• What is Diabetes? (CDC, 2023).

  • Harris, M. I. & Eastman, R. C. Early detection of undiagnosed diabetes mellitus: a US perspective. Diabetes Metab. Res Rev. 16, 230–236 (2000).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Meyer, T. W. & Hostetter, T. H. Uremia. N. Engl. J. Med. 357, 1316–1325 (2007).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Zemaitis, M. R., Foris, L. A., Katta, S. & Bashir, K. Uremia (StatPearls Publishing, 2024).

  • National Prevention Strategy: America’s Plan for Better Health and Wellness (US Department of Health and Human Services, Office of the Surgeon General, 2011); www.healthcare.gov/center/councils/nphpphc

  • Health and Economic Costs of Chronic Diseases (NCCDPHP, 2023).

  • Waters, H. & Graf, M. The Costs of Chronic Disease in the U.S. (Milken Institute, 2018).

  • Borsky, A. et al. Few Americans receive all high-priority, appropriate clinical preventive services. Health Aff. 37, 925–928 (2018).

    Article 

    Google Scholar
     

  • Levine, S. Health Care Industry Insights: Why the Use of Preventive Services Is Still Low (CDC, 2019).

  • Genuis, S. J. The proliferation of clinical practice guidelines: professional development or medicine-by-numbers? J. Am. Board Fam. Pr. 18, 419–425 (2005).

    Article 

    Google Scholar
     

  • Genuis, S. J. & Dabog, F. An ounce of prevention: a pound of cure for an ailing health care system. Can. Fam. Physician 53, 597 (2007).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Prevention is Still the Best Medicine (US Department of Health and Human Services, 2024).

  • Pavlou, A. K. & Turner, A. P. F. Sniffing out the truth: clinical diagnosis using the electronic nose. Clin. Chem. Lab. Med. 38, 99–112 (2000).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Lin, Y. J. et al. Application of the electronic nose for uremia diagnosis. Sens. Actuators B 76, 177–180 (2001).

    Article 
    CAS 

    Google Scholar
     

  • Seyhan, A. A. Lost in translation: the valley of death across preclinical and clinical divide—identification of problems and overcoming obstacles. Transl. Med. Commun. 4, 18 (2019).

    Article 

    Google Scholar
     

  • Wastewater COVID-19 Tracking (Massachusetts Water Resources Authority Online, 2024).

  • Daughton, C. G. Wastewater surveillance for population-wide COVID-19: the present and future. Sci. Total Environ. 736, 139631 (2020).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Randazzo, W., Cuevas-Ferrando, E., Sanjuán, R., Domingo-Calap, P. & Sánchez, G. Metropolitan wastewater analysis for COVID-19 epidemiological surveillance. Int. J. Hyg. Environ. Health 230, 113621 (2020).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Manemann, S. M. et al. Longitudinal cohorts for harnessing the electronic health record for disease prediction in a US population. BMJ Open 11, 2293–2301 (2021).

    Article 

    Google Scholar
     

  • Robbins, T. et al. Diabetes and the direct secondary use of electronic health records: using routinely collected and stored data to drive research and understanding. Digit Health 4, 2055207618804650 (2018).

  • Dagan, N., Cohen-Stavi, C., Leventer-Roberts, M. & Balicer, R. D. External validation and comparison of three prediction tools for risk of osteoporotic fractures using data from population based electronic health records: Retrospective cohort study. BMJ 356, i6755 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chai, P. R. et al. Assessment of the acceptability and feasibility of using mobile robotic systems for patient evaluation. JAMA Netw. Open 4, e210667 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yue, S., He, H., Wang, H., Rahul, H. & Katabi, D. Extracting multi-person respiration from entangled RF signals. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 2, 1–22 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Liu, Y. et al. Monitoring gait at home with radio waves in Parkinson’s disease: a marker of severity, progression, and medication response. Sci. Transl. Med. 14, eadc9669 (2022).

  • Hsu, C.-Y. et al. Zero-effort in-home sleep and insomnia monitoring using radio signals. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 1, 1–18 (2017).

    Article 

    Google Scholar
     

  • Zhao, M., Yue, S., Katabi, D., Jaakkola, T. S. & Bianchi, M. T. Learning sleep stages from radio signals: a conditional adversarial architecture. In Proc. 34th International Conference on Machine Learning 4100–4109 (PMLR, 2017).

  • Zhao, M., Hoti, K., Wang, H., Raghu, A. & Katabi, D. Assessment of medication self-administration using artificial intelligence. Nat. Med. 27, 727–735 (2021).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Yang, Y. et al. Artificial intelligence-enabled detection and assessment of Parkinson’s disease using nocturnal breathing signals. Nat. Med. 28, 2207–2215 (2022).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Au-Yeung, W. T. M. et al. Monitoring behaviors of patients with late-stage dementia using passive environmental sensing approaches: a case series. Am. J. Geriatr. Psychiatry 30, 1–11 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Vahia, I. V. et al. Mapping behavior symptoms in dementia using passive radio sensing. Alzheimer’s Dement. 16, e044139 (2020).

    Article 

    Google Scholar
     

  • Aspen Neuroscience to partner with Rune Labs and Emerald Innovations to incorporate both active and passive digital health monitoring in trial ready cohort screening study. PR Newswire (24 August 2023).

  • BlueRock Therapeutics to incorporate wearable and invisible contactless digital health technologies from Rune Labs and Emerald Innovations in Parkinson’s disease clinical trial. PR Newswire (14 March 2023).

  • Silverstein, A. Verge Genomics to incorporate Emerald Digital Health Technology into its ALS phase 1b proof-of-concept clinical trial. Business Wire (23 May 2023).

  • Coenraads, M. Rett Syndrome Research Trust awards $1.1 million to Emerald Innovations to develop novel invisible biosensor for objective measures of rett symptoms. Rett Syndrome Research Trust (21 February 2023).

  • From wearables to ‘invisibles’: we’re collaborating to study itch in sleeping children. Sanofi (13 December 2021).

