. Pancreatic neuro-insular network in young mice revealed by 3d panoramic histology. Diabetologia. 2018;61(1):158–67.

    Article 
    PubMed 

    Google Scholar
     

  • Huff J. The Airyscan detector from ZEISS: confocal imaging with improved signal-to-noise ratio and super-resolution. Nature Methods. 2015 Dec;12(12).

  • Begg DP, Woods SC. Interactions between the central nervous system and pancreatic islet secretions: a historical perspective. Adv Physiol Educ. 2013;37(1):53–60.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lkhagvasuren B, Mee-Inta O, Zhao ZW, Hiramoto T, Boldbaatar D, Kuo YM. Pancreas-brain crosstalk. Front Neuroanat. 2021;15:691777.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rosario W, Singh I, Wautlet A, Patterson C, Flak J, Becker TC, et al. The brain-to-pancreatic islet neuronal map reveals differential glucose regulation from distinct hypothalamic regions. Diabetes. 2016;65(9):2711–23.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Teff K. Nutritional implications of the cephalic-phase reflexes: endocrine responses. Appetite. 2000;34(2):206–13.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Teff KL. Cephalic phase pancreatic polypeptide responses to liquid and solid stimuli in humans. Physiol Behav. 2010;99(3):317–23.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Smeets PA, Erkner A, de Graaf C. Cephalic phase responses and appetite. Nutr Rev. 2010;68(11):643–55.

    Article 
    PubMed 

    Google Scholar
     

  • Ahren B, Holst JJ. The cephalic insulin response to meal ingestion in humans is dependent on both cholinergic and noncholinergic mechanisms and is important for postprandial glycemia. Diabetes. 2001;50(5):1030–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ahren B. Islet nerves in focus–defining their neurobiological and clinical role. Diabetologia. 2012;55(12):3152–4.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nauck MA, Meier JJ. Incretin hormones: their role in health and disease. Diabetes Obes Metab. 2018;20(Suppl 1):5–21.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Drucker DJ, Habener JF, Holst JJ. Discovery, characterization, and clinical development of the glucagon-like peptides. J Clin Invest. 2017;127(12):4217–27.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Drucker DJ. GLP-1-based therapies for diabetes, obesity and beyond. Nat Rev Drug Discov. 2025.

  • Booth MJ. Adaptive optics in microscopy. Philos Trans A Math Phys Eng Sci. 1861;2007(365):2829–43.


    Google Scholar
     

  • Wassie AT, Zhao Y, Boyden ES. Expansion microscopy: principles and uses in biological research. Nat Methods. 2019;16(1):33–41.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bykov YS, Cortese M, Briggs JA, Bartenschlager R. Correlative light and electron microscopy methods for the study of virus-cell interactions. FEBS Lett. 2016;590(13):1877–95.

    Article 
    CAS 
    PubMed 

    Google Scholar