• Rignot, E. et al. Four decades of Antarctic ice sheet mass balance from 1979–2017. Proc. Natl Acad. Sci. USA 116, 1095–1103 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Rignot, E., Mouginot, J., Morlighem, M., Seroussi, H. & Scheuchl, B. Widespread, rapid grounding line retreat of Pine Island, Thwaites, Smith, and Kohler glaciers, West Antarctica, from 1992 to 2011. Geophys. Res. Lett. 41, 3502–3509 (2014).

    Article 

    Google Scholar
     

  • Joughin, I., Shapero, D., Smith, B., Dutrieux, P. & Barham, M. Ice-shelf retreat drives recent Pine Island Glacier speedup. Sci. Adv. 7, 3080–3091 (2021).

    Article 

    Google Scholar
     

  • Jacobs, S. S., Hellmer, H. H. & Jenkins, A. Antarctic Ice Sheet melting in the southeast Pacific. Geophys. Res. Lett. 23, 957–960 (1996).

    Article 

    Google Scholar
     

  • Nakayama, Y. et al. Pathways of ocean heat towards Pine Island and Thwaites grounding lines. Sci. Rep. 9, 16649 (2019).

    Article 

    Google Scholar
     

  • DeConto, R. M. & Pollard, D. Contribution of Antarctica to past and future sea-level rise. Nature 531, 591–597 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Feldmann, J. & Levermann, A. Collapse of the West Antarctic Ice Sheet after local destabilization of the Amundsen Basin. Proc. Natl Acad. Sci. USA 112, 14191–14196 (2015).

    Article 
    CAS 

    Google Scholar
     

  • IPCC Climate Change 2021: The Physical Science Basis (Univ. of Cambridge, 2021).

  • Rignot, E. Observations of grounding zones are the missing key to understand ice melt in Antarctica. Nat. Clim. Change 13, 1010–1013 (2023).

    Article 

    Google Scholar
     

  • Dinniman, M. S. et al. Modeling ice shelf/ocean interaction in Antarctica: a review. Oceanography 29, 144–153 (2016).

    Article 

    Google Scholar
     

  • Garabato, A. C. et al. Vigorous lateral export of the meltwater outflow from beneath an Antarctic ice shelf. Nature 542, 219–222 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Friedrichs, D. M. et al. Observations of submesoscale eddy-driven heat transport at an ice shelf calving front. Commun. Earth Environ. 3, 140 (2022).

  • Hancock, C., Speer, K., Janout, M. & Boebel, O. Under ice-shelf eddy at the Stancomb–Wills ice tongue. J. Geophys. Res. Oceans 130, e2024JC021393 (2025).

    Article 

    Google Scholar
     

  • Su, Z., Wang, J., Klein, P., Thompson, A. F. & Menemenlis, D. Ocean submesoscales as a key component of the global heat budget. Nat. Commun. 9, 775 (2018).

    Article 

    Google Scholar
     

  • Siegelman, L. et al. Enhanced upward heat transport at deep submesoscale ocean fronts. Nat. Geosci. 13, 50–55 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Klein, P. et al. Ocean-scale interactions from space. Earth Space Sci. 6, 795–817 (2019).

    Article 

    Google Scholar
     

  • Horvat, C., Tziperman, E. & Campin, J. M. Interaction of sea ice floe size, ocean eddies, and sea ice melting. Geophys. Res. Lett. 43, 8083–8090 (2016).

    Article 

    Google Scholar
     

  • Manucharyan, G. E. & Thompson, A. F. Submesoscale sea ice-ocean interactions in marginal ice zones. J. Geophys. Res. Oceans 122, 9455–9475 (2017).

    Article 

    Google Scholar
     

  • Manucharyan, G. E. & Thompson, A. F. Heavy footprints of upper-ocean eddies on weakened Arctic sea ice in marginal ice zones. Nat. Commun. 13, 2147 (2022).

  • Gupta, M., Marshall, J., Song, H., Campin, J.-M. & Meneghello, G. Sea-ice melt driven by ice-ocean stresses on the mesoscale. J. Geophys. Res. Oceans 125, e2020JC016404 (2020).

    Article 

    Google Scholar
     

  • Gupta, M. & Thompson, A. F. Regimes of sea-ice floe melt: ice-ocean coupling at the submesoscales. J. Geophys. Res. Oceans 127, e2022JC018894 (2022).

    Article 

    Google Scholar
     

  • Fricker, H. A. et al. Antarctica in 2025: drivers of deep uncertainty in projected ice loss. Science 387, 601–609 (2025).