  • Sherchan, S. P. et al. First detection of SARS-CoV-2 RNA in wastewater in North America: a study in Louisiana, USA. Sci. Total Environ. 743, 140621 (2020).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Foppe, K. S. et al. Analysis of 39 drugs and metabolites, including 8 glucuronide conjugates, in an upstream wastewater network via HPLC-MS/MS. J. Chromatogr. B 1176, 122747 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Naughton, C. C., et al. Show us the data: global COVID-19 wastewater monitoring efforts, equity, and gaps. FEMS Microbes 4, xtad003 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu, F. et al. SARS-CoV-2 RNA concentrations in wastewater foreshadow dynamics and clinical presentation of new COVID-19 cases. Sci. Total Environ. 805, 150121 (2022).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Farkas, K., Hillary, L. S., Malham, S. K., McDonald, J. E. & Jones, D. L. Wastewater and public health: the potential of wastewater surveillance for monitoring COVID-19. Curr. Opin. Environ. Sci. Health 17, 14–20 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xiao, A. et al. Metrics to relate COVID-19 wastewater data to clinical testing dynamics. Water Res. 212, 118070 (2022).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Hassard, F. et al. Wastewater surveillance for rapid identification of infectious diseases in prisons. Lancet Microbe 3, e556–e557 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vuori, E. et al. Wastewater analysis reveals regional variability in exposure to abused drugs and opioids in Finland. Sci. Total Environ. 487, 688–695 (2014).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Gushgari, A. J., Driver, E. M., Steele, J. C. & Halden, R. U. Tracking narcotics consumption at a Southwestern U.S. university campus by wastewater-based epidemiology. J. Hazard. Mater. 359, 437–444 (2018).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Gushgari, A. J., Venkatesan, A. K., Chen, J., Steele, J. C. & Halden, R. U. Long-term tracking of opioid consumption in two United States cities using wastewater-based epidemiology approach. Water Res. 161, 171–180 (2019).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Endo, N. et al. Rapid assessment of opioid exposure and treatment in cities through robotic collection and chemical analysis of wastewater. J. Med. Toxicol. 16, 195–203 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Duvallet, C., Hayes, B. D., Erickson, T. B., Chai, P. R. & Matus, M. Mapping community opioid exposure through wastewater-based epidemiology as a means to engage pharmacies in harm reduction efforts. Prev. Chronic Dis. 17, E91 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • American Rescue Plan (The White House, 2021).

  • National Wastewater Surveillance System (NWSS) (CDC, 2023).

  • Wastewater Analysis and Drugs—a European Multi-City Study (European Monitoring Centre for Drugs and Drug Addiction, 2023).

  • Du, Z. et al. Predicting the hand, foot, and mouth disease incidence using search engine query data and climate variables: an ecological study in Guangdong, China. BMJ Open 7, e016263 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kandula, S. & Shaman, J. Reappraising the utility of Google Flu Trends. PLoS Comput. Biol. 15, e1007258 (2019).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Ayyoubzadeh, S. M., Ayyoubzadeh, S. M., Zahedi, H., Ahmadi, M. & Niakan Kalhori, S. R. Predicting COVID-19 incidence through analysis of Google Trends data in Iran: data mining and deep learning pilot study. JMIR Publ. Health Surveill. 6, e18828 (2020).

    Article 

    Google Scholar
     

  • Hoerger, M. et al. Impact of the COVID-19 pandemic on mental health: real-time surveillance using Google Trends. Psychol. Trauma 12, 567–568 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Cheng, Y., Wang, F., Zhang, P. & Hu, J. Risk prediction with electronic health records: a deep learning approach. In Proc. 2016 SIAM International Conference on Data Mining (ed. West, M.) 432–440 (SIAM, 2016).

  • Misra, S. et al. Precision subclassification of type 2 diabetes: a systematic review OPEN Plain language summary. Commun. Med. 10, 210 (2023).


    Google Scholar
     

  • Norgeot, B., Glicksberg, B. S. & Butte, A. J. A call for deep-learning healthcare. Nat. Med. 25, 14–15 (2019).

  • Razavian, N. et al. Population-level prediction of type 2 diabetes from claims data and analysis of risk factors. Big Data 3, 277–287 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Sahoo, P. K., Mohapatra, S. K. & Wu, S. L. Analyzing healthcare big data with prediction for future health condition. IEEE Access 4, 9786–9799 (2016).

    Article 

    Google Scholar
     

  • Henry, K. E. et al. Factors driving provider adoption of the TREWS machine learning-based early warning system and its effects on sepsis treatment timing. Nat. Med. 28, 1447–1454 (2022).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Watkins, M. et al. Translating social determinants of health into standardized clinical entities. Stud. Health Technol. Inform. https://doi.org/10.3233/SHTI200205 (2020).

  • Mikhael, P. G. et al. Sybil: a validated deep learning model to predict future lung cancer risk from a single low-dose chest computed tomography. J. Clin. Oncol. https://doi.org/10.1200/jco.22.01345 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Obermeyer, Z., Powers, B., Vogeli, C. & Mullainathan, S. Dissecting racial bias in an algorithm used to manage the health of populations. Science 366, 447–453 (2019).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Brewer, L. P. C. et al. Back to the future: achieving health equity through health informatics and digital health. JMIR mHealth uHealth 8, e14512 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huang, Y., Li, W., Macheret, F., Gabriel, R. A. & Ohno-Machado, L. A tutorial on calibration measurements and calibration models for clinical prediction models. J. Am. Med. Inform. Assoc. 27, 621–633 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fisch, A., Jaakkola, T. & Barzilay, R. Calibrated selective classification. Preprint at https://doi.org/10.48550/arXiv.2208.12084 (2022).

  • Ajami, S. & Arab-Chadegani, R. Barriers to implement electronic health records (EHRs). Mater. Sociomed. 25, 213–215 (2013).

  • Bates, D. W. Physicians and ambulatory electronic health records. Health Aff. https://doi.org/10.1377/hlthaff.24.5.1180 (2024).

  • Uscher-Pines, L. & Mehrotra, A. Analysis of teladoc use seems to indicate expanded access to care for patients without prior connection to a provider. Health Aff. 33, 258–264 (2014).

    Article 

    Google Scholar
     

  • Uscher-Pines, L. et al. Access and quality of care in direct-to-consumer telemedicine. Telemed. J. e-Health 22, 282–287 (2016).

  • Muntner, P. et al. Trends in blood pressure control among US adults with hypertension, 1999-2000 to 2017-2018. JAMA 324, 1190 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Ettehad, D. et al. Blood pressure lowering for prevention of cardiovascular disease and death: a systematic review and meta-analysis. Lancet 387, 957–967 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Lee, S. G. et al. Remote cardiovascular hypertension program enhanced blood pressure control during the COVID-19 pandemic. J. Am. Heart Assoc. 12, e027296 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Flodgren, G., Rachas, A., Farmer, A. J., Inzitari, M. & Shepperd, S. Interactive telemedicine: effects on professional practice and health care outcomes. Cochrane Database Syst. Rev. 2015, CD002098 (2015).

