• Popoff, S. M. et al. Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media. Phys. Rev. Lett. 104, 100601 (2010).

    Article 
    ADS 

    Google Scholar
     

  • Boyd, R. W. Nonlinear Optics (Academic Press, 2008).

  • Weedbrook, C. et al. Gaussian quantum information. Rev. Mod. Phys. 84, 621–669 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Fabre, C. & Treps, N. Modes and states in quantum optics. Rev. Mod. Phys. 92, 035005 (2020).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Moon, J., Cho, Y.-C., Kang, S., Jang, M. & Choi, W. Measuring the scattering tensor of a disordered nonlinear medium. Nat. Phys. 19, 1709–1718 (2023).

    Article 

    Google Scholar
     

  • Cao, H., Mosk, A. P. & Rotter, S. Shaping the propagation of light in complex media. Nat. Phys. 18, 994–1007 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Bertolotti, J. & Katz, O. Imaging in complex media. Nat. Phys. 18, 1008–1017 (2022).

    Article 

    Google Scholar
     

  • Mosk, A. P., Lagendijk, A., Lerosey, G. & Fink, M. Controlling waves in space and time for imaging and focusing in complex media. Nat. Photon. 6, 283–292 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Kim, M. et al. Maximal energy transport through disordered media with the implementation of transmission eigenchannels. Nat. Photon. 6, 581–585 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Baek, Y., Aguiar, H. B. D. & Gigan, S. Phase conjugation with spatially incoherent light in complex media. Nat. Photon. 17, 1114–1119 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Bouchet, D., Rotter, S. & Mosk, A. P. Maximum information states for coherent scattering measurements. Nat. Phys. 17, 564–568 (2021).

    Article 

    Google Scholar
     

  • Pai, P., Bosch, J., Kühmayer, M., Rotter, S. & Mosk, A. P. Scattering invariant modes of light in complex media. Nat. Photon. 15, 431–434 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Gigan, S. Imaging and computing with disorder. Nat. Phys. 18, 980–985 (2022).

    Article 

    Google Scholar
     

  • Zhong, H.-S. et al. Quantum computational advantage using photons. Science 370, 1460–1463 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Carolan, J. et al. Universal linear optics. Science 349, 711–716 (2015).

    Article 
    MathSciNet 

    Google Scholar
     

  • Goel, S. et al. Inverse design of high-dimensional quantum optical circuits in a complex medium. Nat. Phys. 20, 232–239 (2024).

    Article 

    Google Scholar
     

  • Lib, O. & Bromberg, Y. Quantum light in complex media and its applications. Nat. Phys. 18, 986–993 (2022).

    Article 

    Google Scholar
     

  • Wang, J., Sciarrino, F., Laing, A. & Thompson, M. G. Integrated photonic quantum technologies. Nat. Photon. 14, 273–284 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Zhang, C., Huang, Y., Liu, B., Li, C. & Guo, G. Spontaneous parametric down-conversion sources for multiphoton experiments. Adv. Quantum Technol. 4, 2000132 (2021).

    Article 

    Google Scholar
     

  • Andersen, U. L., Gehring, T., Marquardt, C. & Leuchs, G. 30 years of squeezed light generation. Phys. Scr. 91, 053001 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Takanashi, N. et al. All-optical phase-sensitive detection for ultra-fast quantum computation. Opt. Express 28, 34916–34926 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Pereira, S. F., Ou, Z. Y. & Kimble, H. J. Backaction evading measurements for quantum nondemolition detection and quantum optical tapping. Phys. Rev. Lett. 72, 214–217 (1994).

    Article 
    ADS 

    Google Scholar
     

  • He, G. S. Optical phase conjugation: principles, techniques, and applications. Prog. Quantum Electron. 26, 131–191 (2002).

    Article 
    ADS 

    Google Scholar
     

  • Wright, L. G., Wu, F. O., Christodoulides, D. N. & Wise, F. W. Physics of highly multimode nonlinear optical systems. Nat. Phys. 18, 1018–1030 (2022).

    Article 

    Google Scholar
     

  • Cai, Y. et al. Multimode entanglement in reconfigurable graph states using optical frequency combs. Nat. Commun. 8, 15645 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Roh, C., Gwak, G., Yoon, Y.-D. & Ra, Y.-S. Generation of three-dimensional cluster entangled state. Nat. Photon. 19, 526–532 (2025).

    Article 
    ADS 

    Google Scholar
     

  • Presutti, F. et al. Highly multimode visible squeezed light with programmable spectral correlations through broadband up-conversion. Preprint at https://arxiv.org/abs/2401.06119 (2024).

  • Barakat, I. et al. Simultaneous measurement of multimode squeezing through multimode phase-sensitive amplification. Opt. Quantum 3, 36 (2025).

    Article 

    Google Scholar
     

  • Nehra, R. et al. Few-cycle vacuum squeezing in nanophotonics. Science 377, 1333–1337 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Bao, J. et al. Very-large-scale integrated quantum graph photonics. Nat. Photon. 17, 573–581 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Kovalenko, O. et al. Frequency-multiplexed entanglement for continuous-variable quantum key distribution. Photon. Res. 9, 2351–2359 (2021).

