• Kidane B, Urugo MM, Hirpha HH, Paulos T, Hundea W, Tessema F. Nutritional challenges of staple crops due to increasing atmospheric carbon dioxide levels: case of Sub-Saharan Africa. J Agric Food Res. 2025;19:101592. https://doi.org/10.1016/j.jafr.2024.101592.


    Google Scholar
     

  • Drigo B, Nielsen UN, Jeffries TC, Curlevski NJA, Singh BK, Duursma RA, et al. Interactive effects of seasonal drought and elevated atmospheric carbon dioxide concentration on prokaryotic rhizosphere communities. Environ Microbiol. 2017;19(8):3175–85. https://doi.org/10.1111/1462-2920.13802.


    Google Scholar
     

  • Boretti A, Florentine S. Atmospheric CO2 concentration and other limiting factors in the growth of C3 and C4 plants. Plants. 2019;8(4):92. https://doi.org/10.3390/plants8040092.


    Google Scholar
     

  • Lv DN, Xing QJ, Wang TL, Song JC, Duan RN, Hao XY, et al. Elevated CO2 concentration enhances plant growth, photosynthesis, and ion homeostasis of soybean under salt-alkaline stress. Environ Exp Bot. 2024;228(PA):106000. https://doi.org/10.1016/j.envexpbot.2024.106000.


    Google Scholar
     

  • Wei ZH, Anwar ALO, Fang L, Peng XY, Liu J, Liu FL. Elevated CO2 effect on the response of stomatal control and water use efficiency in amaranth and maize plants to progressive drought stress. Agric Water Manag. 2022;266:107609. https://doi.org/10.1016/j.agwat.2022.107609.


    Google Scholar
     

  • Wang XX, Cai C, Song L, Zhou W, Yang X, Gu XY, et al. Responses of rice grain yield and quality to factorial combinations of ambient and elevated CO2 and temperature in T-FACE environments. Field Crops Res. 2024;309:109328. https://doi.org/10.1016/j.fcr.2024.109328.


    Google Scholar
     

  • Cao QJ, Li G, Liu FL. Elevated CO2 enhanced water use efficiency of wheat to progressive drought stress but not on maize. Front Plant Sci. 2022;13:953712. https://doi.org/10.3389/fpls.2022.953712.


    Google Scholar
     

  • Wang L, Wang S, Su HF, Cai HG, Song YK, Gong X, et al. Multi-omics profiling reveals elevated CO2-enhanced tolerance of Trifolium repens L. to lead stress through environment-plant-microbiome interactions. Environ Int. 2024;19:109150. https://doi.org/10.1016/j.envint.2024.109150.


    Google Scholar
     

  • Muhammad A, Kong XJ, Zheng SC, Bai N, Li LJ, Khan MHU, et al. Exploring plant-microbe interactions in adapting to abiotic stress under climate change: a review. Front Plant Sci. 2024;15:1482739. https://doi.org/10.3389/fpls.2024.1482739.


    Google Scholar
     

  • Compant S, Heijden MGAvd, Sessitsch A. Climate change effects on beneficial plant-microorganism interactions. FEMS Microbiol Ecol. 2010;73(2):197–214. https://doi.org/10.1111/j.1574-6941.2010.00900.x.


    Google Scholar
     

  • Qian SB, Zhang Q, Li S, Shi R, He XH, Zishu H, et al. Arbuscular mycorrhiza and plant growth promoting endophytes facilitates accumulation of saponin under moderate drought stress. Chin Herb Med. 2024;16(2):214–26. https://doi.org/10.1016/j.chmed.2022.11.004.


    Google Scholar
     

  • AbdElgawad H, El-Sawah AM, Mohammed AE, Alotaibi MO, Yehia RS, Selim S, et al. Increasing atmospheric CO2 differentially supports arsenite stress mitigating impact of arbuscular mycorrhizal fungi in wheat and soybean plants. Chemosphere. 2022;296:134044. https://doi.org/10.1016/j.chemosphere.2022.134044.


    Google Scholar
     

  • Olsrud M, Carlsson BA, Svensson BM, Michelsen A, Melillo JM. Responses of fungal root colonization, plant cover and leaf nutrients to long-term exposure to elevated atmospheric CO2 and warming in a subarctic birch forest understory. Glob Chang Biol. 2010;16(6):1820–9. https://doi.org/10.1111/j.1365-2486.2009.02079.x.


    Google Scholar
     

  • Brosi GB, McCulley RL, Bush LP, Nelson JA, Classen AT, Norby RJ. Effects of multiple climate change factors on the tall fescue-fungal endophyte symbiosis: infection frequency and tissue chemistry. New Phytol. 2011;189(3):797–805. https://doi.org/10.1111/j.1469-8137.2010.03532.x.


