• Bartlow AW, Agosta SJ. Phoresy in animals: review and synthesis of a common but understudied mode of dispersal. Biol Rev Camb Philos Soc. 2021;96:223–46.

    PubMed 

    Google Scholar
     

  • Sudhaus W. Phylogenetic systematisation and catalogue of paraphyletic “Rhabditidae” (Secernentea, Nematoda). J Nematode Morphol Syst. 2011;14:113–78.


    Google Scholar
     

  • Anderson RC. Nematode parasites of vertebrates: their development and transmission. CABI; 2000.


    Google Scholar
     

  • Kiontke K, Fitch DHA. The phylogenetic relationships of Caenorhabditis and other rhabditids. WormBook. 2005; p. 1–11.

  • Abrams BI, Mitchell MJ. Role of nematode-bacterial interactions in heterotrophic systems with emphasis on sewage sludge decomposition. Oikos. 1980;35:404.


    Google Scholar
     

  • Abrams BI, Mitchell MJ. Role of oxygen in affecting survival and activity of Pelodera punctata (Rhabditidae) from sewage sludge. Nematologica. 1978;24:456–62.


    Google Scholar
     

  • Joshi MM, Wilt GR, Cody RM, Chopra BK. Detection of a Vibrio sp. by the bacteriophagous nematode Pelodera chitwoodi. J Appl Bacteriol. 1974;37:419–26.

    CAS 
    PubMed 

    Google Scholar
     

  • Nguyen CQ, Hall DH, Yang Y, Fitch DH. Morphogenesis of the Caenorhabditis elegans male tail tip. Dev Biol. 1999;207:86–106.

    CAS 
    PubMed 

    Google Scholar
     

  • Shokoohi E, Mehdizadeh S, Amirzadi N, Abolafia J. Four new geographical records of rhabditid nematodes (Nematoda: Rhabditida: Rhabditomorpha) from Iran with a note on the phylogenetic position of Pelodera. Russ J Nematol. 2014;22:49–66.


    Google Scholar
     

  • Andrássy I. Evolution as a basis for the systematization of nematodes. cabidigitallibrary.org; 1976.

  • Schneider A. Monographie Der Nematoden. Walter de Gruyter; 1866.


    Google Scholar
     

  • Dougherty EC. The genera and species of the subfamily Rhabditinae Micoletzky, 1922 (Nematoda): a nomenclatorial analysis—including an addendum on the composition of the family Rhabditidae Örley, 1880. J Helminthol. 1955;29:105–52.

    CAS 
    PubMed 

    Google Scholar
     

  • Sudhaus W. An update of the catalogue of paraphyletic “Rhabditidae” (Nematoda) after eleven years. Soil Org. 2023;95:95–116.


    Google Scholar
     

  • Nemys eds. Nemys—Pelodera A. Schneider, 1866. In: Nemys: World Database of Nematodes; 2024. https://nemys.ugent.be/aphia.php?p=taxdetails&id=583004. Accessed 28 Aug 2025.

  • Tahseen Q, Akram M, Mustaqim M, Ahlawat S. Descriptions of Pelodera scrofulata sp. nov. and Pelodera aligarhensis sp. nov. (Nematoda: Rhabditidae) with supplementary information on Pelodera teres (Schneider, 1866). J Nat Hist. 2014;48:1027–53.


    Google Scholar
     

  • Mahboob M, Jahan R, Tahseen Q. Comparative and cladistic analyses of the species of the genus Pelodera Schneider, 1866 (Rhabditidae: Nematoda) belonging to the coarctata group. Eur J Taxon. 2023;890:71–114.


    Google Scholar
     

  • Ingham RE, Trofymow JA, Ingham ER, Coleman DC. Interactions of bacteria, fungi, and their nematode grazers: effects on nutrient cycling and plant growth. Ecol Monogr. 1985;55:119–40.


    Google Scholar
     

  • Biswal D. Nematodes as ghosts of land use past: elucidating the roles of soil nematode community studies as indicators of soil health and land management practices. Appl Biochem Biotechnol. 2022;194:2357–417.

    CAS 
    PubMed 

    Google Scholar
     

  • Neher DA. Role of nematodes in soil health and their use as indicators. J Nematol. 2001;33:161–8.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ikoyi I, Grange G, Finn JA, Brennan FP. Plant diversity enhanced nematode-based soil quality indices and changed soil nematode community structure in intensively-managed agricultural grasslands. Eur J Soil Biol. 2023;118:103542.


    Google Scholar
     

  • Rønn R, Vestergård M, Ekelund F. Interactions between bacteria, protozoa and nematodes in soil. Acta Protozool. 2012;51:223–35.


    Google Scholar
     

  • Tian X, Zhao X, Mao Z, Xie B. Dynamics of soil nematode communities revealed significant variation in greenhouse with different continuous cropping years. bioRxiv. 2020;6:301–12. https://doi.org/10.1101/593541

  • Chen N, Schram M, Bucur D. GFlora: a topology-aware method to discover functional co-response groups in soil microbial communities. IEEE Trans Comput Biol Bioinform. 2020;6:301–12. https://doi.org/10.1109/TCBBIO.2025.3560853.

    Article 
    PubMed 

    Google Scholar
     

  • Nichols E, Spector S, Louzada J, Larsen T, Amezquita S, Favila ME. Ecological functions and ecosystem services provided by Scarabaeinae dung beetles. Biol Conserv. 2008;141:1461–74.