    Article 

    Google Scholar
     

  • Liu, S., Lou, Y., Chen, Y. & Jing, J. All-optical entanglement swapping. Phys. Rev. Lett. 128, 060503 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Roman-Rodriguez, V. et al. Multimode squeezed state for reconfigurable quantum networks at telecommunication wavelengths. Phys. Rev. Res. 6, 043113 (2024).

    Article 

    Google Scholar
     

  • Notarnicola, M. N., Cieciuch, F. & Jarzyna, M. Continuous-variable quantum key distribution over multispan links employing phase-insensitive and phase-sensitive amplifiers. New J. Phys. 26, 043015 (2024).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Lemos, G. B. et al. Quantum imaging with undetected photons. Nature 512, 409–412 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Frascella, G. et al. Wide-field SU(1,1) interferometer. Optica 6, 1233–1236 (2019).

    Article 

    Google Scholar
     

  • Thekkadath, G. S., Bell, B. A., Patel, R. B., Kim, M. S. & Walmsley, I. A. Measuring the joint spectral mode of photon pairs using intensity interferometry. Phys. Rev. Lett. 128, 023601 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Huo, N. et al. Direct temporal mode measurement for the characterization of temporally multiplexed high dimensional quantum entanglement in continuous variables. Phys. Rev. Lett. 124, 213603 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Ra, Y.-S., Jacquard, C., Dufour, A., Fabre, C. & Treps, N. Tomography of a mode-tunable coherent single-photon subtractor. Phys. Rev. X 7, 031012 (2017).


    Google Scholar
     

  • Ansari, V., Harder, G., Allgaier, M., Brecht, B. & Silberhorn, C. Temporal-mode measurement tomography of a quantum pulse gate. Phys. Rev. A 96, 063817 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Fang, B., Cohen, O., Liscidini, M., Sipe, J. E. & Lorenz, V. O. Fast and highly resolved capture of the joint spectral density of photon pairs. Optica 1, 281–284 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Lobino, M. et al. Complete characterization of quantum-optical processes. Science 322, 563–566 (2008).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Rahimi-Keshari, S. et al. Quantum process tomography with coherent states. New J. Phys. 13, 013006 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Wang, X.-B. et al. Efficient tomography of quantum-optical Gaussian processes probed with a few coherent states. Phys. Rev. A 88, 022101 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Fiurasek, J. Continuous-variable quantum process tomography with squeezed-state probes. Phys. Rev. A 92, 022101–022105 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Jacob, K. V., Mirasola, A. E., Adhikari, S. & Dowling, J. P. Direct characterization of linear and quadratically nonlinear optical systems. Phys. Rev. A 98, 052327 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Teo, Y. S., Park, K., Shin, S., Jeong, H. & Marek, P. Highly accurate gaussian process tomography with geometrical sets of coherent states. New J. Phys. 23, 063024 (2021).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Fedorov, I. A., Fedorov, A. K., Kurochkin, Y. V. & Lvovsky, A. I. Tomography of a multimode quantum black box. New J. Phys. 17, 043063 (2015).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • O’Brien, J. et al. Quantum process tomography of a controlled-not gate. Phys. Rev. Lett. 93, 080502 (2004).

    Article 
    ADS 

    Google Scholar
     

  • Kupchak, C., Rind, S., Jordaan, B. & Figueroa, E. Quantum process tomography of an optically-controlled kerr non-linearity. Sci. Rep. 5, 16581 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Roh, C., Gwak, G. & Ra, Y.-S. Robust squeezed light against mode mismatch using a self imaging optical parametric oscillator. Sci. Rep. 11, 18991 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Walschaers, M., Ra, Y.-S. & Treps, N. Mode-dependent-loss model for multimode photon-subtracted states. Phys. Rev. A 100, 023828 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Caruso, F., Eisert, J., Giovannetti, V. & Holevo, A. S. Multi-mode bosonic Gaussian channels. New J. Phys. 10, 083030 (2008).

    Article 
    ADS 

    Google Scholar
     

  • Ra, Y.-S. et al. Non-Gaussian quantum states of a multimode light field. Nat. Phys. 16, 144–147 (2020).

    Article 

    Google Scholar
     

  • Patera, G., Treps, N., Fabre, C. & Valcárcel, G. J. D. Quantum theory of synchronously pumped type I optical parametric oscillators: characterization of the squeezed supermodes. Eur. Phys. J. D 56, 123 (2009).

    Article 
    ADS 

    Google Scholar
     

  • Duan, L.-M., Giedke, G., Cirac, J. I. & Zoller, P. Inseparability criterion for continuous variable systems. Phys. Rev. Lett. 84, 2722–2725 (2000).

    Article 
    ADS 

    Google Scholar
     

  • Bachmann, D. et al. Highly transmitting modes of light in dynamic atmospheric turbulence. Phys. Rev. Lett. 130, 073801 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Madsen, L. S., Usenko, V. C., Lassen, M., Filip, R. & Andersen, U. L. Continuous variable quantum key distribution with modulated entangled states. Nat. Commun. 3, 1083 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Gebhart, V. et al. Learning quantum systems. Nat. Rev. Phys. 5, 141–156 (2023).


    Google Scholar
     

  • Boyer, V., Marino, A. M., Pooser, R. C. & Lett, P. D. Entangled images from four-wave mixing. Science 321, 544–547 (2008).

    Article 
    ADS 

    Google Scholar