    Google Scholar
     

  • Sui L, Zhu H, Wang DL, Zhang ZK, Bidochka MJ, Barelli L, et al. Tripartite interactions of an endophytic entomopathogenic fungus, Asian corn borer, and host maize under elevated carbon dioxide. Pest Manag Sci. 2024;80(9):4575–84. https://doi.org/10.1002/ps.8163.


    Google Scholar
     

  • Sui L, Lu Y, Zhou LY, Li NN, Li QY, Zhang ZK. Endophytic Beauveria Bassiana promotes plant biomass growth and suppresses pathogen damage by directional recruitment. Front Microbiol. 2023;14:1227269. https://doi.org/10.3389/FMICB.2023.1227269.


    Google Scholar
     

  • Mantzoukas S, Lagogiannis I, Mpousia D, Ntoukas A, Karmakolia K, Eliopoulos PA, et al. Beauveria bassiana endophytic strain as plant growth promoter: the case of the grape vine Vitis vinifera. J Fungi. 2021;7(2):142. https://doi.org/10.3390/JOF7020142.


    Google Scholar
     

  • Rivas-Franco F, Hampton JG, Narciso J, Rostás M, Wessman P, Saville DJ, et al. Effects of a maize root pest and fungal pathogen on entomopathogenic fungal rhizosphere colonization, endophytism and induction of plant hormones. Biol Control. 2020. https://doi.org/10.1016/j.biocontrol.2020.104347.


    Google Scholar
     

  • Rafiqul IM, Umakanta S, Golam AM, Jamil H, Ashraful AM, Riaz U, et al. Potassium augments growth, yield, nutrient content, and drought tolerance in mung bean (Vigna radiata L. Wilczek). Sci Rep. 2024;14(1):9378. https://doi.org/10.1038/s41598-024-60129-z.


    Google Scholar
     

  • Jaber LR, Salem NM. Endophytic colonisation of squash by the fungal entomopathogen Beauveria bassiana (Ascomycota: Hypocreales) for managing Zucchini yellow mosaic virus in cucurbits. Biocontrol Sci Technol. 2014;24(10):1096–109. https://doi.org/10.1080/09583157.2014.923379.


    Google Scholar
     

  • Yasuyuki K, Takayuki S, Takaho O, Shogo K, Satoshi Y. Simultaneous use of Beauveria Bassiana and Bacillus subtilis-based biopesticides contributed to dual control of Trialeurodes vaporariorum (Hemiptera: Aleyrodidae) and tomato powdery mildew without antagonistic interactions. Egypt J Biol Pest Control. 2024;34(Published). https://doi.org/10.1186/S41938-024-00782-8.

  • Behie SW, Bidochka MJ. Ubiquity of insect-derived nitrogen transfer to plants by endophytic insect-pathogenic fungi: an additional branch of the soil nitrogen cycle. Appl Environ Microbiol. 2014;80(5):1553–60. https://doi.org/10.1128/AEM.03338-13.


    Google Scholar
     

  • Wang Q, Zhang XY, Xie QQ, Tao JW, Jia YJ, Xiao YR, et al. Exploring plant growth-promoting traits of endophytic fungi isolated from Ligusticum chuanxiong hort and their interaction in plant growth and development. J Fungi. 2024;10(10):713. https://doi.org/10.3390/jof10100713.


    Google Scholar
     

  • Arunachalam T, Gade K, Mahadule PA, Soumia PS, Govindasamy V, Gawande SJ, et al. Optimizing plant growth, nutrient uptake, and yield of onion through the application of phosphorus solubilizing bacteria and endophytic fungi. Front Microbiol. 2024;15(2024):1442912. https://doi.org/10.3389/fmicb.2024.1442912.


    Google Scholar
     

  • Tall S, Meyling NV. Probiotics for plants? Growth promotion by the entomopathogenic fungus Beauveria Bassiana depends on nutrient availability. Microb Ecol. 2018;76(4):1002–8. https://doi.org/10.1007/s00248-018-1180-6.


    Google Scholar
     

  • Samanta S, Roychoudhury A. Molecular crosstalk of jasmonate with major phytohormones and plant growth regulators during diverse stress responses. J Plant Growth Regul. 2024;44(1):1–27. https://doi.org/10.1007/s00344-024-11412-w.


    Google Scholar
     

  • Cui W, Song Q, Zuo B, Han QF, Jia ZK. Effects of gibberellin (GA4 + 7) in grain filling, hormonal behavior, and antioxidants in high-density maize (Zea mays L.). Plants. 2020;9(8):978. https://doi.org/10.3390/plants9080978.