    Google Scholar
     

  • Beynon SA, Wainwright WA, Christie M. The application of an ecosystem services framework to estimate the economic value of dung beetles to the UK cattle industry: economic benefits of dung beetles. Ecol Entomol. 2015;40:124–35.


    Google Scholar
     

  • White PS, Morran L, de Roode J. Phoresy. Curr Biol. 2017;27:R578–80.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Giblin-Davis RM, Kanzaki N, Davies KA. Nematodes that ride insects: unforeseen consequences of arriving species§. Fla Entomol. 2013;96:770–80.


    Google Scholar
     

  • Trejo-Meléndez VJ, Ibarra-Rendón J, Contreras-Garduño J. The evolution of entomopathogeny in nematodes. Ecol Evol. 2024;14:e10966.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bowler DE, Benton TG. Causes and consequences of animal dispersal strategies: relating individual behaviour to spatial dynamics. Biol Rev Camb Philos Soc. 2005;80:205–25.

    PubMed 

    Google Scholar
     

  • Hominick WM, Aston AJ. Association between Pelodera strongyloides (Nematoda: Rhabditidae) and wood mice, Apodemus sylvaticus. Parasitology. 1981;83:67–75.

    CAS 
    PubMed 

    Google Scholar
     

  • Gorgadze O, Troccoli A, Fanelli E, Tarasco E, De Luca F. Characterization of a population of Pelodera strongyloides (Nematoda: Rhabditidae) associated with the beetle Lucanus ibericus (Coleoptera: Lucanidae) from Georgia. J Nematol. 2020;52:1–12.


    Google Scholar
     

  • Sudhaus W. Preadaptive plateau in Rhabditida (Nematoda) allowed the repeated evolution of zooparasites, with an outlook on evolution of life cycles within Spiroascarida 1. Palaeodiversity. 2010;3:117–30.


    Google Scholar
     

  • Lee H, Choi M-K, Lee D, Kim H-S, Hwang H, Kim H, et al. Nictation, a dispersal behavior of the nematode Caenorhabditis elegans, is regulated by IL2 neurons. Nat Neurosci. 2011;15:107–12.

    CAS 
    PubMed 

    Google Scholar
     

  • Vlaar LE, Bertran A, Rahimi M, Dong L, Kammenga JE, Helder J, et al. On the role of dauer in the adaptation of nematodes to a parasitic lifestyle. Parasit Vectors. 2021;14:554.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fielenbach N, Antebi AC. C. elegans dauer formation and the molecular basis of plasticity. Genes Dev. 2008;22:2149–65.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ogawa A, Sommer RJ. Developmental biology. Strategies to get arrested. Science. 2009;326:944–5.

    CAS 
    PubMed 

    Google Scholar
     

  • Hu PJ. Dauer. WormBook. 2007; p. 1–19.

  • Crook M. The dauer hypothesis and the evolution of parasitism: 20 years on and still going strong. Int J Parasitol. 2014;44:1–8.

    PubMed 

    Google Scholar
     

  • Schulte F. Life history of Rhabditis (Pelodera) orbitalis: a larval parasite in the eye orbits of arvicolid and murid rodents. Proc Helminthol Soc Wash. 1989;56:1–7.


    Google Scholar
     

  • Bubrig LT, Fierst JL. Review of the dauer hypothesis: what non-parasitic species can tell us about the evolution of parasitism. J Parasitol. 2021;107:717–25.

    PubMed 

    Google Scholar
     

  • Androwski RJ, Flatt KM, Schroeder NE. Phenotypic plasticity and remodeling in the stress-induced Caenorhabditis elegans dauer. Wiley Interdiscip Rev Dev Biol. 2017;6:e278. https://doi.org/10.1002/wdev.278.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gilabert A, Curran DM, Harvey SC, Wasmuth JD. Expanding the view on the evolution of the nematode dauer signalling pathways: refinement through gene gain and pathway co-option. BMC Genomics. 2016;17:476.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brand AM, Varghese G, Majewski W, Hawdon JM. Identification of a DAF-7 ortholog from the hookworm Ancylostoma caninum. Int J Parasitol. 2005;35:1489–98.

    CAS 
    PubMed 

    Google Scholar
     

  • Ayoade KO, Carranza FR, Cho WH, Wang Z, Kliewer SA, Mangelsdorf DJ, et al. Dafachronic acid and temperature regulate canonical dauer pathways during Nippostrongylus brasiliensis infectious larvae activation. Parasit Vectors. 2020;13:162.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • McSorley HJ, Grainger JR, Harcus Y, Murray J, Nisbet AJ, Knox DP, et al. daf-7-related TGF-beta homologues from Trichostrongyloid nematodes show contrasting life-cycle expression patterns. Parasitology. 2010;137:159–71.

    CAS 
    PubMed 

    Google Scholar
     

  • Takahashi Y, Daitoku H, Hirota K, Tamiya H, Yokoyama A, Kako K, et al. Asymmetric arginine dimethylation determines life span in C. elegans by regulating forkhead transcription factor DAF-16. Cell Metab. 2011;13:505–16.

    CAS 
    PubMed 

    Google Scholar
     

  • Butcher RA, Ragains JR, Li W, Ruvkun G, Clardy J, Mak HY. Biosynthesis of the Caenorhabditis elegans dauer pheromone. Proc Natl Acad Sci U S A. 2009;106:1875–9.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang M, Heikkinen L, Knott KE, Wong G. De novo transcriptome assembly of a facultative parasitic nematode Pelodera (syn. Rhabditis) strongyloides. Gene. 2019;710:30–8.