    Article 
    CAS 

    Google Scholar
     

  • McWilliams, J. C. Submesoscale currents in the ocean. Proc. R. Soc. A 472, 20160117 (2016).

    Article 

    Google Scholar
     

  • Shrestha, K., Manucharyan, G. E. & Nakayama, Y. Submesoscale variability and basal melting in ice shelf cavities of the Amundsen Sea. Geophys. Res. Lett. 51, e2023GL107029 (2024).

    Article 

    Google Scholar
     

  • Si, Y., Stewart, A. L., Silvano, A. & Garabato, A. C. N. Antarctic slope undercurrent and onshore heat transport driven by ice shelf melting. Sci. Adv. 10, eadl0601 (2024).

    Article 

    Google Scholar
     

  • Lozano, I., Devoy, R., May, W. & Andersen, U. Storminess and vulnerability along the atlantic coastlines of europe: analysis of storm records and of a greenhouse gases induced climate scenario. Mar. Geol. 210, 205–225 (2004).

    Article 
    CAS 

    Google Scholar
     

  • Martzikos, N. T., Prinos, P. E., Memos, C. D. & Tsoukala, V. K. Key research issues of coastal storm analysis. Ocean Coastal Manage. 199, 105389 (2021).

    Article 

    Google Scholar
     

  • Dotto, T. S. et al. Ocean variability beneath Thwaites Eastern Ice Shelf driven by the Pine Island Bay Gyre strength. Nat. Commun. 13, 7840 (2022).

  • Thomas, L. N., Tandon, A. & Mahadevan, A. Submesoscale processes and dynamics. Ocean Model. Eddy. Regime 177, 17–38 (2008).

    Article 

    Google Scholar
     

  • Gupta, M., Gürcan, E. & Thompson, A. F. Eddy-induced dispersion of sea ice floes at the marginal ice zone. Geophys. Res. Lett. 51, e2023GL105656 (2024).

    Article 

    Google Scholar
     

  • Ou, H. W. & Gordon, A. L. Spin-down of baroclinic eddies under sea ice. J. Geophys. Res. Oceans 91, 7623–7630 (1986).

    Article 

    Google Scholar
     

  • Adusumilli, S., Fricker, H. A., Medley, B., Padman, L. & Siegfried, M. R. Interannual variations in meltwater input to the Southern Ocean from Antarctic ice shelves. Nat. Geosci. 13, 616–620 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Bennetts, L. G. et al. Closing the loops on southern ocean dynamics: from the circumpolar current to ice shelves and from bottom mixing to surface waves. Rev. Geophys. 62, e2022RG000781 (2024).

    Article 

    Google Scholar
     

  • Terletska, K., Maderich, V. & Tobisch, E. Transformation of internal solitary waves at the edge of ice cover. Nonlinear Processes Geophys. 31, 207–217 (2024).

    Article 

    Google Scholar
     

  • Zhang, P. et al. Numerical simulations of internal solitary wave evolution beneath an ice keel. J. Geophys. Res. Oceans 127, e2020JC017068 (2022).

    Article 

    Google Scholar
     

  • Jenkins, A. et al. West Antarctic Ice Sheet retreat in the Amundsen Sea driven by decadal oceanic variability. Nat. Geosci. 11, 733–738 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Park, T., Nakayama, Y. & Nam, S. H. Amundsen Sea circulation controls bottom upwelling and Antarctic Pine Island and Thwaites ice shelf melting. Nat. Commun. 15, 2946 (2024).

  • Eayrs, C., Li, X., Raphael, M. N. & Holland, D. M. Rapid decline in Antarctic sea ice in recent years hints at future change. Nat. Geosci. 14, 460–464 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Purich, A. & Doddridge, E. W. Record low Antarctic sea ice coverage indicates a new sea ice state. Commun. Earth Environ. 4, 314 (2023).

    Article 

    Google Scholar
     

  • Hobbs, W. et al. Observational evidence for a regime shift in summer Antarctic sea ice. J. Clim. 37, 2263–2275 (2024).

    Article 

    Google Scholar
     

  • Duffy, G. M., Montiel, F., Purich, A. & Fraser, C. Emerging long-term trends and interdecadal cycles in antarctic polynyas. Proc. Natl Acad. Sci. USA 121, e232195121 (2024).

    Article 

    Google Scholar
     

  • Poinelli, M., Nakayama, Y., Larour, E., Vizcaino, M. & Riva, R. Ice-front retreat controls on ocean dynamics under Larsen C Ice Shelf, Antarctica. Geophys. Res. Lett. 50, e2023GL104588 (2023).

