• Zhang Z, Xu D, Wang L, Hao J, Wang J, Zhou X, et al. Convergent evolution of rumen microbiomes in high-altitude mammals. Curr Biol. 2016;26(14):1873–9.

    CAS 
    PubMed 

    Google Scholar
     

  • Rosshart SP, Herz J, Vassallo BG, Hunter A, Wall MK, Badger JH, et al. Laboratory mice born to wild mice have natural microbiota and model human immune responses. Science. 2019;365(6452):eaaw4361.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Campbell C, McKenney PT, Konstantinovsky D, Isaeva OI, Schizas M, Verter J, et al. Bacterial metabolism of bile acids promotes generation of peripheral regulatory T cells. Nature. 2020;581(7809):475–9.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gill SK, Rossi M, Bajka B, Whelan K. Dietary fibre in gastrointestinal health and disease. Nat Rev Gastroenterol Hepatol. 2021;18(2):101–16.

    CAS 
    PubMed 

    Google Scholar
     

  • Kundu P, Blacher E, Elinav E, Pettersson S. Our gut microbiome: the evolving inner self. Cell. 2017;171(7):1481–93.

    CAS 
    PubMed 

    Google Scholar
     

  • Pasolli E, Asnicar F, Manara S, Zolfo M, Karcher N, Armanini F, et al. Extensive unexplored human microbiome diversity revealed by over 150,000 genomes from metagenomes spanning age, geography, and lifestyle. Cell. 2019;176(3):649-62.e20.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Almeida A, Nayfach S, Boland M, Strozzi F, Beracochea M, Shi ZJ, et al. A unified catalog of 204,938 reference genomes from the human gut microbiome. Nat Biotechnol. 2021;39(1):105–14.

    CAS 
    PubMed 

    Google Scholar
     

  • Levin D, Raab N, Pinto Y, Rotshchild D, Zanir G, Godneva A, et al. Diversity and functional landscapes in the microbiota of animals in the wild. Science. 2021;372:eabb5352.

    CAS 
    PubMed 

    Google Scholar
     

  • Zhou Z, Deng T. The Tibetan Plateau is a natural laboratory for studying organic evolution and environmental change. Sci China Earth Sci. 2020;63(2):169–71.


    Google Scholar
     

  • Deng T, Wu F, Zhou Z, Su T. Tibetan Plateau: an evolutionary junction for the history of modern biodiversity. Sci China Earth Sci. 2020;63(2):16.


    Google Scholar
     

  • Qiang Li, Tao Deng, Joel E. et al. Out of Tibet: Pliocene woolly rhino suggests high-plateau origin of ice age megaherbivores. Science. 2011;333(Sep.2 TN.6047):1285–8.

  • Cortes-Ortiz L, Amato KR. Host genetics influence the gut microbiome. Science. 2021;373(6551):159–60.

    CAS 
    PubMed 

    Google Scholar
     

  • Moeller AH, Suzuki TA, Phifer-Rixey M, Nachman MW. Transmission modes of the mammalian gut microbiota. Science. 2018;362(6413):453–7.

    CAS 
    PubMed 

    Google Scholar
     

  • Grieneisen L, Dasari M, Gould TJ, Björk JR, Grenier JC, Yotova V, et al. Gut microbiome heritability is nearly universal but environmentally contingent. Science. 2021;373(6551):181–6.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ferretti P, Pasolli E, Tett A, Asnicar F, Gorfer V, Fedi S, et al. Mother-to-infant microbial transmission from different body sites shapes the developing infant gut microbiome. Cell Host Microbe. 2018;24(1):133-45.e5.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brucker RM, Bordenstein SR. The roles of host evolutionary relationships (genus: Nasonia) and development in structuring microbial communities. Evolution. 2012;66(2):349–62.

    PubMed 

    Google Scholar
     

  • Groussin M, Mazel F, Alm EJ. Co-evolution and co-speciation of host-gut bacteria systems. Cell Host Microbe. 2020;28(1):12–22.