    CAS 
    PubMed 

    Google Scholar
     

  • Ouellet J, Li S, Roy R. Notch signalling is required for both dauer maintenance and recovery in C. elegans. Development. 2008;135:2583–92.

    CAS 
    PubMed 

    Google Scholar
     

  • Yang H, Lee BY, Yim H, Lee J. Neurogenetics of nictation, a dispersal strategy in nematodes. J Neurogenet. 2020;34:510–7.

    CAS 
    PubMed 

    Google Scholar
     

  • Gang SS, Hallem EA. Mechanisms of host seeking by parasitic nematodes. Mol Biochem Parasitol. 2016;208:23–32.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sudhaus W, Schulte F, Hominick W. A further sibling species of Rhabditis (Pelodera) strongyloides (Nematoda): Rhabditis (P) cutanea n.sp. rm the skin of wood mice (Apodemus sylvaticus). Revue de nématologie. 1987;10:319–26.


    Google Scholar
     

  • Schulte F. Description of Rhabditis (Pelodera) pseudoteres n. sp. (Rhabditidae: Nematoda) with a redescription of its sibling R. (P.) teres (Schneider, 1866). Revue de nématologie. 1989;12:387–94.


    Google Scholar
     

  • Haas W, Haberl B, Syafruddin, Idris I, Kallert D, Kersten S, et al. Behavioural strategies used by the hookworms Necator americanus and Ancylostoma duodenale to find, recognize and invade the human host. Parasitol Res. 2005;95:30–9.

    PubMed 

    Google Scholar
     

  • Leal B, Zamora E, Fuentes A, Thomas DB, Dearth RK. Questing by tick larvae (Acari: Ixodidae): a review of the influences that affect off-host survival. Ann Entomol Soc Am. 2020;113:425–38.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Al-Jawabreh R, Anderson R, Atkinson LE, Bickford-Smith J, Bradbury RS, Breloer M, et al. Strongyloides questions-a research agenda for the future. Philos Trans R Soc Lond B Biol Sci. 2024;379:20230004.

    PubMed 

    Google Scholar
     

  • Scott HL, Whittaker FH. Pelodera strongyloides Schneider 1866: a potential research tool. J Nematol. 1970;2:193–203.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Whittaker FH. Galvanotaxis of Pelodera strongyloides (Nematoda: Rhabditidae). Proc Helminthol Soc Wash. 1969;36:40–2.


    Google Scholar
     

  • Mahboob M, Tahseen Q. Diversity, prevalence and microhabitat specificity of nematodes (Rhabditidae Örley, 1880 and Diplogastridae Micoletzky, 1922) associated with insects: an overview. Int J Pest Manag. 2021;70:1–42.


    Google Scholar
     

  • Weller AM, Mayer WE, Rae R, Sommer RJ. Quantitative assessment of the nematode fauna present on Geotrupes dung beetles reveals species-rich communities with a heterogeneous distribution. J Parasitol. 2010;96:525–31.

    PubMed 

    Google Scholar
     

  • Félix M-A, Ailion M, Hsu J-C, Richaud A, Wang J. Pristionchus nematodes occur frequently in diverse rotting vegetal substrates and are not exclusively necromenic, while Panagrellus redivivoides is found specifically in rotting fruits. PLoS ONE. 2018;13:e0200851.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Carta L, Handoo Z, Lebedeva N, Raina A, Zhuginisov T, Khamraev A. Pelodera termitis sp. n. and two other rhabditid nematode species associated with the Turkestan termite Anacanthotermes turkestanicus from Uzbekistan. Int J Nematol. 2010;20:125–34.


    Google Scholar
     

  • Poinar GO. An association between Pelodera (Coarctadera) acarambates n. sp. (rhabditina: nematoda) and macrochelid mites (mesostigmata: acari). Nematologica. 1964;10:507–11.


    Google Scholar
     

  • Sudhaus W. The guild of saprobiontic nematodes associated with ants (formicoidea). Ecol Montenegrina. 2016;7:600–13.


    Google Scholar
     

  • Okumura E, Tanaka R, Yoshiga T. Species-specific recognition of the carrier insect by dauer larvae of the nematode Caenorhabditis japonica. J Exp Biol. 2013;216:568–72.

    PubMed 

    Google Scholar
     

  • Krishnan A, Muralidharan S, Sharma L, Borges RM. A hitchhiker’s guide to a crowded syconium: how do fig nematodes find the right ride?: Nematode dispersal between fig syconia. Funct Ecol. 2010;24:741–9.


    Google Scholar
     

  • Hong RL, Sommer RJ. Chemoattraction in Pristionchus nematodes and implications for insect recognition. Curr Biol. 2006;16:2359–65.

    CAS 
    PubMed 

    Google Scholar
     

  • Herrmann M, Mayer WE, Hong RL, Kienle S, Minasaki R, Sommer RJ. The nematode Pristionchus pacificus (Nematoda: Diplogastridae) is associated with the oriental beetle Exomala orientalis (Coleoptera: Scarabaeidae) in Japan. Zool Sci. 2007;24:883–9.

    CAS 

    Google Scholar
     

  • Zhao L, Zhang S, Wei W, Hao H, Zhang B, Butcher RA, et al. Chemical signals synchronize the life cycles of a plant-parasitic nematode and its vector beetle. Curr Biol. 2013;23:2038–43.