  • Omboni, S. et al. Evidence and recommendations on the use of telemedicine for the management of arterial hypertension. Hypertension 76, 1368–1383 (2020).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Gambhir, S. S., Ge, T. J., Vermesh, O., Spitler, R. & Gold, G. E. Continuous health monitoring: an opportunity for precision health. Sci. Transl. Med. 13, eabe5383 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Rodbard, D. Continuous glucose monitoring: a review of recent studies demonstrating improved glycemic outcomes. Diabetes Technol. Ther. 19, S25–S37 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Eze, N. D., Mateus, C. & Cravo Oliveira Hashiguchi, T. Telemedicine in the OECD: An umbrella review of clinical and cost-effectiveness, patient experience and implementation. PLoS ONE 15, e0237585 (2020).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Polinski, J. M. et al. Patients’ satisfaction with and preference for telehealth visits. J. Gen. Intern. Med. 31, 269–275 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Tuckson, R. V., Edmunds, M. & Hodgkins, M. L. Telehealth. N. Engl. J. Med. 377, 1585–1592 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Telehealth Policy Changes after the COVID-19 Public Health Emergency (Telehealth.HHS.gov, 2023).

  • Wosik, J. et al. Telehealth transformation: COVID-19 and the rise of virtual care. J. Am. Med. Inform. Assoc. 27, 957–962 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gerke, S., Shachar, C., Chai, P. R. & Cohen, I. G. Regulatory, safety, and privacy concerns of home monitoring technologies during COVID-19. Nat. Med. 26, 1176–1182 (2020).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Demaerschalk, B. M. et al. Assessment of clinician diagnostic concordance with video telemedicine in the integrated multispecialty practice at Mayo Clinic during the beginning of COVID-19 pandemic from March to June 2020. JAMA Netw. Open 5, e2229958 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gajarawala, S. N. & Pelkowski, J. N. Telehealth benefits and barriers. J. Nurse Pract. 17, 218–221 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Gerhart, J., Piff, A., Bartelt, K. & Barkley, E. Telehealth Visits Frequently Billed at Lower Level of Service Than Office Visits (Epic Research, 2013).

  • Wang, W., Den Brinker, A. C., Stuijk, S. & De Haan, G. Algorithmic principles of remote PPG. IEEE Trans. Biomed. Eng. 64, 1479–1491 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Wang, H., Huang, J., Wang, G., Lu, H. & Wang, W. Surveillance camera-based cardio-respiratory monitoring for critical patients in ICU. In Proc. IEEE EMBS International Conference on Information Technology Applications in Biomedicine (ITAB) 1–4 (IEEE, 2022).

  • Siena, F. L., Byrom, B., Watts, P. & Breedon, P. Utilising the Intel RealSense camera for measuring health outcomes in clinical research. J. Med. Syst. 42, 53 (2018).

  • Huang, H.-W. et al. Mobile robotic platform for contactless vital sign monitoring. Cyborg Bionic Syst. https://doi.org/10.34133/2022/9780497 (2022).

  • Protalinski, E. How Draganfly Brought a ‘Pandemic Drone’ to the U.S. (VentureBeat, 2020).

  • Huang, H.-W. et al. Cost-effective blimp for autonomous and continuous vital signs monitoring. In Proc. IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM) 1553–1559 (IEEE, 2024).

  • Gong, Z. et al. SHUYU Robot: an automatic rapid temperature screening system. Chin. J. Mech. Eng. 33, 1–4 (2020).

    Article 

    Google Scholar
     

  • Cruzr Health Monitoring Robot (RobotLab, 2022).

  • Bogue, R. Robots in a contagious world. Ind. Robot 47, 673–642 (2020).

    Article 

    Google Scholar
     

  • Jin, Z., Huang, J., Wang, W., Xiong, A. & Tan, X. Estimating human weight from a single image. IEEE Trans. Multimed. https://doi.org/10.1109/TMM.2022.3147945 (2022).

  • Jiang, M., Shang, Y. & Guo, G. On visual BMI analysis from facial images. Image Vis. Comput 89, 183–196 (2019).

    Article 

    Google Scholar
     

  • Kocabey, E. et al. Face-to-BMI: using computer vision to infer body mass index on social media. Proc. Int. AAAI Conf. Web Soc. Media 11, 572–575 (2017).

    Article 

    Google Scholar
     

  • Sun, Y. et al. Detecting discomfort in infants through facial expressions. Physiol. Meas. 40, 115006 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Huang, Z., Wang, W. & De Haan, G. Nose breathing or mouth breathing? A thermography-based new measurement for sleep monitoring. In 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops 3877–3883 (IEEE, 2021).

  • Wang, X., Ellul, J. & Azzopardi, G. Elderly fall detection systems: a literature survey. Front. Robot. AI 7, 71 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Park, S.-m. et al. A mountable toilet system for personalized health monitoring via the analysis of excreta. Nat. Biomed. Eng. 4, 624–635 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Moço, A. V., Stuijk, S. & de Haan, G. Motion robust PPG-imaging through color channel mapping. Biomed. Opt. Express 7, 1737 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nowara, E. M., Marks, T. K., Mansour, H. & Veeraraghavan, A. SparsePPG: towards driver monitoring using camera-based vital signs estimation in near-infrared. In Proc. IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW) 1353–135309 (IEEE, 2018).

  • Dasari, A., Prakash, S. K. A., Jeni, L. A. & Tucker, C. S. Evaluation of biases in remote photoplethysmography methods. npj Digit. Med. 4, 91 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pereira, C. B. et al. Remote monitoring of breathing dynamics using infrared thermography. Biomed. Opt. Express 6, 4378 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bardou, M. et al. Modern approach to infectious disease management using infrared thermal camera scanning for fever in healthcare settings. J. Infect. 74, 95–97 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Nakagawa, K., Kawamoto, H. & Sankai, Y. Integrated non-invasive vital signs monitoring system for detecting stress. In Proc. 2018 57th Annual Conference of the Society of Instrument and Control Engineers of Japan (SICE) 1612–1617 (IEEE, 2018).

