• Khan MS, Shahid I, Bennis A, Rakisheva A, Metra M, Butler J. Global epidemiology of heart failure. Nat Rev Cardiol. 2024;21(10):717–34.

    Article 
    PubMed 

    Google Scholar
     

  • Shah KS, Xu H, Matsouaka RA, Bhatt DL, Heidenreich PA, Hernandez AF, et al. Heart failure with preserved, borderline, and reduced ejection fraction: 5-year outcomes. J Am Coll Cardiol. 2017;70(20):2476–86.

    Article 
    PubMed 

    Google Scholar
     

  • Murphy SP, Ibrahim NE, Januzzi JL Jr. Heart failure with reduced ejection fraction: a review. JAMA. 2020;324(5):488–504.

    Article 
    PubMed 

    Google Scholar
     

  • Tschope C, Kherad B, Klein O, Lipp A, Blaschke F, Gutterman D, et al. Cardiac contractility modulation: mechanisms of action in heart failure with reduced ejection fraction and beyond. Eur J Heart Fail. 2019;21(1):14–22.

    Article 
    PubMed 

    Google Scholar
     

  • Kimmoun A, Takagi K, Gall E, Ishihara S, Hammoum P, El Bèze N, et al. Temporal trends in mortality and readmission after acute heart failure: a systematic review and meta-regression in the past four decades. Eur J Heart Fail. 2021;23(3):420–31.

    Article 
    PubMed 

    Google Scholar
     

  • Njoroge JN, Teerlink JR. Pathophysiology and therapeutic approaches to acute decompensated heart failure. Circ Res. 2021;128(10):1468–86.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ibrahim NE, Januzzi JL Jr. Established and emerging roles of biomarkers in heart failure. Circ Res. 2018;123(5):614–29.

    Article 
    PubMed 

    Google Scholar
     

  • Schrader M, Schulz-Knappe P. Peptidomics technologies for human body fluids. Trends Biotechnol. 2001;19(10 Suppl):S55-60.

    Article 
    PubMed 

    Google Scholar
     

  • Latosinska A, Frantzi M, Siwy J. Peptides as better biomarkers? Value, challenges, and potential solutions to facilitate implementation. Mass Spectrom Rev. 2024;43(6):1195–236.

    Article 
    PubMed 

    Google Scholar
     

  • Maes E, Oeyen E, Boonen K, Schildermans K, Mertens I, Pauwels P, et al. The challenges of peptidomics in complementing proteomics in a clinical context. Mass Spectrom Rev. 2019;38(3):253–64.

    Article 
    PubMed 

    Google Scholar
     

  • Hamamura K, Nonaka D, Ishikawa H, Banzai M, Yanagida M, Nojima M, et al. Simple quantitation for potential serum disease biomarker peptides, primarily identified by a peptidomics approach in the serum with hypertensive disorders of pregnancy. Ann Clin Biochem. 2016;53(Pt 1):85–96.

    Article 
    PubMed 

    Google Scholar
     

  • Zhuang B, Hu Y, Fan X, Li M, Zhu J, Liu H, et al. Peptidomic analysis of maternal serum to identify biomarker candidates for prenatal diagnosis of tetralogy of fallot. J Cell Biochem. 2018;119(1):468–77.

    Article 
    PubMed 

    Google Scholar
     

  • Bauza-Martinez J, Aletti F, Pinto BB, Ribas V, Odena MA, Diaz R, et al. Proteolysis in septic shock patients: plasma peptidomic patterns are associated with mortality. Br J Anaesth. 2018;121(5):1065–74.

    Article 
    PubMed 

    Google Scholar
     

  • Xu MY, Jia XF, Qu Y, Zheng RD, Yuan ZH, Weng HL, et al. Serum dihydroxyacetone kinase peptide m/z 520.3 as predictor of disease severity in patients with compensated chronic hepatitis B. J Transl Med. 2013;11:234.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Maddaloni E, Bolli GB, Frier BM, Little RR, Leslie RD, Pozzilli P, et al. C-peptide determination in the diagnosis of type of diabetes and its management: a clinical perspective. Diabetes Obes Metab. 2022;24(10):1912–26.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Heidenreich PA, Bozkurt B, Aguilar D, Allen LA, Byun JJ, Colvin MM, Deswal A, Drazner MH, Dunlay SM, Evers LR, et al. 2022 AHA/ACC/HFSA guideline for the management of heart failure: A report of the American college of Cardiology/American heart association joint committee on clinical practice guidelines. J Am Coll Cardiol. 2022;79(17):e263–421.