    CAS 
    PubMed 

    Google Scholar
     

  • Kiontke K. Description of Rhabditis (Caenorhabditis) drosophilae n. sp. and R. (C.) sonorae n. sp. (Nematoda: Rhabditida) from saguaro cactus rot in Arizona. Fundam Appl Nematol. 1997;20:305–15.


    Google Scholar
     

  • Baird SE. Natural and experimental associations of Caenorhabditis remanei with Trachelipus rathkii and other terrestrial isopods. Nematology. 1999;1:471–5.


    Google Scholar
     

  • Wahab A. Untersuchungen über Nematoden in den drüsen des kopfes der Ameisen (Formicidae). Z Morphol Okol Tiere. 1962;52:33–92.


    Google Scholar
     

  • Klimpel S, Förster M, Schmahl G. Parasites of two abundant sympatric rodent species in relation to host phylogeny and ecology. Parasitol Res. 2007;100:867–75.

    PubMed 

    Google Scholar
     

  • Poinar. Life history of Pelodera strongyloides (Schneider) in the orbits of murid rodents in Great Britain. Proc Helminthol Soc Washington. 1965;32:148–51.


    Google Scholar
     

  • Meyer JM, Baskaran P, Quast C, Susoy V, Rödelsperger C, Glöckner FO, et al. Succession and dynamics of Pristionchus nematodes and their microbiome during decomposition of Oryctes borbonicus on La Réunion Island. Environ Microbiol. 2017;19:1476–89.

    CAS 
    PubMed 

    Google Scholar
     

  • Burnell A, Stock SP. Heterorhabditis, Steinernema and their bacterial symbionts — lethal pathogens of insects. Nematology. 2000;2:31–42.


    Google Scholar
     

  • Taylor LS, Phillips G, Bernard EC, DeBruyn JM. Soil nematode functional diversity, successional patterns, and indicator taxa associated with vertebrate decomposition hotspots. PLoS ONE. 2020;15:e0241777.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Forger LV, Woolf MS, Simmons TL, Swall JL, Singh B. A eukaryotic community succession based method for postmortem interval (PMI) estimation of decomposing porcine remains. Forensic Sci Int. 2019;302:109838.

    PubMed 

    Google Scholar
     

  • Carter DO, Metcalf JL, Bibat A, Knight R. Seasonal variation of postmortem microbial communities. Forensic Sci Med Pathol. 2015;11:202–7.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Metcalf JL, Wegener Parfrey L, Gonzalez A, Lauber CL, Knights D, Ackermann G, et al. A microbial clock provides an accurate estimate of the postmortem interval in a mouse model system. Elife. 2013;2:e01104.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Di Bari MA, Di Pirro V, Ciucci P, Fondati A, Riccardi G, Bruno R, et al. Pelodera strongyloides in the critically endangered Apennine brown bear (Ursus arctos marsicanus). Res Vet Sci. 2022;145:50–3.

    PubMed 

    Google Scholar
     

  • Fitzgerald SD, Cooley TM, Cosgrove MK. Sarcoptic mange and Pelodera dermatitis in an American black bear (Ursus americanus). J Zoo Wildl Med. 2008;39:257–9.

    PubMed 

    Google Scholar
     

  • Yeruham I, Perl S. Dermatitis in a dairy herd caused by Pelodera strongyloides (Nematoda: Rhabditidae). J Vet Med B. 2005;52:197–8.

    CAS 

    Google Scholar
     

  • Rashmir-Raven AM, Black SS, Rickard LG, Akin M. Papillomatous pastern dermatitis with spirochetes and Pelodera strongyloides in a Tennessee Walking Horse. J Vet Diagn Invest. 2000;12:287–91.

    CAS 
    PubMed 

    Google Scholar
     

  • Barbosa CC, da Ferreira Filho CES, Oliveira CMC, Ferreira TTA, de Brito MF, de Melo SMP, et al. Parasitic granulomatous dermatitis caused by Pelodera spp. in buffalo on Marajó Island Pará. Animals (Basel). 2024;14(9):1328. https://doi.org/10.3390/ani14091328.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bergeland ME, Todd KSJ, Ohlendorf LF. Dermatitis in sheep caused by Pelodera strongyloides. 1976;43(2):230–231. https://doi.org/10.5555/19760830601

  • Boström S. One new and two known nematode species from the subantarctic Islands South Georgia and East Falkland Island. Fundam Appl Nematol. 1996;19:151–8.


    Google Scholar
     

  • Belogurov OI, Mukhina TE, Churikova NI. Pelodera comandorica n. sp. (Nematoda, Rhabditidae) from the littoral zone of the Komandor Islands. 1977;56(7):996–1003. https://doi.org/10.5555/19770836031

  • McHuron EA, Miller MA, Gardiner CH, Batac FI, Harvey JT. Pelodera strongyloides infection in Pacific harbor seals (Phoca vitulina richardii) from California. J Zoo Wildl Med. 2013;44:799–802.

    PubMed 

    Google Scholar
     

  • Slansky F. Insect/mammal associations: effects of Cuterebrid bot fly parasites on their hosts. Annu Rev Entomol. 2007;52:17–36.

    CAS 
    PubMed 

    Google Scholar
     

  • Veraldi S, Genovese G, Cerino U, Nazzaro G. Follicular larva migrans. Parasitol Int. 2024;100:102872.

