• Jarrett WFH, Crawford EM, Martin WB, Davie F. A virus-like particle associated with leukemia (lymphosarcoma). Nature. 1964;202(4932):567–8. https://doi.org/10.1038/202567A0.


    Google Scholar
     

  • Willett BJ, Hosie MJ. Feline leukaemia virus: half a century since its discovery. Vet J. 2013;195(1):16–23. https://doi.org/10.1016/J.TVJL.2012.07.004.


    Google Scholar
     

  • Powers JA et al. Sep., Feline Leukemia Virus (FeLV) Disease Outcomes in a Domestic Cat Breeding Colony: Relationship to Endogenous FeLV and Other Chronic Viral Infections, J Virol, vol. 92, no. 18, pp. e00649-18, 2018, https://doi.org/10.1128/JVI.00649-18

  • Hofmann-Lehmann R, Hartmann K. Feline leukaemia virus infection: a practical approach to diagnosis. J Feline Med Surg. 2020;22(9):831–46. https://doi.org/10.1177/1098612X20941785.


    Google Scholar
     

  • Hartmann K, Hofmann-Lehmann R. What’s New in Feline Leukemia Virus Infection, Veterinary Clinics of North America: Small Animal Practice, vol. 50, no. 5, pp. 1013–1036, Sep. 2020, https://doi.org/10.1016/J.CVSM.2020.05.006

  • Hofmann-Lehmann R, et al. How molecular methods change our views of FeLV infection and vaccination. Vet Immunol Immunopathol. May 2008;123:1–2. https://doi.org/10.1016/j.vetimm.2008.01.017.

  • Helfer-Hungerbuehler AK, et al. Long-term follow up of feline leukemia virus infection and characterization of viral RNA loads using molecular methods in tissues of cats with different infection outcomes. Virus Res. 2015;197:137–50. https://doi.org/10.1016/j.virusres.2014.12.025.


    Google Scholar
     

  • Castillo-Aliaga C, Castro-Seriche S, Jerez-Morales A, Tarlinton R. High prevalence and risk factors of feline leukemia virus infection in Chilean urban cats (Felis catus). Res Vet Sci. 2024;180:105403. https://doi.org/10.1016/J.RVSC.2024.105403.


    Google Scholar
     

  • Lutz H, Pedersen NC, Theilen GH. Course of feline leukemia virus infection and its detection by enzyme-linked immunosorbent assay and monoclonal antibodies, Am J Vet Res., vol. 11, no. 44, pp. 2054–2059, Nov. 1983, Accessed: Jan. 15, 2025. [Online]. Available: https://pubmed.ncbi.nlm.nih.gov/6316819/

  • Lopez NA, Jacobson RH, Scarlett JM, Center SA, Randolph JF, Scott FW. Sensitivity and specificity of blood test kits for feline leukemia virus antigen. J Am Vet Med Assoc. 1989;195:747–51.


    Google Scholar
     

  • Hofmann-Lehmann R, Huder JB, Gruber S, Boretti F, Sigrist B, Lutz H. Feline leukaemia provirus load during the course of experimental infection and in naturally infected cats. J Gen Virol. 2001;82(7):1589–96. https://doi.org/10.1099/0022-1317-82-7-1589.


    Google Scholar
     

  • Torres AN, Mathiason CK, Hoover EA. Re-examination of feline leukemia virus: host relationships using real-time PCR. Virology. 2005;332(1):272–83. https://doi.org/10.1016/J.VIROL.2004.10.050.


    Google Scholar
     

  • Lutz H, et al. Feline leukaemia. ABCD guidelines on prevention and management. J Feline Med Surg. 2009;11(7):565–74. https://doi.org/10.1016/J.JFMS.2009.05.005.


    Google Scholar
     

  • Vealan K, Joseph N, Alimat S, Karumbati AS, Thilakavathy K. Lateral flow assay: a promising rapid point-of-care testing tool for infections and non-communicable diseases. Asian Biomed (Res Rev News). 2023;17(6):250–66. https://doi.org/10.2478/ABM-2023-0068.


    Google Scholar
     

  • Westman ME, Malik R, Hall E, Sheehy PA, Norris JM. Comparison of three feline leukaemia virus (FeLV) point-of-care antigen test kits using blood and saliva. Comp Immunol Microbiol Infect Dis. Feb. 2017;50:88–96. https://doi.org/10.1016/J.CIMID.2016.11.014.

