• Erickson G, Dobson NR, Hunt CE. Immature control of breathing and apnea of prematurity: the known and unknown. J Perinatol. 2021;41(9):2111–23. https://doi.org/10.1038/s41372-021-01010-z.


    Google Scholar
     

  • Dai HR, Guo HL, Hu YH, et al. Precision caffeine therapy for apnea of prematurity and circadian rhythms: new possibilities open up. Front Pharmacol. 2022;13:1053210. https://doi.org/10.3389/fphar.2022.1053210.


    Google Scholar
     

  • Schmidt B, Roberts RS, Davis P, et al. Caffeine therapy for apnea of prematurity. N Engl J Med. 2006;354(20):2112–21. https://doi.org/10.1056/NEJMoa054065.


    Google Scholar
     

  • Taha D, Kirkby S, Nawab U, et al. Early caffeine therapy for prevention of bronchopulmonary dysplasia in preterm infants. J Matern Fetal Neonatal Med. 2014;27(16):1698–702. https://doi.org/10.3109/14767058.2014.885941.


    Google Scholar
     

  • Yun WZ, Kassab YW, Yao LM, Khairuddin N, Ming LC, Hadi MA. Effectiveness and safety of early versus late caffeine therapy in managing apnoea of prematurity among preterm infants: a retrospective cohort study. Int J Clin Pharm. 2022;44(5):1140–8. https://doi.org/10.1007/s11096-022-01437-0.


    Google Scholar
     

  • Kua KP, Lee SW. Systematic review and meta-analysis of clinical outcomes of early caffeine therapy in preterm neonates. Br J Clin Pharmacol. 2017;83(1):180–91. https://doi.org/10.1111/bcp.13089.


    Google Scholar
     

  • Sanchez-Solis M, Garcia-Marcos PW, Aguera-Arenas J, Mondejar-Lopez P, Garcia-Marcos L. Impact of early caffeine therapy in preterm newborns on infant lung function. Pediatr Pulmonol. 2020;55(1):102–7. https://doi.org/10.1002/ppul.24540.


    Google Scholar
     

  • Lu Q, Li ZP, Liu EM, et al. Expert consensus on the safe and rational use of aminophylline in children. Chin J Practical Pediatr. 2019;34(04):249–55. https://doi.org/10.19538/j.ek2019040601.


    Google Scholar
     

  • Schoen K, Yu T, Stockmann C, et al. Use of methylxanthine therapies for the treatment and prevention of apnea of prematurity. Paediatr Drugs. 2014;16:169e77. https://doi.org/10.1007/s40272-013-0063-z.


    Google Scholar
     

  • Moresco L, Sjögren A, Marques KA. Caffeine versus other methylxanthines for the prevention and treatment of apnea in preterm infants. Cochrane Database Syst Rev. 2023;10(10):CD015462. https://doi.org/10.1002/14651858.CD015462.pub2.


    Google Scholar
     

  • Armanian AM, Badiee Z, Afghari R, et al. Reducing the incidence of chronic lung disease in very premature infants with aminophylline. Int J Prev Med. 2014;5(5):569–76.


    Google Scholar
     

  • Yang L, Yu X, Zhang Y, Liu N, Xue X, Fu J. Encephalopathy in preterm infants: advances in neuroprotection with caffeine. Front Pediatr. 2021;9:724161. https://doi.org/10.3389/fped.2021.724161.


    Google Scholar
     

  • Nylander Vujovic S, Nava C, Johansson M, Bruschettini M. Confounding biases in studies on early- versus late-caffeine in preterm infants: a systematic review. Pediatr Res. 2020;88(3):357–64. https://doi.org/10.1038/s41390-020-0757-1.


    Google Scholar
     

  • Higgins RD, Jobe AH, Koso-Thomas M, et al. Bronchopulmonary dysplasia: executive summary of a workshop. J Pediatr. 2018;197:300–8. https://doi.org/10.1016/j.jpeds.2018.01.043.


    Google Scholar
     

  • Patz A. An international classification of retinopathy of prematurity. II. The classification of retinaldetachment. Arch Ophthalmo. 1987;105(7):905. https://doi.org/10.1001/archopht.1987.


    Google Scholar
     

  • Kliegman RM, Walsh MC. Neonatal necrotizing enterocolitis:pathogenesis, classification, and spectrum of illness. Curr Probl Pediatr. 1987;17:213e88. https://doi.org/10.1016/0045-9380(87)90031-4.