    CAS 
    PubMed 

    Google Scholar
     

  • Jones CC, Rosen T, Greenberg C. Cutaneous larva migrans due to Pelodera strongyloides. Cutis. 1991;48:123–6.

    CAS 
    PubMed 

    Google Scholar
     

  • Caumes E, Ly F, Bricaire F. Cutaneous larva migrans with folliculitis: report of seven cases and review of the literature. Br J Dermatol. 2002;146:314–6.

    CAS 
    PubMed 

    Google Scholar
     

  • Ménard A, Dos Santos G, Dekumyoy P, Ranque S, Delmont J, Danis M, et al. Imported cutaneous gnathostomiasis: report of five cases. Trans R Soc Trop Med Hyg. 2003;97:200–2.

    PubMed 

    Google Scholar
     

  • Caumes E. It’s time to distinguish the sign “creeping eruption” from the syndrome “cutaneous larva migrans.” Dermatology. 2006;213:179–81.

    PubMed 

    Google Scholar
     

  • DPOx CDC. Laboratory identification of parasites of public health concern. Atlanta: Center for Disease Control & Prevention, USA; 2006.


    Google Scholar
     

  • Farrar J, Garcia PJ, Hotez PJ, Junghanss T, Kang G, Lalloo D, et al. Manson’s tropical diseases E-book, 24th edn. Farrar J, Hotez PJ, Junghanss T, Kang G, Lalloo D, White NJ, et al., editors. Elsevier health sciences; 2023.

  • Loukas A, Hotez PJ, Diemert D, Yazdanbakhsh M, McCarthy JS, Correa-Oliveira R, et al. Hookworm infection. Nat Rev Dis Primers. 2016;2:16088.

    PubMed 

    Google Scholar
     

  • Pasyk K. Dermatitis rhabditidosa in an 11-year-old girl: a new cutaneous parasitic disease of man. Br J Dermatol. 1978;98:107–12.

    CAS 
    PubMed 

    Google Scholar
     

  • Stevens L, Rooke S, Falzon LC, Machuka EM, Momanyi K, Murungi MK, et al. The genome of Caenorhabditis bovis. Curr Biol. 2020;30:1023-1031.e4.

    CAS 
    PubMed 

    Google Scholar
     

  • Chitwood BG, Chitwood MB. Others. Washington: An introduction to nematology; 1937.


    Google Scholar
     

  • Nigon VM, Félix M-A. History of research on C. elegans and other free-living nematodes as model organisms. WormBook. 2017;2017: 1–84.

  • Bürglin TR, Lobos E, Blaxter ML. Caenorhabditis elegans as a model for parasitic nematodes. Int J Parasitol. 1998;28:395–411.

    PubMed 

    Google Scholar
     

  • Britton C, Murray L. Using Caenorhabditis elegans for functional analysis of genes of parasitic nematodes. Int J Parasitol. 2006;36:651–9.

    CAS 
    PubMed 

    Google Scholar
     

  • Ward JD. Rendering the intractable more tractable: tools from Caenorhabditis elegans ripe for import into parasitic nematodes. Genetics. 2015;201:1279–94.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Roberts LS, Janovy J. Foundations of parasitology. 8th ed. Maidenhead: McGraw Hill Higher Education; 2008.


    Google Scholar
     

  • Chitwood BG, Chitwood MB, et al. An introduction to nematology. Section I. Anatomy. Baltimore: Monumental Printing Company; 1950.


    Google Scholar
     

  • Bird AF, Bird J. The structure of nematodes. San Diego: Academic Press; 2012.


    Google Scholar
     

  • Anderson RC, Chabaud AG, Willmot S. CIH keys to the nematode parasites of vertebrates: archival volume. Commonwealth Agricultural Bureaux; 2009.


    Google Scholar
     

  • Perry RN, Moens M. Plant Nematology, 2nd ednm. Perry RN, Moens M, editors. Wallingford: CABI Publishing; 2013.

  • Britton C, Laing R, McNeilly TN, Perez MG, Otto TD, Hildersley KA, et al. New technologies to study helminth development and host-parasite interactions. Int J Parasitol. 2023;53:393–403.

    CAS 
    PubMed 

    Google Scholar
     

  • Threlfall J, Blaxter M. Launching the tree of life gateway. Wellcome Open Res. 2021;6:125.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang M. Genome sequencing of Pelodera strongyloides reveals adaption to a facultative parasitic lifestyle. University of Macau; 2020.


    Google Scholar
     

  • Hotez PJ. The poverty-related neglected diseases: Why basic research matters. PLoS Biol. 2017;15:e2004186.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cliff GM, Anderson RC. Development of Pelodera strongyloides (Schneider, 1860) Schneider, 1866 (Nematoda: Rhabditidae) in culture. J Helminthol. 1980;54:135–46.

    CAS 
    PubMed 

    Google Scholar
     

  • Yarwood EA, Hansen EL. Axenic culture of Pelodera strongyloides Schneider. J Parasitol. 1968;54:133–6.

    CAS 
    PubMed 

    Google Scholar
     

  • Hong RL, Sommer RJ. Pristionchus pacificus: a well-rounded nematode. BioEssays. 2006;28:651–9.

    CAS 
    PubMed 

    Google Scholar
     

  • Sommer RJ. Pristionchus—Beetle associations: towards a new natural history. J Invertebr Pathol. 2025;209:108243.