  • Huynh, S., Tan, H.-P. & Lee, Y. Towards unobtrusive mental well-being monitoring for independent-living elderly. In Proc. 4th International on Workshop on Physical Analytics 1–6 (ACM, 2017).

  • Wright, W. F. & Mackowiak, P. A. Why temperature screening for coronavirus disease 2019 With noncontact infrared thermometers does not work. Open Forum Infect. Dis. 8, ofaa603 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Bao, F. et al. Heat-assisted detection and ranging. Nature 619, 743–748 (2023).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Wang, Y., Wang, W., Van Gastel, M. & De Haan, G. Modeling on the feasibility of camera-based blood glucose measurement. In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW) 1713–1720 (IEEE, 2019)

  • Choi, J. H., Kang, K. B. & Kim, K. T. Remote respiration monitoring of moving person using radio signals. Lect. Notes Comput. Sci. 13697, 253–270 (2022).

    Article 

    Google Scholar
     

  • Ravichandran, R. et al. WiBreathe: estimating respiration rate using wireless signals in natural settings in the home. In Proc. 2015 IEEE International Conference on Pervasive Computing and Communications (PerCom) 131–139 (IEEE, 2015).

  • Zhao, M., Adib, F. & Katabi, D. Emotion recognition using wireless signals. Commun. ACM 61, 91–100 (2018).

    Article 

    Google Scholar
     

  • Hsu, C. Y., Hristov, R., Lee, G. H., Zhao, M. & Katabi, D. Enabling identification and behavioral sensing in homes using radio reflections. In Proc. Conference on Human Factors in Computing Systems 1–13 (Association for Computing Machinery, 2019).

  • Adib, F., Kabelac, Z. & Katabi, D. Multi-person localization via rf body reflections. In Proc. 12th USENIX Symposium on Networked Systems Design and Implementation 279–292 (USENIX, 2015).

  • Hsu, C. Y. et al. Extracting gait velocity and stride length from surrounding radio signals. In Proc. 2017 CHI Conference on Human Factors in Computing Systems 2116–2126 (ACM, 2017).

  • Adib, F., Mao, H., Kabelac, Z., Katabi, D. & Miller, R. C. Smart homes that monitor breathing and heart rate. In Proc. Conference on Human Factors in Computing Systems 837–846 (ACM, 2015).

  • Cournoyer, K. Contactless wireless health monitoring system shows potential for use in clinical trials. AAAS EurekAlert! (30 May 2019).

  • Loring, M. et al. Novel technology to capture objective data from patients’ recovery from laparoscopic endometriosis surgery. J. Minim. Invasive Gynecol. 28, 325–331 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Kabelac, Z. et al. An in-home study of facioscapulohumeral muscular dystrophy (FSHD) patients using contactless wireless sensing and machine learning (1561). Neurology 94, 15_supplement (2020).

  • Ates, H. C. et al. End-to-end design of wearable sensors. Nat. Rev. Mater. 7, 887–907 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang, Y. & Gao, W. Wearable and flexible electronics for continuous molecular monitoring. Chem. Soc. Rev. 48, 1465–1491 (2019).

  • Jagannath, B. et al. A sweat-based wearable enabling technology for real-time monitoring of IL-1β and CRP as potential markers for inflammatory bowel disease. Inflamm. Bowel Dis. 26, 1533–1542 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Jagannath, B. et al. Temporal profiling of cytokines in passively expressed sweat for detection of infection using wearable device. Bioeng. Transl. Med. 6, e10220 (2021).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Kim, D.-H. et al. Epidermal electronics. Science 333, 838–843 (2011).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Chung, H. U. et al. Binodal, wireless epidermal electronic systems with in-sensor analytics for neonatal intensive care. Science 363, eaau0780 (2019).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Take an ECG with the ECG app on Apple Watch (Apple, 2023).

  • Wrist Monitor (biobeat, 2022).

  • Diagnose Your Irregular Heart Rhythm Faster and More Reliably with Zio (iRHYTHM, 2024).

  • Sugiyama, M. et al. An ultraflexible organic differential amplifier for recording electrocardiograms. Nat. Electron. 2, 351–360 (2019).

    Article 

    Google Scholar
     

  • Perez, M. V. et al. Large-scale assessment of a smartwatch to identify atrial fibrillation. N. Engl. J. Med. 381, 1909–1917 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Detection vs Diagnosis: iRhythm and the Apple Watch (iRHYTHM, 2019).

  • Khunte, A. et al. Detection of left ventricular systolic dysfunction from single-lead electrocardiography adapted for portable and wearable devices. npj Digit. Med. 6, 124 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee, S. P., et al. Highly flexible, wearable, and disposable cardiac biosensors for remote and ambulatory monitoring. npj Digit. Med. 1, 2 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, M., Ma, Y., Song, J., Lai, C. F. & Hu, B. Smart clothing: connecting human with clouds and big data for sustainable health monitoring. Mob. Netw. Appl. 21, 825–845 (2016).

    Article 

    Google Scholar
     

  • Sepehri Shamloo, A., Bollmann, A., Dagres, N., Arya, A. & Hindricks, G. Smart watch devices for atrial fibrillation screening: it has to start somewhere. J. Am. Coll. Cardiol. 75, 1364–1365 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Chouhan, V. S. & Mehta, S. S. Total Removal of Baseline Drift from ECG Signal. In Proc. 2007 International Conference on Computing: Theory and Applications (ICCTA’07) 512–515 (IEEE, 2007).

  • Jeong, J. et al. Capacitive epidermal electronics for electrically safe, long-term electrophysiological measurements. Adv. Health. Mater. 3, 642–648 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Li, X. et al. A self-supporting, conductor-exposing, stretchable, ultrathin, and recyclable kirigami-structured liquid metal paper for multifunctional E-skin. ACS Nano 16, 5909–5919 (2022).

  • Goverdovsky, V., Looney, D., Kidmose, P. & Mandic, D. P. In-ear EEG From viscoelastic generic earpieces: robust and unobtrusive 24/7 monitoring. IEEE Sens. J. 16, 271–277 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Bulling, A., Roggen, D. & Tröster, G. Wearable EOG goggles: seamless sensing and context-awareness in everyday environments. J. Ambient Intell. Smart Environ. 1, 157–171 (2009).