    Google Scholar
     

  • Batool R, Umer MJ, Shabbir MZ, Wang Y, Ahmed MA, Guo J, et al. Seed myco-priming improves crop yield and herbivory induced defenses in maize by coordinating antioxidants and jasmonic acid pathway. BMC Plant Biol. 2022;22:554. https://doi.org/10.1186/s12870-022-03949-3.


    Google Scholar
     

  • Xu H, Xie H, Wu S, Wang SY, He KL. Effects of elevated CO2 and increased N fertilisation on plant secondary metabolites and chewing insect fitness. Front Plant Sci. 2019;10:739. https://doi.org/10.3389/fpls.2019.00739.


    Google Scholar
     

  • Momo J, Islam K, Biswas S, Rawoof A, Ahmad I, Vishesh, et al. Multi-omics analysis of non-pungent (Capsicum annuum) and fiery hot ghost Chili (C. chinense) provides insights into proteins involved in fruit development and metabolites biosynthesis. Physiol Mol Biol Plants. 2025;31(3):1–23. https://doi.org/10.1007/S12298-025-01581-7.


    Google Scholar
     

  • Sun S, Zhou Y, Chen J, Shi JP, Zhao HM, Zhao HN, et al. Extensive intraspecific gene order and gene structural variations between Mo17 and other maize genomes. Nat Genet. 2018;50(9):1289–95. https://doi.org/10.1038/s41588-018-0182-0.


    Google Scholar
     

  • Sui L, Zhu H, Xu WJ, Guo QF, Wang L, Zhang ZK, et al. Elevated air temperature shifts the interactions between plants and endophytic fungal entomopathogens in an agroecosystem. Fungal Ecol. 2020;47:100940. https://doi.org/10.1016/j.funeco.2020.100940.


    Google Scholar
     

  • Javed SA, Jaffar MT, Shahzad SM, Ashraf M, Piracha MA, Mukhtar A, et al. Optimization of nitrogen regulates the ionic homeostasis, potassium efficiency, and proline content to improve the growth, yield, and quality of maize under salinity stress. Environ Exp Bot. 2024;226:105836. https://doi.org/10.1016/J.ENVEXPBOT.2024.105836.


    Google Scholar
     

  • Jian ZY, Tang XM, Wang HS, Xu GF. Evaluate the photosynthesis and chlorophyll fluorescence of Epimedium Brevicornu Maxim. Sci Rep. 2022;12(1):19470. https://doi.org/10.1038/s41598-022-24165-x.


    Google Scholar
     

  • Wang JH, Zhang JB, Li HP, Gong AD, Xue S, Agboola RS, et al. Molecular identification, mycotoxin production and comparative pathogenicity of Fusarium temperatum isolated from maize in China. J Phytopathol. 2014;162(3):147–57. https://doi.org/10.1111/jph.12164.


    Google Scholar
     

  • Wang L, Fan XW, Pan JL, Huang ZB, Li YZ. Physiological characterization of maize tolerance to low dose of aluminum, highlighted by promoted leaf growth. Planta. 2015;242(6):1391–403. https://doi.org/10.1007/s00425-015-2376-3.


    Google Scholar
     

  • Riaz BU, Rabia N, Asia N, Humaira Y, Rumana K, Ishtiaq H, et al. Changes in pathogenesis-related gene expression in response to bioformulations in the Apoplast of maize leaves against Fusarium oxysporum. J Phytopathol. 2019;14(1):61–72. https://doi.org/10.1080/17429145.2018.1550217.


    Google Scholar
     

  • Celedon JM, Bohlmann J. Oleoresin defenses in conifers: chemical diversity, terpene synthases and limitations of oleoresin defense under climate change. New Phytol. 2019;224(4):1444–63. https://doi.org/10.1111/nph.15984.


    Google Scholar
     

  • Sui L, Lu Y, Xu MN, Liu JF, Zhao Y, Li QY, Zhang ZK. Insect hypovirulence-associated mycovirus confers entomopathogenic fungi with enhanced resistance against phytopathogens. Virulence. 2024;15(1):2401978. https://doi.org/10.1080/21505594.2024.2401978.


    Google Scholar
     

  • Afkhami ME, Almeida BK, Hernandez DJ, Kiesewetter KN, Revillini DP. Tripartite mutualisms as models for understanding plant-microbial interactions. Curr Opin Plant Biol. 2020;56:28–36. https://doi.org/10.1016/j.pbi.2020.02.003.