    CAS 
    PubMed 

    Google Scholar
     

  • Mazel F, Davis KM, Loudon A, Kwong WK, Groussin M, Parfrey LW. Is host filtering the main driver of phylosymbiosis across the tree of life? mSystems. 2018. https://doi.org/10.1128/msystems.00097-18.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Groussin M, Mazel F, Sanders JG, Smillie CS, Lavergne S, Thuiller W, et al. Unraveling the processes shaping mammalian gut microbiomes over evolutionary time. Nat Commun. 2017;8(1):14319.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Moeller AH, Caro-Quintero A, Mjungu D, Georgiev AV, Lonsdorf EV, Muller MN, et al. Cospeciation of gut microbiota with hominids. Science. 2016;353(6297):380–2.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gaulke CA, Arnold HK, Humphreys IR, Kembel SW, O’Dwyer JP, Sharpton TJ. Ecophylogenetics clarifies the evolutionary association between mammals and their gut microbiota. MBio. 2018. https://doi.org/10.1128/mBio.01348-18.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Youngblut ND, Reischer GH, Walters W, Schuster N, Walzer C, Stalder G, et al. Host diet and evolutionary history explain different aspects of gut microbiome diversity among vertebrate clades. Nat Commun. 2019;10(1):2200.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brown JR, Douady CJ, Italia MJ, Marshall WE, Stanhope MJ. Universal trees based on large combined protein sequence data sets. Nat Genet. 2001;28(3):281–5.

    CAS 
    PubMed 

    Google Scholar
     

  • Delsuc F, Brinkmann H, Philippe H. Phylogenomics and the reconstruction of the tree of life. Nat Rev Genet. 2005;6(5):361–75.

    CAS 
    PubMed 

    Google Scholar
     

  • Jónsson H, Schubert M, Seguin-Orlando A, Ginolhac A, Petersen L, Fumagalli M, et al. Speciation with gene flow in equids despite extensive chromosomal plasticity. Proc Natl Acad Sci U S A. 2014;111(52):18655–60.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jiang Y, Xie M, Chen W, Talbot R, Maddox JF, Faraut T, et al. The sheep genome illuminates biology of the rumen and lipid metabolism. Science. 2014;344(6188):1168–73.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen L, Qiu Q, Jiang Y, Wang K, Lin Z, Li Z, et al. Large-scale ruminant genome sequencing provides insights into their evolution and distinct traits. Science. 2019. https://doi.org/10.1126/science.aav6202.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Humphreys AM, Barraclough TG. The evolutionary reality of higher taxa in mammals. Proc Biol Sci. 2014;281(1783):20132750.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mattock J, Watson M. A comparison of single-coverage and multi-coverage metagenomic binning reveals extensive hidden contamination. Nat Methods. 2023;20(8):1170–3.

    CAS 
    PubMed 

    Google Scholar
     

  • Xie F, Jin W, Si H, Yuan Y, Tao Y, Liu J, et al. An integrated gene catalog and over 10,000 metagenome-assembled genomes from the gastrointestinal microbiome of ruminants. Microbiome. 2021;9(1):137.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rühlemann MC, Wacker EM, Ellinghaus D, Franke A. Magscot: a fast, lightweight and accurate bin-refinement tool. Bioinformatics. 2022;38(24):5430–3.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kang DD, Li F, Kirton E, Thomas A, Wang Z. MetaBAT 2: an adaptive binning algorithm for robust and efficient genome reconstruction from metagenome assemblies. PeerJ. 2019;7(7):e7359.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu Y-W, Simmons BA, Singer SW. Maxbin 2.0: an automated binning algorithm to recover genomes from multiple metagenomic datasets. Bioinformatics. 2016;32(4):605–7.

    CAS 
    PubMed 

    Google Scholar
     

  • Alneberg J, Bjarnason BS, De Bruijn I, Schirmer M, Quick J, Ijaz UZ, et al. Binning metagenomic contigs by coverage and composition. Nat Methods. 2014;11(11):1144–6.

    CAS 
    PubMed 

    Google Scholar
     

  • Nayfach S, Roux S, Seshadri R, Udwary D, Varghese N, Schulz F, et al. A genomic catalog of Earth’s microbiomes. Nat Biotechnol. 2021;39(4):499–509.

    CAS 
    PubMed 

    Google Scholar
     

  • Parks DH, Chuvochina M, Rinke C, Mussig AJ, Chaumeil PA, Hugenholtz P. GTDB: an ongoing census of bacterial and archaeal diversity through a phylogenetically consistent, rank normalized and complete genome-based taxonomy. Nucleic Acids Res. 2022;50(D1):D785–94.