    Article 

    Google Scholar
     

  • Phinyomark, A., Khushaba, N. R. & Scheme, E. Feature extraction and selection for myoelectric control based on wearable EMG sensors. Sensors 18, 1615 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jiang, S., Gao, Q., Liu, H. & Shull, P. B. A novel, co-located EMG-FMG-sensing wearable armband for hand gesture recognition. Sens. Actuators A 301, 111738 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Pico EMG (cometa, 2021).

  • STRIVE Elite (STRIVE, 2022).

  • You, S. S. et al. An ingestible device for gastric electrophysiology. Nat. Electron. 7, 497–508 (2024).

    Article 

    Google Scholar
     

  • Gharibans, A. A. et al. Gastric dysfunction in patients with chronic nausea and vomiting syndromes defined by a noninvasive gastric mapping device. Sci. Transl. Med. 14, 3544 (2022).

    Article 

    Google Scholar
     

  • Xu, S., Kim, J., Walter, J. R., Ghaffari, R. & Rogers, J. A. Translational gaps and opportunities for medical wearables in digital health. Sci. Transl. Med. 14, eabn6036 (2022).

  • Büyüközkan, G. & Göçer, F. Smart medical device selection based on intuitionistic fuzzy Choquet integral. Soft Comput. 23, 10085–10103 (2019).

    Article 

    Google Scholar
     

  • Theodos, K. & Sittig, S. Health information privacy laws in the digital age: HIPAA doesn’t apply. Perspect. Health Inf. Manag. 18, 1l (2021).

  • Lee, S. et al. Nanomesh pressure sensor for monitoring finger manipulation without sensory interference. Science 370, 966–970 (2020).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Cheng, S. et al. Ultrathin hydrogel films toward breathable skin-integrated electronics. Adv. Mater. 35, e2206793 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Say, M. G. et al. Ultrathin paper microsupercapacitors for electronic skin applications. Adv. Mater. Technol. 7, 2101420 (2022).

  • Jia, J. et al. Conductive thread-based textile sensor for continuous perspiration level monitoring. Sensors 18, 3775 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kannaian, T., Neelaveni, R. & Thilagavathi, G. Design and development of embroidered textile electrodes for continuous measurement of electrocardiogram signals. J. Ind. Text. 42, 303–318 (2012).

    Article 

    Google Scholar
     

  • Wicaksono, I. et al. A tailored, electronic textile conformable suit for large-scale spatiotemporal physiological sensing in vivo. npj Flex. Electron. 4, 5 (2020).

  • Parlak, O., Keene, S. T., Marais, A., Curto, V. F. & Salleo, A. Molecularly selective nanoporous membrane-based wearable organic electrochemical device for noninvasive cortisol sensing. Sci. Adv. 4, eaar2904 (2018).

  • Min, J. et al. Skin-interfaced wearable sweat sensors for precision medicine. Chem. Rev. 123, 5049–5138 (2023).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Sharma, S., Saeed, A., Johnson, C., Gadegaard, N. & Cass, A. E. Rapid, low cost prototyping of transdermal devices for personal healthcare monitoring. Sens. Biosens. Res. 13, 104–108 (2017).


    Google Scholar
     

  • La Count, T. D., Jajack, A., Heikenfeld, J. & Kasting, G. B. Modeling glucose transport from systemic circulation to sweat. J. Pharm. Sci. 108, 364–371 (2019).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Talyor, N. P. Dexcom receives FDA clearance for first OTC glucose sensor. MEDTECHDIVE (6 March 2024).

  • Abbott introduces first ever consumer biowearable, LingoTM, set to re-energise the nation. Abbott (9 January 2024).

  • The American Diabetes Association Releases the Standards of Care in Diabetes—2024 (American Diabetes Association, 2023).

  • Findings from our FreeStyle Libre/GLP-1 analysis. Abbott https://www.abbott.com/corpnewsroom/strategy-and-strength/findings-from-our-freestyle-libre-glp-1-analysis.html (2023).

  • Heikenfeld, J. et al. Accessing analytes in biofluids for peripheral biochemical monitoring. Nat. Biotechnol. 37, 407–419 (2019).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Moonla, C. et al. Continuous ketone monitoring via wearable microneedle patch platform. ACS Sens. 9, 1004–1013 (2024).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Mannoor, M. S. et al. Graphene-based wireless bacteria detection on tooth enamel. Nat. Commun. 3, 763 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Kim, H. S. et al. Hand-held raman spectrometer-based dual detection of creatinine and cortisol in human sweat using silver nanoflakes. Anal. Chem. 93, 14996–15004 (2021).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Wang, M. et al. A wearable electrochemical biosensor for the monitoring of metabolites and nutrients. Nat. Biomed. Eng. 6, 1225–1235 (2022).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Tu, J., Torrente-Rodríguez, R. M., Wang, M. & Gao, W. The era of digital health: a review of portable and wearable affinity biosensors. Adv. Funct. Mater. 30, 1906713 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Gao, Y. et al. A flexible multiplexed immunosensor for point-of-care in situ wound monitoring. Sci. Adv. 7, eabg9614 (2021).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Flynn, C. D. et al. Biomolecular sensors for advanced physiological monitoring. Nat. Rev. Bioeng. 1, 560–575 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Goode, J. A., Rushworth, J. V. H. & Millner, P. A. Biosensor regeneration: a review of common techniques and outcomes. Langmuir 31, 6267–6276 (2015).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Jiang, Y. et al. A universal interface for plug-and-play assembly of stretchable devices. Nature 614, 456–462 (2023).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Yang, Y. et al. A laser-engraved wearable sensor for sensitive detection of uric acid and tyrosine in sweat. Nat. Biotechnol. 38, 217–224 (2020).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Breda, J., Springston, M., Mariakakis, A. & Patel, S. FeverPhone. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 7, 17 (2023).