    Article 
    PubMed 

    Google Scholar
     

  • Radosavljevic-Radovanovic M, Radovanovic N, Vasiljevic Z, Marinkovic J, Mitrovic P, Mrdovic I, Stankovic S, Kruzliak P, Beleslin B, Uscumlic A, et al. Usefulness of NT-proBNP in the Follow-Up of patients after myocardial infarction. J Med Biochem. 2016;35(2):158–65.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Logeart D, Thabut G, Jourdain P, Chavelas C, Beyne P, Beauvais F, et al. Predischarge B-type natriuretic peptide assay for identifying patients at high risk of re-admission after decompensated heart failure. J Am Coll Cardiol. 2004;43(4):635–41.

    Article 
    PubMed 

    Google Scholar
     

  • Fonarow GC, Peacock WF, Phillips CO, Givertz MM, Lopatin M, Committee ASA. Investigators: admission B-type natriuretic peptide levels and in-hospital mortality in acute decompensated heart failure. J Am Coll Cardiol. 2007;49(19):1943–50.

    Article 
    PubMed 

    Google Scholar
     

  • Pastormerlo LE, Maffei S, Latta DD, Chubuchny V, Susini C, Berti S, Prontera C, Storti S, Passino C, Pasanisi E, et al. N-terminal fragment of B-type natriuretic peptide predicts coexisting subclinical heart and vessel disease. J Cardiovasc Med (Hagerstown). 2017;18(10):750–7.

    Article 
    PubMed 

    Google Scholar
     

  • Liu CY, Heckbert SR, Lai S, Ambale-Venkatesh B, Ostovaneh MR, McClelland RL, et al. Association of elevated NT-proBNP with myocardial fibrosis in the Multi-Ethnic study of atherosclerosis (MESA). J Am Coll Cardiol. 2017;70(25):3102–9.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Querejeta R, Varo N, López B, Larman M, Artiñano E, Etayo JC, Martínez Ubago JL, Gutierrez-Stampa M, Emparanza JI, Gil MJ, et al. Serum carboxy-terminal propeptide of Procollagen type I is a marker of myocardial fibrosis in hypertensive heart disease. Circulation. 2000;101(14):1729–35.

    Article 
    PubMed 

    Google Scholar
     

  • Raafs AG, Verdonschot JAJ, Henkens M, Adriaans BP, Wang P, Derks K, Abdul Hamid MA, Knackstedt C, van Empel VPM, Diez J, et al. The combination of carboxy-terminal propeptide of Procollagen type I blood levels and late gadolinium enhancement at cardiac magnetic resonance provides additional prognostic information in idiopathic dilated cardiomyopathy – A multilevel assessment of myocardial fibrosis in dilated cardiomyopathy. Eur J Heart Fail. 2021;23(6):933–44.

    Article 
    PubMed 

    Google Scholar
     

  • Duprez DA, Gross MD, Kizer JR, Ix JH, Hundley WG, Jacobs DR Jr. Predictive value of collagen biomarkers for heart failure with and without preserved ejection fraction: MESA (multi-ethnic study of atherosclerosis). J Am Heart Assoc. 2018;7(5):e007885.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ma K, Yang J, Shao Y, Li P, Guo H, Wu J, et al. Therapeutic and prognostic significance of arachidonic acid in heart failure. Circ Res. 2022;130(7):1056–71.

    Article 
    PubMed 

    Google Scholar
     

  • Chin CH, Chen SH, Wu HH, Ho CW, Ko MT, Lin CY. CytoHubba: identifying hub objects and sub-networks from complex interactome. BMC Syst Biol. 2014;8(Suppl 4):S11.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Minkiewicz P, Iwaniak A, Darewicz M. BIOPEP-UWM database of bioactive peptides: current opportunities. Int J Mol Sci. 2019. https://doi.org/10.3390/ijms20235978.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Foreman RE, George AL, Reimann F, Gribble FM, Kay RG. Peptidomics: a review of clinical applications and methodologies. J Proteome Res. 2021;20(8):3782–97.

    Article 
    PubMed 

    Google Scholar
     

  • Doellinger J, Schneider A, Hoeller M, Lasch P. Sample preparation by easy extraction and digestion (SPEED) – a universal, rapid, and detergent-free protocol for proteomics based on acid extraction. Mol Cell Proteomics. 2020;19(1):209–22.