    CAS 
    PubMed 

    Google Scholar
     

  • Stewart RD, Auffret MD, Warr A, Walker AW, Roehe R, Watson M. Compendium of 4,941 rumen metagenome-assembled genomes for rumen microbiome biology and enzyme discovery. Nat Biotechnol. 2019;37(8):953–61.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tong F, Wang T, Gao NL, Liu Z, Cui K, Duan Y, et al. The microbiome of the buffalo digestive tract. Nat Commun. 2022;13(1):823.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Carter MM, Olm MR, Merrill BD, Dahan D, Tripathi S, Spencer SP, et al. Ultra-deep sequencing of Hadza hunter-gatherers recovers vanishing gut microbes. Cell. 2023;186(14):3111-24.e13.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Youngblut ND, Cuesta-Zuluaga J, Reischer GH, Dauser S, Schuster N, Walzer C, et al. Large-scale metagenome assembly reveals novel animal-associated microbial genomes, biosynthetic gene clusters, and other genetic diversity. mSystems. 2020;5(6):e01045–20.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Glendinning L, Gen B, Wallace RJ, Watson M. Metagenomic analysis of the cow, sheep, reindeer and red deer rumen. Sci Rep. 2021;11(1):1990.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Csurös M. Count: evolutionary analysis of phylogenetic profiles with parsimony and likelihood. Bioinformatics. 2010;26(15):1910–2.

    PubMed 

    Google Scholar
     

  • Halpern D, Gruss A. A sensitive bacterial-growth-based test reveals how intestinal Bacteroides meet their porphyrin requirement. BMC Microbiol. 2015;15(1):282.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Signore AV, Storz JF. Biochemical pedomorphosis and genetic assimilation in the hypoxia adaptation of Tibetan antelope. Sci Adv. 2020. https://doi.org/10.1126/sciadv.abb5447.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • David LA, Alm EJ. Rapid evolutionary innovation during an Archaean genetic expansion. Nature. 2011;469(7328):93–6.

    CAS 
    PubMed 

    Google Scholar
     

  • Hurst LD. The ka/ks ratio: diagnosing the form of sequence evolution. Trends Genet. 2002;18(9):486–7.

    PubMed 

    Google Scholar
     

  • Qiu J. China: the third pole. Nature. 2008;454(7203):393–6.

    CAS 
    PubMed 

    Google Scholar
     

  • Nayfach S, Shi ZJ, Seshadri R, Pollard KS, Kyrpides NC. New insights from uncultivated genomes of the global human gut microbiome. Nature. 2019;568(7753):505–10.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Almeida A, Mitchell AL, Boland M, Forster SC, Gloor GB, Tarkowska A, et al. A new genomic blueprint of the human gut microbiota. Nature. 2019;568(7753):499–504.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu Y, Ji M, Yu T, Zaugg J, Anesio AM, Zhang Z, et al. A genome and gene catalog of glacier microbiomes. Nat Biotechnol. 2022;40(9):1341–8.

    PubMed 

    Google Scholar
     

  • Li C, Li X, Guo R, Ni W, Liu K, Liu Z, et al. Expanded catalogue of metagenome-assembled genomes reveals resistome characteristics and athletic performance-associated microbes in horse. Microbiome. 2023;11(1):7.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zeng S, Patangia D, Almeida A, Zhou Z, Mu D, Paul Ross R, et al. A compendium of 32,277 metagenome-assembled genomes and over 80 million genes from the early-life human gut microbiome. Nat Commun. 2022;13(1):5139.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen C, Zhou Y, Fu H, Xiong X, Fang S, Jiang H, et al. Expanded catalog of microbial genes and metagenome-assembled genomes from the pig gut microbiome. Nat Commun. 2021;12(1):1106.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • de Vienne DM, Refrégier G, López-Villavicencio M, Tellier A, Hood ME, Giraud T. Cospeciation vs host-shift speciation: methods for testing, evidence from natural associations and relation to coevolution. New Phytol. 2013;198(2):347–85.

    PubMed 

    Google Scholar
     

  • Li J, Sauers L, Zhuang D, Ren H, Guo J, Wang L, et al. Divergence and convergence of gut microbiomes of wild insect pollinators. mBio. 2023;14(4):e01270–23.

  • Song SJ, Sanders JG, Delsuc F, Metcalf J, Amato K, Taylor MW, et al. Comparative analyses of vertebrate gut microbiomes reveal convergence between birds and bats. MBio. 2020. https://doi.org/10.1128/mbio.02901-19.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gomez de Agüero M, Ganal-Vonarburg SC, Fuhrer T, Rupp S, Uchimura Y, Li H, et al. The maternal microbiota drives early postnatal innate immune development. Science. 2016;351(6279):1296–302.