    Article 

    Google Scholar
     

  • Dinh, A., Rignot, E., Mazloff, M. & Fenty, I. Southern ocean high-resolution (SOhi) modeling along the Antarctic ice sheet periphery. Geophys. Res. Lett. 51, e2023GL106377 (2024).

    Article 

    Google Scholar
     

  • St-Laurent, P., Klinck, J. M. & Dinniman, M. S. Impact of local winter cooling on the melt of Pine Island Glacier, Antarctica. J. Geophys. Res. Oceans 120, 6718–6732 (2015).

    Article 

    Google Scholar
     

  • Gorelick, N. et al. Google earth engine: planetary-scale geospatial analysis for everyone. Remote Sens. Environ. https://doi.org/10.1016/j.rse.2017.06.031 (2017).

  • Rignot, E., Mouginot, J., Scheuchl, B. & Jeong, S. Changes in Antarctic ice sheet motion derived from satellite radar interferometry between 1995 and 2022. Geophys. Res. Lett. 49, e2022GL100141 (2022).

    Article 

    Google Scholar
     

  • Morlighem, M. et al. Deep glacial troughs and stabilizing ridges unveiled beneath the margins of the Antarctic ice sheet. Nat. Geosci. 13, 132–137 (2019).

    Article 

    Google Scholar
     

  • Losch, M. Modeling ice shelf cavities in a z coordinate ocean general circulation model. J. Geophys. Res. Oceans 113, C08043 (2008).

    Article 

    Google Scholar
     

  • Losch, M., Menemenlis, D., Campin, J. M., Heimbach, P. & Hill, C. On the formulation of sea-ice models. Part 1: effects of different solver implementations and parameterizations. Ocean Modell. 33, 129–144 (2010).

    Article 

    Google Scholar
     

  • Hellmer, H. H. & Olbers, D. J. A two-dimensional model for the thermohaline circulation under an ice shelf. Antarct. Sci. 1, 325–336 (1989).

    Article 

    Google Scholar
     

  • Jenkins, A. A one-dimensional model of ice shelf-ocean interaction. J. Geophys. Res. Oceans 96, 20671–20677 (1991).

    Article 

    Google Scholar
     

  • Holland, D. M. & Jenkins, A. Modeling thermodynamic ice-ocean interactions at the base of an ice shelf. J. Phys. Oceanogr. 29, 1787–1800 (1999).

    Article 

    Google Scholar
     

  • Jenkins, A. et al. Observations beneath Pine Island Glacier in West-Antarctica and implications for its retreat. Nat. Geosci. 3, 468–472 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, H., Menemenlis, D. & Fenty, I. ECCO LLC270 Ocean-Ice State Estimate (MIT, 2018).

  • Nakayama, Y., Menemenlis, D., Zhang, H., Schodlok, M. & Rignot, E. Origin of circumpolar deep water intruding onto the Amundsen and Bellingshausen sea continental shelves. Nat. Commun. 9, 3403 (2018).

    Article 

    Google Scholar
     

  • Holland, P. R., Bevan, S. L. & Luckman, A. J. Strong ocean melting feedback during the recent retreat of Thwaites Glacier. Geophys. Res. Lett. 50, e2023GL103088 (2023).

    Article 

    Google Scholar
     

  • Bevan, S. L., Luckman, A. J., Benn, D. I., Adusumilli, S. & Crawford, A. Brief communication: Thwaites Glacier cavity evolution. Cryosphere 15, 3317–3328 (2021).

    Article 

    Google Scholar
     

  • Torres, H. S. et al. Partitioning ocean motions into balanced motions and internal gravity waves: a modeling study in anticipation of future space missions. J. Geophys. Res. Oceans 123, 8084–8105 (2018).

    Article 

    Google Scholar
     

  • Hoskins, B. J. The role of potential vorticity in symmetric stability and instability. Q. J. R. Meteorol. Soc. 100, 480–482 (1974).

    Article 

    Google Scholar
     

  • Thomas, L. N., Taylor, J. R., Ferrari, R. & Joyce, T. M. Symmetric instability in the Gulf Stream. Deep Sea Res. Part II 91, 96–110 (2013).

    Article 

    Google Scholar
     

  • Thyng, K. M., Greene, C. A., Hetland, R. D., Zimmerle, H. M. & DiMarco, S. F. True colors of oceanography: guidelines for effective and accurate colormap selection. Oceanography 29, 9–13 (2016).

    Article 

    Google Scholar
     

  • DiGirolamo, N. Sea Ice Concentrations from Nimbus-7 SMMR and DMSP SSM/I-SSMIS Passive Microwave Data, Version 2 (2022).