    Article 

    Google Scholar
     

  • Webb, R. C. et al. Ultrathin conformal devices for precise and continuous thermal characterization of human skin. Nat. Mater. 12, 938–944 (2013).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Yokota, T. et al. Ultraflexible, large-area, physiological temperature sensors for multipoint measurements. Proc. Natl Acad. Sci. USA 112, 14533–14538 (2015).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Shin, J. et al. Sensitive wearable temperature sensor with seamless monolithic integration. Adv. Mater. 32, 1905527 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Ota, H. et al. 3D printed “Earable” smart devices for real-time detection of core body temperature. ACS Sens. 2, 990–997 (2017).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Song, E. et al. Mn2+-activated dual-wavelength emitting materials toward wearable optical fibre temperature sensor. Nat. Commun. 13, 2166 (2022).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Choe, A. et al. Stretchable and wearable colorimetric patches based on thermoresponsive plasmonic microgels embedded in a hydrogel film. NPG Asia Mater. 10, 912–922 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Xu, X., Karis, A. J., Buller, M. J. & Santee, W. R. Relationship between core temperature, skin temperature, and heat flux during exercise in heat. Eur. J. Appl. Physiol. 113, 2381–2389 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Lavery, L. A. et al. Preventing diabetic foot ulcer recurrence in high-risk patients. Diabetes Care 30, 14–20 (2007).

    Article 
    PubMed 

    Google Scholar
     

  • Brickwood, K.-J., Watson, G., O’Brien, J. & Williams, A. D. Consumer-based wearable activity trackers increase physical activity participation: systematic review and meta-analysis. JMIR mHealth uHealth 7, e11819 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nyan, M. N., Tay, F. E. H. & Murugasu, E. A wearable system for pre-impact fall detection. J. Biomech. 41, 3475–3481 (2008).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Chen, J., Kwong, K., Chang, D., Luk, J. & Bajcsy, R. Wearable sensors for reliable fall detection. In Proc. 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference 3551–3554 (IEEE, 2005).

  • Chen, C., Ding, S. & Wang, J. Digital health for aging populations. Nat. Med. 29, 1623–1630 (2023).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Sole with SensFloor Technology (ShawContract, 2023); www.shawcontract.com/en-US/resources/Sole%E2%84%A2-with-SensFloor%C2%AE-Technology

  • Tanaka, O., Ryu, T., Hayashida, A., Moshnyaga, V. G. & Hashimoto, K. A smart carpet design for monitoring people with dementia. Adv. Intell. Syst. Comput. 1089, 653–659 (2015).

    Article 

    Google Scholar
     

  • Cantoral-Ceballos, J. A. et al. Intelligent carpet system, based on photonic guided-path tomography, for gait and balance monitoring in home environments. IEEE Sens. J. 15, 279–289 (2015).

    Article 

    Google Scholar
     

  • Rialle, V., Duchene, F., Noury, N., Bajolle, L. & Demongeot, J. Health ‘smart’ home: information technology for patients at home. Telemed. J. e-Health 8, 395–409 (2004).

  • Trung, T. Q. & Lee, N.-E. Flexible and stretchable physical sensor integrated platforms for wearable human-activity monitoringand personal healthcare. Adv. Mater. 28, 4338–4372 (2016).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Zhong, J. et al. Smart face mask based on an ultrathin pressure sensor for wireless monitoring of breath conditions. Adv. Mater. 34, 2107758 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Tee, B. C.-K. et al. Tunable flexible pressure sensors using microstructured elastomer geometries for intuitive electronics. Adv. Funct. Mater. 24, 5427–5434 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Tee, B. C.-K., Wang, C., Allen, R. & Bao, Z. An electrically and mechanically self-healing composite with pressure- and flexion-sensitive properties for electronic skin applications. Nat. Nanotechnol. 7, 825–832 (2012).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Yamada, T. et al. A stretchable carbon nanotube strain sensor for human-motion detection. Nat. Nanotechnol. 6, 296–301 (2011).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Kaltenbrunner, M. et al. An ultra-lightweight design for imperceptible plastic electronics. Nature 499, 458–463 (2013).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Jung, S. et al. Reverse-micelle-induced porous pressure-sensitive rubber for wearable human-machine interfaces. Adv. Mater. 26, 4825–4830 (2014).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Persano, L. et al. High performance piezoelectric devices based on aligned arrays of nanofibers of poly(vinylidenefluoride-co-trifluoroethylene). Nat. Commun. 4, 1633 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Dagdeviren, C. et al. Conformable amplified lead zirconate titanate sensors with enhanced piezoelectric response for cutaneous pressure monitoring. Nat. Commun. 5, 4496 (2014).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Wu, J. M. et al. Ultrahigh sensitive piezotronic strain sensors based on a ZnSnO3 nanowire/microwire. ACS Nano 6, 4369–4374 (2012).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Zhang, J. et al. Smart soft contact lenses for continuous 24-hour monitoring of intraocular pressure in glaucoma care. Nat. Commun. 13, 5518 (2022).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Hegde, N., Bries, M. & Sazonov, E. A comparative review of footwear-based wearable systems. Electronics 5, 48 (2016).

    Article 

    Google Scholar
     

  • Kim, J. et al. Soft wearable pressure sensors for beat-to-beat blood pressure monitoring. Adv. Health. Mater. 8, 1900109 (2019).

    Article 

    Google Scholar
     

  • Kang, D. et al. Ultrasensitive mechanical crack-based sensor inspired by the spider sensory system. Nature 516, 222–226 (2014).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Heikenfeld, J. et al. Wearable sensors: modalities, challenges, and prospects. Lab Chip 18, 217–248 (2018).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Chen, G. et al. Discovering giant magnetoelasticity in soft matter for electronic textiles. Matter 4, 3725–3740 (2021).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Yokota, T. et al. Ultraflexible organic photonic skin. Sci. Adv. 2, e1501856 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nicolò, A., Massaroni, C., Schena, E. & Sacchetti, M. The importance of respiratory rate monitoring: from healthcare to sport and exercise. Sensors 20, 6396 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, C. et al. Monitoring of the central blood pressure waveform via a conformal ultrasonic device. Nat. Biomed. Eng. 2, 687–695 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, C. et al. Continuous monitoring of deep-tissue haemodynamics with stretchable ultrasonic phased arrays. Nat. Biomed. Eng. 5, 749–758 (2021).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Hu, H. et al. A wearable cardiac ultrasound imager. Nature 613, 667–675 (2023).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Zhang, L. et al. A conformable phased-array ultrasound patch for bladder volume monitoring. Nat. Electron. 7, 77–90 (2024).

    Article 

    Google Scholar
     

  • Wang, C. et al. Bioadhesive ultrasound for long-term continuous imaging of diverse organs. Science 377, 517–523 (2022).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Du, W. et al. Conformable ultrasound breast patch for deep tissue scanning and imaging. Sci. Adv. 9, eadh5325 (2024).