    PubMed 

    Google Scholar
     

  • Dulovic A, Renahan T, Röseler W, Rödelsperger C, Rose AM, Streit A. Rhabditophanes diutinus a parthenogenetic clade IV nematode with dauer larvae. PLoS Pathog. 2020;16:e1009113.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • International Helminth Genomes Consortium. Comparative genomics of the major parasitic worms. Nat Genet. 2019;51:163–74.

    CAS 

    Google Scholar
     

  • Smythe AB, Holovachov O, Kocot KM. Improved phylogenomic sampling of free-living nematodes enhances resolution of higher-level nematode phylogeny. BMC Evol Biol. 2019;19:121.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gardner MP, Gems D, Viney ME. Extraordinary plasticity in aging in Strongyloides ratti implies a gene-regulatory mechanism of lifespan evolution. Aging Cell. 2006;5:315–23.

    CAS 
    PubMed 

    Google Scholar
     

  • Hunt VL, Tsai IJ, Coghlan A, Reid AJ, Holroyd N, Foth BJ, et al. The genomic basis of parasitism in the Strongyloides clade of nematodes. Nat Genet. 2016;48:299–307.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hunt VL, Hino A, Yoshida A, Kikuchi T. Comparative transcriptomics gives insights into the evolution of parasitism in Strongyloides nematodes at the genus, subclade and species level. Sci Rep. 2018;8:5192.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Buonfrate D, Hunt VL, Odermatt P, Streit A. Strongyloides: omics to worm-free populations. Philos Trans R Soc Lond B Biol Sci. 2024;379:20220448.

    PubMed 

    Google Scholar
     

  • McCall JW, Malone JB, Hyong-Sun A, Thompson PE. Mongolian jirds (Meriones unguiculatus) infected with Brugia pahangi by the intraperitoneal route: a rich source of developing larvae, adult filariae, and microfilariae. J Parasitol. 1973;59:436.

    CAS 
    PubMed 

    Google Scholar
     

  • Mutafchiev Y, Bain O, Williams Z, McCall JW, Michalski ML. Intraperitoneal development of the filarial nematode Brugia malayi in the Mongolian jird (Meriones unguiculatus). Parasitol Res. 2014;113:1827–35.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dieterich C, Clifton SW, Schuster LN, Chinwalla A, Delehaunty K, Dinkelacker I, et al. The Pristionchus pacificus genome provides a unique perspective on nematode lifestyle and parasitism. Nat Genet. 2008;40:1193–8.

    CAS 
    PubMed 

    Google Scholar
     

  • Danchin EGJ, Rosso M-N, Vieira P, de Almeida-Engler J, Coutinho PM, Henrissat B, et al. Multiple lateral gene transfers and duplications have promoted plant parasitism ability in nematodes. Proc Natl Acad Sci U S A. 2010;107:17651–6.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kikuchi T, Furlanetto C, Jones J. Horizontal gene transfer from bacteria and fungi as a driving force in the evolution of plant parasitism in nematodes. Nematology. 2005;7:641–6.


    Google Scholar
     

  • Bancroft AJ, Grencis RK. Immunoregulatory molecules secreted by Trichuris muris. Parasitology. 1977;56(7):996–1003. https://doi.org/10.1017/S0031182021000846.

    Article 
    PubMed 

    Google Scholar
     

  • Haegeman A, Mantelin S, Jones JT, Gheysen G. Functional roles of effectors of plant-parasitic nematodes. Gene. 2012;492:19–31.

    CAS 
    PubMed 

    Google Scholar
     

  • Hewitson JP, Grainger JR, Maizels RM. Helminth immunoregulation: the role of parasite secreted proteins in modulating host immunity. Mol Biochem Parasitol. 2009;167:1–11.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hewitson JP, Harcus YM, Curwen RS, Dowle AA, Atmadja AK, Ashton PD, et al. The secretome of the filarial parasite, Brugia malayi: proteomic profile of adult excretory-secretory products. Mol Biochem Parasitol. 2008;160:8–21.

    CAS 
    PubMed 

    Google Scholar
     

  • Sundaram MV, Buechner M. The Caenorhabditis elegans excretory system: a model for tubulogenesis, cell fate specification, and plasticity. Genetics. 2016;203:35–63.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nichols RL. The etiology of visceral larva migrans: II. Comparative larval morphology of Ascaris lumbricoides, Necator americanus, Strongyloides stercoralis and Ancylostoma caninum. J Parasitol. 1956;42:363.

    CAS 
    PubMed 

    Google Scholar
     

  • Hahnel SR, Dilks CM, Heisler I, Andersen EC, Kulke D. Caenorhabditis elegans in anthelmintic research – old model, new perspectives. Int J Parasitol Drugs Drug Resist. 2020;14:237–48.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Burns AR, Luciani GM, Musso G, Bagg R, Yeo M, Zhang Y, et al. Caenorhabditis elegans is a useful model for anthelmintic discovery. Nat Commun. 2015;6:7485.

    CAS 
    PubMed 

    Google Scholar
     

  • Gilleard JS. The use of Caenorhabditis elegans in parasitic nematode research. Parasitology. 2004;128:S49-70.

    CAS 
    PubMed 

    Google Scholar
     

  • Brown LA, Jones AK, Buckingham SD, Mee CJ, Sattelle DB. Contributions from Caenorhabditis elegans functional genetics to antiparasitic drug target identification and validation: nicotinic acetylcholine receptors, a case study. Int J Parasitol. 2006;36:617–24.

    CAS 
    PubMed 

    Google Scholar
     

  • Arena JP. Expression of Caenorhabditis elegans mRNA in n Xenopus oocytes: a model system to study the mechanism of action of avermectins. Parasitol Today. 1994;10:35–7.