    Article 
    PubMed 

    Google Scholar
     

  • Hellinger R, Sigurdsson A, Wu W, Romanova EV, Li L, Sweedler JV, Süssmuth RD. Gruber CW: peptidomics. Nat Rev Methods Primers. 2023;3:25.

  • Luo S, Hu D, Wang M, Zipfel PF, Hu Y. Complement in hemolysis- and thrombosis- related diseases. Front Immunol. 2020;11:1212.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Egerstedt A, Berntsson J, Smith ML, Gidlof O, Nilsson R, Benson M, Wells QS, Celik S, Lejonberg C, Farrell L, et al. Profiling of the plasma proteome across different stages of human heart failure. Nat Commun. 2019;10(1):5830.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Simurda T, Brunclikova M, Asselta R, Caccia S, Zolkova J, Kolkova Z, et al. Genetic variants in the FGB and FGG genes mapping in the beta and gamma nodules of the fibrinogen molecule in congenital quantitative fibrinogen disorders associated with a thrombotic phenotype. Int J Mol Sci. 2020;21(13):4616.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tousoulis D, Papageorgiou N, Androulakis E, Briasoulis A, Antoniades C, Stefanadis C. Fibrinogen and cardiovascular disease: genetics and biomarkers. Blood Rev. 2011;25(6):239–45.

    Article 
    PubMed 

    Google Scholar
     

  • Surma S, Banach M. Fibrinogen and atherosclerotic cardiovascular diseases-review of the literature and clinical studies. Int J Mol Sci. 2021;23(1):193.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Luyendyk JP, Schoenecker JG, Flick MJ. The multifaceted role of fibrinogen in tissue injury and inflammation. Blood. 2019;133(6):511–20.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sánchez-Cortés J, Mrksich M. The platelet integrin alphaIIbbeta3 binds to the RGD and AGD motifs in fibrinogen. Chem Biol. 2009;16(9):990–1000.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lu PP, Liu JT, Liu N, Guo F, Ji YY, Pang X. Pro-inflammatory effect of fibrinogen and FDP on vascular smooth muscle cells by IL-6, TNF-α and iNOS. Life Sci. 2011;88(19–20):839–45.

    Article 
    PubMed 

    Google Scholar
     

  • Medina-Leyte DJ, Zepeda-García O, Domínguez-Pérez M, González-Garrido A, Villarreal-Molina T, Jacobo-Albavera L. Endothelial dysfunction, inflammation and coronary artery disease: potential biomarkers and promising therapeutical approaches. Int J Mol Sci. 2021;22(8):3850.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lominadze D, Dean WL, Tyagi SC, Roberts AM. Mechanisms of fibrinogen-induced microvascular dysfunction during cardiovascular disease. Acta Physiol (Oxf). 2010;198(1):1–13.

    Article 
    PubMed 

    Google Scholar
     

  • Kerlin B, Cooley BC, Isermann BH, Hernandez I, Sood R, Zogg M, et al. Cause-effect relation between hyperfibrinogenemia and vascular disease. Blood. 2004;103(5):1728–34.

    Article 
    PubMed 

    Google Scholar
     

  • Lassé M, Pilbrow AP, Kleffmann T, Andersson Överström E, von Zychlinski A, Frampton CMA, et al. Fibrinogen and hemoglobin predict near future cardiovascular events in asymptomatic individuals. Sci Rep. 2021;11(1):4605.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhu M, Wei J, Li Y, Wang Y, Ren J, Li B, et al. Efficacy and mechanism of Buyang Huanwu Decoction in patients with ischemic heart failure: a randomized, double-blind, placebo-controlled trial combined with proteomic analysis. Front Pharmacol. 2022;13:831208.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang J, Zhang Y, Liu YM, Yang XC, Chen YY, Wu GJ, et al. Uncovering the protective mechanism of Huoxue anxin recipe against coronary heart disease by network analysis and experimental validation. Biomed Pharmacother. 2020;121:109655.

    Article 
    PubMed 

    Google Scholar
     

  • Buchan TA, Ching C, Foroutan F, Malik A, Daza JF, Hing NNF, et al. Prognostic value of natriuretic peptides in heart failure: systematic review and meta-analysis. Heart Fail Rev. 2022;27(2):645–54.

    Article 
    PubMed 

    Google Scholar