    Article 

    Google Scholar
     

  • Chen, L. et al. Soft elastic hydrogel couplants for ultrasonography. Mater. Sci. Eng. C 119, 111609 (2021).

    Article 
    CAS 

    Google Scholar
     

  • McCarthy, C., Pradhan, N., Redpath, C. & Adler, A. Validation of the Empatica E4 wristband. In Proc. 2016 IEEE EMBS International Student Conference (ISC) 1–4 (IEEE, 2016).

  • Corsano Health receives FDA clearance. Corsano (22 March 2024).

  • Jastrzebska-Perfect, P. et al. Translational neuroelectronics. Adv. Funct. Mater. 30, 1909165 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Yang, C. et al. Wearable and implantable intraocular pressure biosensors: recent progress and future prospects. Adv. Sci. 8, 2002971 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Iyengar, K. P. et al. Smart sensor implant technology in total knee arthroplasty. J. Clin. Orthop. Trauma 22, 101605 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Heywood, J. T. et al. Impact of practice-based management of pulmonary artery pressures in 2000 patients implanted With the CardioMEMS sensor. Circulation 135, 1509–1517 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Koh, A. et al. Ultrathin injectable sensors of temperature, thermal conductivity, and heat capacity for cardiac ablation monitoring. Adv. Healthc. Mater. 5, 373 (2016).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Kanick, S. C., Schneider, P. A., Klitzman, B., Wisniewski, N. A. & Rebrin, K. Continuous monitoring of interstitial tissue oxygen using subcutaneous oxygen microsensors: in vivo characterization in healthy volunteers. Microvasc. Res. 124, 6–18 (2019).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Sonmezoglu, S., Fineman, J. R., Maltepe, E. & Maharbiz, M. M. Monitoring deep-tissue oxygenation with a millimeter-scale ultrasonic implant. Nat. Biotechnol. 39, 855–864 (2021).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Guo, H. et al. Wireless implantable optical probe for continuous monitoring of oxygen saturation in flaps and organ grafts. Nat. Commun. 13, 3009 (2022).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Kwon, K. et al. A battery-less wireless implant for the continuous monitoring of vascular pressure, flow rate and temperature. Nat.Biomed. Eng. 7, 1215–1228 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Chow, E. Y., Beier, B. L., Francino, A., Chappell, W. J. & Irazoqui, P. P. Toward an implantable wireless cardiac monitoring platform integrated with an FDA-approved cardiovascular stent. J. Inter. Cardiol. 22, 479–487 (2009).

    Article 

    Google Scholar
     

  • Lu, D., et al. Bioresorbable, wireless, passive sensors as temporary implants for monitoring regional body temperature. Adv. Health. Mater. 9, 2000942 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Boutry, C. M. et al. A stretchable and biodegradable strain and pressure sensor for orthopaedic application. Nat. Electron. 1, 314–321 (2018).

    Article 

    Google Scholar
     

  • Implant Files (International Consortium of Investigative Journalists, 2018).

  • Valero-Sarmiento, J. M., Ahmmed, P. & Bozkurt, A. In Vivo evaluation of a subcutaneously injectable implant with a low-power photoplethysmography ASIC for animal monitoring. Sensors 20, 7335 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhong, Y. et al. Development of an implantable wireless and batteryless bladder pressure monitor system for lower urinary tract dysfunction. Surg. Interv. Devices 8, 2500107 (2020).


    Google Scholar
     

  • Dhowan, B. et al. Simple minimally-invasive automatic antidote delivery device (A2D2) towards closed-loop reversal of opioid overdose. J. Control. Release 306, 130–137 (2019).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Imtiaz, M. S., Bandoian, C. V. & Santoro, T. J. Hypoxia driven opioid targeted automated device for overdose rescue. Sci. Rep. 11, 24513 (2021).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Kanter, K. et al. Willingness to use a wearable device capable of detecting and reversing overdose among people who use opioids in Philadelphia. Harm Reduct. J. 18, 75 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huang, H. W. et al. An implantable system for opioid safety. Device 2, 100517 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Templer, S. Closed-loop insulin delivery systems: past, present, and future directions. Front. Endocrinol. https://doi.org/10.3389/fendo.2022.919942 (2022).

  • Krishnan, S. R. et al. A wireless, battery-free device enables oxygen generation and immune protection of therapeutic xenotransplants in vivo. Proc. Natl Acad. Sci. USA 120, e2311707120 (2023).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Lee, I. et al. Electrocatalytic on-site oxygenation for transplanted cell-based-therapies. Nat. Commun. 14, 7019 (2023).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Malik, S. et al. Injectable sensors based on passive rectification of volume-conducted currents. IEEE Trans. Biomed. Circuits Syst. 14, 867–878 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Yang, S. Y. et al. Powering implantable and ingestible electronics. Adv. Funct. Mater. 31, 2009289 (2021).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Celinskis, D. & Towe, B. C. Wireless impedance measurements for monitoring peripheral vascular disease. In Proc. 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society 6937–6940 (IEEE, 2014).

  • Hoefman, E., Van Weert, H. C. P. M., Reitsma, J. B., Koster, R. W. & Bindels, P. J. Diagnostic yield of patient-activated loop recorders for detecting heart rhythm abnormalities in general practice: a randomised clinical trial. Fam. Pract. 22, 478–484 (2005).

  • FDA Approves First Continuous Glucose Monitoring System With a Fully Implantable Glucose Sensor and Compatible Mobile App For Adults With Diabetes (FDA, 2018).

  • Eversense User Guide (Eversense, 2019).

  • Li, C. et al. Design of biodegradable, implantable devices towards clinical translation. Nat. Rev. Mater. 5, 61–81 (2019).

    Article 

    Google Scholar
     

  • Maji, S. et al. A low-power dual-factor authentication unit for secure implantable devices. In Proc. Custom Integrated Circuits Conference 1–4 (IEEE, 2020).

  • Faris, O. & Shuren, J. An FDA viewpoint on unique considerations for medical-device clinical trials. N. Engl. J. Med. 376, 1350–1357 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Sands, B. E. Biomarkers of inflammation in inflammatory bowel disease. Gastroenterology 149, 1275–1285 (2015).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Steiger, C. et al. Dynamic monitoring of systemic biomarkers with gastric sensors. Adv. Sci. 8, e2102861 (2021).