    CAS 
    PubMed 

    Google Scholar
     

  • Welz C, Krüger N, Schniederjans M, Miltsch SM, Krücken J, Guest M, et al. Slo-1-channels of parasitic nematodes reconstitute locomotor behaviour and emodepside sensitivity in Caenorhabditis elegans slo-1 loss of function mutants. PLoS Pathog. 2011;7:e1001330.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Blanchard A, Guégnard F, Charvet CL, Crisford A, Courtot E, Sauvé C, et al. Deciphering the molecular determinants of cholinergic anthelmintic sensitivity in nematodes: when novel functional validation approaches highlight major differences between the model Caenorhabditis elegans and parasitic species. PLoS Pathog. 2018;14:e1006996.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Berkowitz LA, Knight AL, Caldwell GA, Caldwell KA. Generation of stable transgenic C. elegans using microinjection. J Vis Exp. 2008;15(18):833. https://doi.org/10.3791/833.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shao H, Li X, Lok JB. Heritable genetic transformation of Strongyloides stercoralis by microinjection of plasmid DNA constructs into the male germline. Int J Parasitol. 2017;47:511–5.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Simmer F, Moorman C, van der Linden AM, Kuijk E, van den Berghe PVE, Kamath RS, et al. Genome-wide RNAi of C. elegans using the hypersensitive rrf-3 strain reveals novel gene functions. PLoS Biol. 2003;1:E12.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Timmons L, Court DL, Fire A. Ingestion of bacterially expressed dsRNAs can produce specific and potent genetic interference in Caenorhabditis elegans. Gene. 2001;263:103–12.

    CAS 
    PubMed 

    Google Scholar
     

  • Shannon AJ, Tyson T, Dix I, Boyd J, Burnell AM. Systemic RNAi mediated gene silencing in the anhydrobiotic nematode Panagrolaimus superbus. BMC Mol Biol. 2008;9:58.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Geldhof P, Visser A, Clark D, Saunders G, Britton C, Gilleard J, et al. RNA interference in parasitic helminths: current situation, potential pitfalls and future prospects. Parasitology. 2007;134:609–19.

    CAS 
    PubMed 

    Google Scholar
     

  • Gerhard AP, Krücken J, Neveu C, Charvet CL, Harmache A, von Samson-Himmelstjerna G. Pharyngeal pumping and tissue-specific transgenic P-glycoprotein expression influence macrocyclic lactone susceptibility in Caenorhabditis elegans. Pharmaceuticals (Basel). 2021;14:153.

    CAS 
    PubMed 

    Google Scholar
     

  • Raizen D, Song B-M, Trojanowski N, You Y-J. Methods for measuring pharyngeal behaviors. WormBook: the online review of C. elegans biology;. 2018. https://www.ncbi.nlm.nih.gov/books/NBK126648/. Accessed 28 Oct 2025.

  • Zamanian M, Chan JD. High-content approaches to anthelmintic drug screening. Trends Parasitol. 2021;37:780–9.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nunn LR, Juang TD, Beebe DJ, Wheeler NJ, Zamanian M. A high-throughput sensory assay for parasitic and free-living nematodes. Integr Biol (Camb). 2023;15:zyad010. https://doi.org/10.1093/intbio/zyad010.

    Article 
    PubMed 

    Google Scholar
     

  • Simmer F, Tijsterman M, Parrish S, Koushika SP, Nonet ML, Fire A, et al. Loss of the putative RNA-directed RNA polymerase RRF-3 makes C. elegans hypersensitive to RNAi. Curr Biol. 2002;12:1317–9.

    CAS 
    PubMed 

    Google Scholar
     

  • Lee Y-C, Ke H-M, Liu Y-C, Lee H-H, Wang M-C, Tseng Y-C, et al. Single-worm long-read sequencing reveals genome diversity in free-living nematodes. Nucleic Acids Res. 2023;51:8035–47.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wall R, Strong L. Environmental consequences of treating cattle with the antiparasitic drug ivermectin. Nature. 1987;327:418–21. https://doi.org/10.1038/327418a0.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lumaret JP, Galante E, Lumbreras C, Mena J, Bertrand M, Bernal JL, Cooper JF, Kadiri N, Crowe D. Field effects of ivermectin residues on dung beetles. J Appl Ecol. 1993;30:428–36. https://doi.org/10.2307/2404183.

    Article 
    CAS 

    Google Scholar
     

  • Kaplan RM. Biology, epidemiology, diagnosis, and management of anthelmintic resistance in gastrointestinal nematodes of livestock. Vet Clin North Am Food Anim Pract. 2020;36:17–30.

    CAS 
    PubMed 

    Google Scholar
     

  • Charlier J, Bartley DJ, Sotiraki S, Martinez-Valladares M, Claerebout E, von Samson-Himmelstjerna G, et al. Anthelmintic resistance in ruminants: challenges and solutions. Adv Parasitol. 2022;115:171–227.

    CAS 
    PubMed 

    Google Scholar
     

  • Ljungholm M, Nilsson D-E. Modelling the visual world of a velvet worm. PLoS Comput Biol. 2021;17:e1008808.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Blaxter M. Nematodes: the worm and its relatives. PLoS Biol. 2011;9:e1001050.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Talbot SB, Yamaguti S. Nematode parasites of oceanica XVIII Caenorhabditis avicola sp. n. (Rhabditidae) found in a bird from Taiwan1. Trans Am Microscop Soc. 2011;53:40–56.