    Google Scholar
     

  • Group E-BM, Society N, Chinese Medical Doctor Association. Clinical guidelines for the diagnosis and treatment of feeding intolerance in preterm infants. Zhongguo Dang Dai Er Ke Za Zhi. 2020;22:1047–55.


    Google Scholar
     

  • Gilfillan M, Bhandari A, Bhandari V. Diagnosis and management of bronchopulmonary dysplasia. BMJ. 2021;375:n1974. https://doi.org/10.1136/bmj.n1974.

  • Thebaud B, Goss KN, Laughon M, et al. Bronchopulmonary dysplasia. Nat Rev Dis Primers. 2019;5(1):78. https://doi.org/10.1038/s41572-019-0127-7.


    Google Scholar
     

  • Endesfelder S, Strauss E, Bendix I, Schmitz T, Buhrer C. Prevention of Oxygen-Induced inflammatory lung injury by caffeine in neonatal rats. Oxid Med Cell Longev. 2020;2020:3840124. https://doi.org/10.1155/2020/3840124.


    Google Scholar
     

  • Endesfelder S, Strauss E, Scheuer T, Schmitz T, Buhrer C. Antioxidative effects of caffeine in a hyperoxia-based rat model of bronchopulmonary dysplasia. Respir Res. 2019;20(1):88. https://doi.org/10.1186/s12931-019-1063-5.


    Google Scholar
     

  • Elmowafi M, Mohsen N, Nour I, Nasef N. Prophylactic versus therapeutic caffeine for apnea of prematurity: a randomized controlled trial. J Matern Fetal Neonatal Med. 2022;35(25):6053–61. https://doi.org/10.1080/14767058.2021.1904873.


    Google Scholar
     

  • Lamba V, Winners O, Fort P. Early high-dose caffeine improves respiratory outcomes in preterm infants. Children. 2021. https://doi.org/10.3390/children8060501.


    Google Scholar
     

  • Balashova L, Bykovskaya S, Korobova L, et al. Immunological outcomes in infants with ROP after dexamethasone and aminophylline. Clin Exp Pharmacol Physiol. 2020;47(8):1368–73. https://doi.org/10.1111/1440-1681.13308.


    Google Scholar
     

  • He H, Chen F, Ni W, Li J, Zhang Y. Theophylline improves lipopolysaccharide-induced alveolarization arrest through inflammatory regulation. Mol Med Rep. 2014;10(1):269–75. https://doi.org/10.3892/mmr.2014.2188.


    Google Scholar
     

  • Miao Y, Zhou Y, Zhao S, et al. Comparative efficacy and safety of caffeine citrate and aminophylline in treating apnea of prematurity: A systematic review and meta-analysis. PLoS ONE. 2022;17(9):e0274882. https://doi.org/10.1371/journal.pone.0274882.


    Google Scholar
     

  • Chu YT, Chen JS, Chen YS, et al. Effects of early aminophylline therapy on clinical outcomes in premature infants. Pediatr Neonatol. 2022. https://doi.org/10.1016/j.pedneo.2022.10.004.


    Google Scholar
     

  • Tey SL, Lee WT, Lee PL, Lu CC, Chen HL. Neurodevelopmental outcomes in very low birth weight infants using aminophylline for the treatment of apnea. Pediatr Neonatol. 2016;57(1):41–6. https://doi.org/10.1016/j.pedneo.2015.03.013.


    Google Scholar
     

  • Maeda T, Sekiguchi K, Wasada R, Ihara K. Caffeine not associated with irritable behaviour in very low-birth-weight infants. Early Hum Dev. 2019;137:104835. https://doi.org/10.1016/j.earlhumdev.2019.104835.


    Google Scholar
     

  • Shen W, Qiu W, Lin Q, et al. The gut microbiome of preterm infants treated with aminophylline is closely related to the occurrence of feeding intolerance and the weight gain. Front Nutr. 2022;9:905839. https://doi.org/10.3389/fnut.2022.905839.


    Google Scholar
     

  • Synnes A, Grunau RE. Neurodevelopmental outcomes after neonatal caffeine therapy. Semin Fetal Neonatal Med. 2020;25(6):101160. https://doi.org/10.1016/j.siny.2020.101160.


    Google Scholar