  • Larke JA, Heiss BE, Ehrlich AM, Taft DH, Raybould HE, Mills DA, et al. Milk oligosaccharide-driven persistence of Bifidobacterium pseudocatenulatum modulates local and systemic microbial metabolites upon synbiotic treatment in conventionally colonized mice. Microbiome. 2023;11(1):194.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lawson MAE, O’Neill IJ, Kujawska M, Gowrinadh Javvadi S, Wijeyesekera A, Flegg Z, et al. Breast milk-derived human milk oligosaccharides promote Bifidobacterium interactions within a single ecosystem. ISME J. 2020;14(2):635–48.

    CAS 
    PubMed 

    Google Scholar
     

  • Keady MM, Jimenez RR, Bragg M, Wagner JCP, Bornbusch SL, Power ML, et al. Ecoevolutionary processes structure milk microbiomes across the mammalian tree of life. Proc Natl Acad Sci U S A. 2023;120(28):e2218900120.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Round JL, Mazmanian SK. The gut microbiota shapes intestinal immune responses during health and disease. Nat Rev Immunol. 2009;9(5):313–23.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Slack E, Hapfelmeier S, Stecher B, Velykoredko Y, Stoel M, Lawson MAE, et al. Innate and adaptive immunity cooperate flexibly to maintain host-microbiota mutualism. Science. 2009;325(5940):617–20.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sanidad KZ, Amir M, Ananthanarayanan A, Singaraju A, Shiland NB, Hong HS, et al. Maternal gut microbiome–induced IgG regulates neonatal gut microbiome and immunity. Sci Immunol. 2022;7(72):eabh3816.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Laursen MF, Roager HM. Human milk oligosaccharides modify the strength of priority effects in the Bifidobacterium community assembly during infancy. ISME J. 2023;17(12):2452–7.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Garrido D, Barile D, Mills DA. A molecular basis for bifidobacterial enrichment in the infant gastrointestinal tract. Adv Nutr. 2012;3(3):415S-S421.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sehnal L, Brammer-Robbins E, Wormington AM, Blaha L, Bisesi J, Larkin I, Martyniuk CJ, Simonin M, Adamovsky O. Microbiome Composition and Function in Aquatic Vertebrates: Small Organisms Making Big Impacts on Aquatic Animal Health. Front Microbiol. 2021;12:567408. https://doi.org/10.3389/fmicb.2021.567408.

  • Valles-Colomer M, Blanco-Míguez A, Manghi P, Asnicar F, Dubois L, Golzato D, et al. The person-to-person transmission landscape of the gut and oral microbiomes. Nature. 2023;614(7946):125–35.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Moeller AH, Foerster S, Wilson ML, Pusey AE, Hahn BH, Ochman H. Social behavior shapes the chimpanzee pan-microbiome. Sci Adv. 2016;2(1):e1500997.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee N-K, Kim W-S, Paik H-D. Bacillus strains as human probiotics: characterization, safety, microbiome, and probiotic carrier. Food Sci Biotechnol. 2019;28(5):1297–305.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ji L, Zhang L, Liu H, Shen J, Zhang Y, Lu L, Zhang X, Ma X. Bacillus subtilis M6 improves intestinal barrier, antioxidant capacity and gut microbial composition in AA broiler. Front Nutr. 2022;9:965310. https://doi.org/10.3389/fnut.2022.965310.

  • Garvey SM, Mah E, Blonquist TM, Kaden VN, Spears JL. The probiotic Bacillus subtilis BS50 decreases gastrointestinal symptoms in healthy adults: a randomized, double-blind, placebo-controlled trial. Gut Microbes. 2022;14(1):2122668.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen S, Zhou Y, Chen Y, Gu J. Fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics. 2018;34(17):i884–90.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Langmead B, Salzberg SL. Fast gapped-read alignment with bowtie 2. Nat Methods. 2012;9(4):357–9.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dinghua Li, Chi-Man Liu, Ruibang Luo, Kunihiko Sadakane, Tak-Wah Lam. MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph, Bioinformatics. 2015;31(10):1674–6. https://doi.org/10.1093/bioinformatics/btv033.