    Google Scholar
     

  • Blaxter M, Koutsovoulos G. The evolution of parasitism in Nematoda. Parasitology. 2015;142:S26-39.

    PubMed 

    Google Scholar
     

  • Clark WC. Origins of the parasitic habit in the nematoda. Int J Parasitol. 1994;24:1117–29.

    CAS 
    PubMed 

    Google Scholar
     

  • Nadler SA, Carreno RA, Mejía-Madrid H, Ullberg J, Pagan C, Houston R, et al. Molecular phylogeny of clade III nematodes reveals multiple origins of tissue parasitism. Parasitology. 2007;134:1421–42.

    CAS 
    PubMed 

    Google Scholar
     

  • Sudhaus W. Evolution of insect parasitism in rhabditid and diplogastrid nematodes. Adv Arachnol Dev Biol. 2008;12:143–61.


    Google Scholar
     

  • McCOY OR. The suitability of various bacteria as food for hookworm larvae. Am J Epidemiol. 1929;10:140–56.


    Google Scholar
     

  • Croll NA. Feeding and lipid synthesis of Ancylostoma tubaeforme preinfective larvae. Parasitology. 1972;64:369–78.

    CAS 
    PubMed 

    Google Scholar
     

  • Lapage G. The behaviour of sterilised exsheathed infective Trichostrongylid larvae in sterile media resembling their environment in ovine hosts. J Helminthol. 1935;13:115–28.

    CAS 

    Google Scholar
     

  • Wang G-T. Suitability of various species of microorganisms as food for the free-living stages of Trichostrongylus colubriformis. J Parasitol. 1970;56:753.


    Google Scholar
     

  • Croll NA. Feeding shown to be unnecessary in preinfective larvae of Dictyocaulus viviparus. Int J Parasitol. 1973;3:571–2.

    CAS 
    PubMed 

    Google Scholar
     

  • Tanaka A, Kinoshita M, Tanaka T, Iwanaga Y, Kagei N, Hide M. Pelodera strongyloides infestation presenting as pruritic dermatitis. J Am Acad Dermatol. 2004;51:S181–4.

    PubMed 

    Google Scholar
     

  • Viney ME, Lok JB. The biology of Strongyloides spp. WormBook. 2015; p. 1–17.

  • Wheeler NJ, Heimark ZW, Airs PM, Mann A, Bartholomay LC, Zamanian M. Genetic and functional diversification of chemosensory pathway receptors in mosquito-borne filarial nematodes. PLoS Biol. 2020;18:e3000723.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hugot J-P, Gardner SL, Borba V, Araujo P, Leles D, Stock Da-Rosa ÁA, et al. Discovery of a 240 million year old nematode parasite egg in a cynodont coprolite sheds light on the early origin of pinworms in vertebrates. Parasit Vectors. 2014;7:486.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Poinar GO Jr. The geological record of parasitic nematode evolution. Adv Parasitol. 2015;90:53–92.

    PubMed 

    Google Scholar
     

  • Lažetić V, Troemel ER. Conservation lost: host-pathogen battles drive diversification and expansion of gene families. FEBS J. 2021;288:5289–99.

    PubMed 

    Google Scholar
     

  • Haas BJ, Kamoun S, Zody MC, Jiang RHY, Handsaker RE, Cano LM, et al. Genome sequence and analysis of the Irish potato famine pathogen Phytophthora infestans. Nature. 2009;461:393–8.

    CAS 
    PubMed 

    Google Scholar
     

  • Paganini J, Campan-Fournier A, Da Rocha M, Gouret P, Pontarotti P, Wajnberg E, et al. Contribution of lateral gene transfers to the genome composition and parasitic ability of root-knot nematodes. PLoS ONE. 2012;7:e50875.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pandey T, Kalluraya CA, Wang B, Xu T, Huang X, Guang S, et al. Acquired stress resilience through bacteria-to-nematode interdomain horizontal gene transfer. EMBO J. 2023;42:e114835.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vieira P, Gleason C. Plant-parasitic nematode effectors – insights into their diversity and new tools for their identification. Curr Opin Plant Biol. 2019;50:37–43.

    CAS 
    PubMed 

    Google Scholar
     

  • Dorris M, De Ley P, Blaxter ML. Molecular analysis of nematode diversity and the evolution of parasitism. Parasitol Today. 1999;15:188–93.

    CAS 
    PubMed 

    Google Scholar
     

  • Holterman M, Karegar A, Mooijman P, van Megen H, van den Elsen S, Vervoort MTW, et al. Disparate gain and loss of parasitic abilities among nematode lineages. PLoS ONE. 2017;12:e0185445.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bert W, Messiaen M, Manhout J, Houthoofd W, Borgonie G. Evolutionary loss of parasitism by nematodes? Discovery of a free-living filaroid nematode. J Parasitol. 2006;92:645–7.

    PubMed 

    Google Scholar
     

  • Bekelaar K, Carvalho L, Waghorn T, Green P, Bouchet C, Leathwick D. Inconsistency of in vitro exsheathment triggers for gastrointestinal nematode parasites of sheep, cattle and deer. Parasitol Res. 2024;123:267.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rose JH. The development in vitro of some gastro-intestinal nematodes of sheep, cattle and pigs. Res Vet Sci. 1973;14:326–33.

    CAS 
    PubMed 

    Google Scholar