  • Kakkar S, et al. Lateral flow assays: progress and evolution of recent trends in point-of-care applications. Mater Today Bio. 2024;28:101188. https://doi.org/10.1016/J.MTBIO.2024.101188.


    Google Scholar
     

  • Velayudhan BT, Naikare HK. Point-of-care testing in companion and food animal disease diagnostics. Front Vet Sci. 2022;9:1056440. https://doi.org/10.3389/FVETS.2022.1056440.


    Google Scholar
     

  • Levy JK, Crawford PC, Tucker SJ. Performance of 4 point-of-care screening tests for feline leukemia virus and feline immunodeficiency virus. J Vet Intern Med. 2017;31(2):521–6. https://doi.org/10.1111/JVIM.14648.


    Google Scholar
     

  • Krecic MR, Velineni S, Meeus P, Fan H, Loenser M. Diagnostic performances of two rapid tests for detection of feline leukemia virus antigen in sera of experimentally feline leukemia virus-infected cats. J Feline Med Surg Open Rep. 2018. https://doi.org/10.1177/2055116917748117.


    Google Scholar
     

  • Singh S, et al. Diagnostic accuracy of a point-of-care immunoassay for feline immunodeficiency virus antibodies, feline leukemia virus antigen, and dirofilaria immitis antigen. Viruses. 2023;15(10):2117. https://doi.org/10.3390/V15102117.


    Google Scholar
     

  • Liu J, O’connor T, Beall M, Chandrashekar R, Lappin M. Evaluation of rapid diagnostic test kits for feline leukemia virus infection using samples from naturally infected cats. J Feline Med Surg Open Rep. 2016. https://doi.org/10.1177/2055116916667757.


    Google Scholar
     

  • Hartmann K, et al. Quality of different in-clinic test systems for feline immunodeficiency virus and feline leukaemia virus infection. J Feline Med Surg. 2007;9(6):439–45. https://doi.org/10.1016/J.JFMS.2007.04.003.


    Google Scholar
     

  • Martins NdosS, et al. Molecular characterization of Brazilian FeLV strains in São Luis, Maranhão Brazil. Virus Genes. Aug. 2023;59(4):562–71. https://doi.org/10.1007/S11262-023-01997-X.

  • Pinches MDG, Helps CR, Gruffydd-Jones TJ, Egan K, Jarrett O, Tasker S. Diagnosis of feline leukaemia virus infection by semi-quantitative real-time polymerase chain reaction. J Feline Med Surg. 2007;9(1):8–13. https://doi.org/10.1016/j.jfms.2006.05.008.


    Google Scholar
     

  • Helps CR, et al. Factors associated with upper respiratory tract disease caused by feline herpesvirus, feline calicivirus, Chlamydophila felis and Bordetella bronchiseptica in cats: experience from 218 European catteries. Vet Rec. 2005;156(21):669–73. https://doi.org/10.1136/VR.156.21.669.


    Google Scholar
     

  • Trevethan R. Sensitivity, Specificity, and predictive values: Foundations, Pliabilities, and pitfalls in research and practice. Front Public Health. Nov. 2017;5:308890. https://doi.org/10.3389/FPUBH.2017.00307.

  • Giselbrecht J. Evaluation of a revised point-of-care test for the detection of feline leukaemia p27 antigen and anti-p15E antibodies in cats. Viruses. 2024. https://doi.org/10.3390/V16040614.


    Google Scholar
     

  • Little S, et al. 2020 AAFP feline retrovirus testing and management guidelines. J Feline Med Surg. 2020;22(1):5–30. https://doi.org/10.1177/1098612X19895940.


    Google Scholar
     

  • Biswas P, et al. All-serotype dengue virus detection through multilayered origami-based paper/polymer microfluidics. ACS Sens. 2022;7:3720–9. https://doi.org/10.1021/acssensors.2c01525.


    Google Scholar
     

  • Biswas P, et al. A rapid diagnostic technology for isolating rare blood group patients under medical emergency using a three-fold paper-polymer microfluidic kit. Sens Actuators B Chem. 2024;409:135650. https://doi.org/10.1016/J.SNB.2024.135650.


    Google Scholar
     

  • Hartmann K. Clinical aspects of feline retroviruses: a review. Viruses. 2012;4(11):2684. https://doi.org/10.3390/V4112684.


    Google Scholar