  • Olm MR, Brown CT, Brooks B, Banfield JF. dRep: a tool for fast and accurate genomic comparisons that enables improved genome recovery from metagenomes through de-replication. ISME J. 2017;11(12):2864–8.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. Checkm: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 2015;25(7):1043–55.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Orakov A, Fullam A, Coelho LP, Khedkar S, Szklarczyk D, Mende DR, et al. GUNC: detection of chimerism and contamination in prokaryotic genomes. Genome Biol. 2021;22(1):178.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lowe TM, Eddy SR. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res. 1997;25(5):955–64.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chaumeil PA, Mussig AJ, Hugenholtz P, Parks DH. GTDB-tk: a toolkit to classify genomes with the genome taxonomy database. Bioinformatics. 2019;36(6):1925–7.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Segata N, Börnigen D, Morgan XC, Huttenhower C. Phylophlan is a new method for improved phylogenetic and taxonomic placement of microbes. Nat Commun. 2013;4:2304.

    PubMed 

    Google Scholar
     

  • Price MN, Dehal PS, Arkin AP. FastTree: computing large minimum evolution trees with profiles instead of a distance matrix. Mol Biol Evol. 2009;26(7):1641–50.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Asnicar F, Weingart G, Tickle TL, Huttenhower C, Segata N. Compact graphical representation of phylogenetic data and metadata with GraPhlAn. PeerJ. 2015;3:e1029-e.

  • Ondov BD, Starrett GJ, Sappington A, Kostic A, Koren S, Buck CB, et al. Mash screen: high-throughput sequence containment estimation for genome discovery. Genome Biol. 2019;20(1):232.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wood DE, Lu J, Langmead B. Improved metagenomic analysis with kraken 2. Genome Biol. 2019;20(1):257.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Qin J, Li Y, Cai Z, Li S, Zhu J, Zhang F, et al. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature. 2012;490(7418):55–60.

    CAS 
    PubMed 

    Google Scholar
     

  • Hyatt D, Chen G-L, LoCascio PF, Land ML, Larimer FW, Hauser LJ. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics. 2010;11:1–11.


    Google Scholar
     

  • Steinegger M, Söding J. MMseqs2 enables sensitive protein sequence searching for the analysis of massive data sets. Nat Biotechnol. 2017;35(11):1026–8.

    CAS 
    PubMed 

    Google Scholar
     

  • Buchfink B, Xie C, Huson DH. Fast and sensitive protein alignment using DIAMOND. Nat Methods. 2015;12(1):59–60.

    CAS 
    PubMed 

    Google Scholar
     

  • Zhang H, Yohe T, Huang L, Entwistle S, Wu P, Yang Z, et al. dbCAN2: a meta server for automated carbohydrate-active enzyme annotation. Nucleic Acids Res. 2018;46(W1):W95–101.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Blin K, Shaw S, Kloosterman AM, Charlop-Powers Z, van Wezel GP, Medema MH, et al. antiSMASH 6.0: improving cluster detection and comparison capabilities. Nucleic Acids Res. 2021;49(W1):W29-w35.

  • Navarro-Muñoz JC, Selem-Mojica N, Mullowney MW, Kautsar SA, Tryon JH, Parkinson EI, et al. A computational framework to explore large-scale biosynthetic diversity. Nat Chem Biol. 2020;16(1):60–8.

    PubMed 

    Google Scholar
     

  • Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, et al. Qiime allows analysis of high-throughput community sequencing data. Nat Methods. 2010;7(5):335–6.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kwong WK, Medina LA, Koch H, Sing K-W, Soh EJY, Ascher JS, et al. Dynamic microbiome evolution in social bees. Sci Adv. 2017;3(3):e1600513.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Emms DM, Kelly S. OrthoFinder: phylogenetic orthology inference for comparative genomics. Genome Biol. 2019;20(1):238.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang D, Zhang Y, Zhang Z, Zhu J, Yu J. Kaks_calculator 2.0: a toolkit incorporating gamma-series methods and sliding window strategies. Genomics Proteomics Bioinformatics. 2010;8(1):77–80.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Olm MR, Crits-Christoph A, Bouma-Gregson K, Firek BA, Morowitz MJ, Banfield JF. InStrain profiles population microdiversity from metagenomic data and sensitively detects shared microbial strains. Nat Biotechnol. 2021;39(6):727–36.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Keck F, Rimet F, Bouchez A, Franc A. Phylosignal: an R package to measure, test, and explore the phylogenetic signal. Ecol Evol. 2016;6(9):2774–80.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Symonds MR, Blomberg SP. A primer on phylogenetic generalised least squares. Modern phylogenetic comparative methods and their application in evolutionary biology: concepts and practice. 2014 p. 105–30.