    Article 

    Google Scholar
     

  • Huang, H.-W. et al. In situ detection of gastrointestinal inflammatory biomarkers using electrochemical gas sensors. In Proc. IEEE International Engineering in Medicine and Biology Conference (EMBC) 2491–2494 (IEEE, 2022).

  • Mau, M. M., Sarker, S. & Terry, B. S. Ingestible devices for long-term gastrointestinal residency: a review. Prog. Biomed. Eng. 3, 042001 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Liu, X. et al. Ingestible hydrogel device. Nat. Commun. 10, 493 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, J. et al. Triggerable tough hydrogels for gastric resident dosage forms. Nat. Commun. 8, 124 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, S., Chu, S., Beardslee, L. A. & Ghodssi, R. Hybrid and passive tissue-anchoring mechanism for ingestible resident devices. J. Microelectromech. Syst. 29, 706–712 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Lin, W., Shi, Y., Jia, Z. & Yan, G. Design of a wireless anchoring and extending micro robot system for gastrointestinal tract. Int. J. Med. Rob. Comput. Assist. Surg. 9, 167–179 (2013).

    Article 

    Google Scholar
     

  • Liu, X. et al. Magnetic living hydrogels for intestinal localization, retention, and diagnosis. Adv. Funct. Mater. 31, 2010918 (2021).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Inda-Webb, M. E. et al. Sub-1.4 cm3 capsule for detecting labile inflammatory biomarkers in situ. Nature 620, 386–392 (2022).

    Article 

    Google Scholar
     

  • Mimee, M. et al. An ingestible bacterial-electronic system to monitor gastrointestinal health. Science 360, 915–918 (2018).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Hafezi, H. et al. An ingestible sensor for measuring medication adherence. IEEE Trans. Biomed. Eng. 62, 99–109 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Kong, Y. L. et al. 3D-printed gastric resident electronics. Adv. Mater. Technol. 4, 1800490 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Belknap, R. et al. Feasibility of an ingestible sensor-based system for monitoring adherence to tuberculosis therapy. PLoS ONE 8, e53373 (2013).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Alipour, A., Gabrielson, S. & Patel, P. B. Ingestible sensors and medication adherence: focus on use in serious mental illness. Pharmacy 8, 103 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bass, D. M., Prevo, M. & Waxman, D. S. Gastrointestinal safety of an extended-release, nondeformable, oral dosage form (OROS®): a retrospective study. Drug Saf. 25, 1021–1033 (2002).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Li, F. et al. Retention of the capsule endoscope: a single-center experience of 1000 capsule endoscopy procedures. Gastrointest. Endosc. 68, 174–180 (2008).

    Article 
    PubMed 

    Google Scholar
     

  • He, S., Yan, G. Z., Ke, Q., Wang, Z. W. & Chen, W. W. A wirelessly powered expanding-extending robotic capsule endoscope for human intestine. Int. J. Precis. Eng. Manuf. 16, 1075–1084 (2015).

    Article 

    Google Scholar
     

  • Thwaites, P. A. et al. Comparison of gastrointestinal landmarks using the gas-sensing capsule and wireless motility capsule. Aliment Pharm. Ther. 56, 1337–1348 (2022).

    Article 

    Google Scholar
     

  • Mc Caffrey, C., Twomey, K. & Ogurtsov, V. I. Development of a wireless swallowable capsule with potentiostatic electrochemical sensor for gastrointestinal track investigation. Sens. Actuators B 218, 8–15 (2015).

    Article 
    CAS 

    Google Scholar
     

  • De la Paz, E. et al. A self-powered ingestible wireless biosensing system for real-time in situ monitoring of gastrointestinal tract metabolites. Nat. Commun. 13, 7405 (2022).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • McRae, J. C., Jastrzebska-Perfect, P. & Traverso, G. Challenges and opportunities for ingestible electronics across timescales. Device https://doi.org/10.1016/j.device.2023.100055 (2023).

  • Byrne, J. et al. Devices for drug delivery in the gastrointestinal tract: a review of systems physically interacting with the mucosa for enhanced delivery. Adv. Drug Deliv. Rev. 177, 113926 (2021).

  • Min, J., Yang, Y., Wu, Z. & Gao, W. Robotics in the gut. Adv. Ther. 3, 1900125 (2020).

  • Abramson, A. et al. A luminal unfolding microneedle injector for oral delivery of macromolecules. Nat. Med. 25, 1512–1518 (2019).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Steiger, C. et al. Ingestible electronics for diagnostics and therapy. Nat. Rev. Mater. 4, 83–98 (2019).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • FDA Approval for Eko Health CORE 500 Digital Stethoscope (FDA, 2024); www.accessdata.fda.gov/cdrh_docs/pdf23/K233609.pdf

  • FDA Approval for the Apple Watch in Monitoring Cardiac Arrhythmia (FDA, 2018); www.accessdata.fda.gov/cdrh_docs/reviews/DEN180042.pdf

  • FDA Approval for the Apple Watch in Monitoring Atrial Fibrillation History (FDA, 2022); www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfpmn/pmn.cfm?ID=K213971

  • FDA Emergency Use Authorization for the VitalPatch by VitalConnect (FDA, 2020); www.fda.gov/media/137397/download#:~:text=Based%20on%20bench%20testing%20and,intervals%20and%20may%20cause%20life

  • FDA Permits Marketing of Device That Senses Optimal Time to Check Patient’s Eye Pressure (FDA, 2016); www.fda.gov/news-events/press-announcements/fda-permits-marketing-device-senses-optimal-time-check-patients-eye-pressure

  • BioIntellisense wins FDA nod for BioButton multi-patient wearable monitor. Mass Device (2 October 2024); www.massdevice.com/biointellisense-fda-nod-biobutton-wearable-monitor/

  • FDA Approval of CardioMEMS Implant by Abbott (FDA, 2022); www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfpma/pma.cfm?id=P100045S056

  • Zimmer Biomet and Canary Medical Announce FDA de novo classification grant and authorization to market the world’s first and only smart knee implant. PR Newswire (30 August 2021).

  • Chai, P. R. et al. DigiPrEP: a pilot trial to evaluate the feasibility, acceptability, and accuracy of a digital pill system to measure PrEP adherence in men who have sex with men who use substances. J. Acquir. Immune Defic. Syndr. 89, e5–e15 (2022).

  • Parkinson’s Disease: Challenges, Progress, and Promise (National Institute of Neurological Disorders and Stroke, 2023).