    Google Scholar
     

  • Cordovez V, Dini-Andreote F, Carrión VJ, Raaijmakers JM. Evolution and ecology of plant viruses. Annual Rev Microbiol. 2019;73:69–88. https://doi.org/10.1016/j.plaphy.2023.108174.


    Google Scholar
     

  • Wang GZ, Schultz P, Tipton A, Zhang JL, Zhang FS, Bever JD. Soil microbiome mediates positive plant diversity-productivity relationships in late successional grassland species. Ecol Lett. 2019;22(8):1221–32. https://doi.org/10.1111/ele.13273.


    Google Scholar
     

  • Colla G, Hoagland L, Ruzzi M, Cardarelli M, Bonini P, Canaguier R, et al. Biostimulant action of protein hydrolysates: unraveling their effects on plant physiology and microbiome. Front Plant Sci. 2017;8:2202. https://doi.org/10.3389/fpls.2017.02202.


    Google Scholar
     

  • Koch H, Sessitsch A. The microbial-driven nitrogen cycle and its relevance for plant nutrition. J Exp Bot. 2024;75(18):5547–56. https://doi.org/10.1093/jxb/erae274.


    Google Scholar
     

  • Bouremani N, CherifSilini H, Silini A, Bouket AC, Luptakova L, Alenezi FN, et al. Plant growth-promoting rhizobacteria (PGPR): A rampart against the adverse effects of drought stress. Water. 2023;15(3):418. https://doi.org/10.3390/W15030418.


    Google Scholar
     

  • Li H, Wang ZY, Yu YX, Gao WC, Zhu JW, Zhang H, et al. Enhancing cold tolerance in tobacco through endophytic symbiosis with Piriformospora indica. Front Plant Sci. 2024;15:1459882. https://doi.org/10.3389/FPLS.2024.1459882.


    Google Scholar
     

  • Ren WD, Guo Y, Han X, Sun Y, Li Q, Wu BL, et al. Indigenous microorganisms offset arbuscular mycorrhizal fungi-induced plant growth and nutrient acquisition through negatively modulating the genes of phosphorus transport and nitrogen assimilation. Front Plant Sci. 2022;13:880181. https://doi.org/10.3389/FPLS.2022.880181.


    Google Scholar
     

  • Bernauer OM, Jain A, Bivort Bd, Holbrook NM, Myers SS, Ziska LH, et al. Elevated atmospheric CO2 has small, species-specific effects on pollen chemistry and plant growth across flowering plant species. Sci Rep. 2024;14(1):13760. https://doi.org/10.1038/S41598-024-63967-Z.


    Google Scholar
     

  • Li F, He CL, Chang ZJ, Ma C, Yu JL, Liu L, et al. Effects of elevated carbon dioxide on plant growth and leaf photosynthesis of annual ryegrass along a phosphorus deficiency gradien. Front Plant Sci. 2023. https://doi.org/10.3389/FPLS.2023.1271262.


    Google Scholar
     

  • Berntson GM, Bazzaz FA. Regenerating temperate forest mesocosms in elevated CO2: belowground growth and nitrogen cycling. Oecologia. 1997;113(1):115–25. https://doi.org/10.1007/s004420050359.


    Google Scholar
     

  • Yan H, Fu K, Liu XL, Dai ZG, Ru C. Elevated CO2 alleviates negative impacts of high temperature and salinity on phytohormones, photosynthesis, and redox reactions in leaves of Caragana korshinskii kom. Plant Physiol Biochem. 2025;220:109475. https://doi.org/10.1016/j.plaphy.2025.109475.


    Google Scholar
     

  • Pan XX, Liu HZ, Li YQ, Guo LR, Zhang YN, Zhu YY, et al. Cultivation of fungal endophytes with tissue culture grapevine seedlings reprograms metabolism by triggering defence responses. Metabolites. 2024;14(8):402. https://doi.org/10.3390/metabo14080402.


    Google Scholar
     

  • Frerigmann H, Piotrowski M, Lemke R, Bednarek P, Schulze-Lefert P. A network of phosphate starvation and immune-related signaling and metabolic pathways controls the interaction between Arabidopsis Thaliana and the beneficial fungus Colletotrichum tofieldiae. Mol Plant-Microbe Interact. 2021;34(5):560–70. https://doi.org/10.1094/MPMI-08-20-0233-R.


    Google Scholar
     

  • Byregowda R, Prasad SR, Prasannakumar MK. Construing the resilience to osmotic stress using endophytic fungus in maize (Zea Mays L). Plant Mol Biol. 2025;115(1):22. https://doi.org/10.1007/s11103-025-01550-4.


    Google Scholar
     

  • Qurban A, Adnan S, Zeshan HM, Muhammad A, Arshad JM. Antioxidant production promotes defense mechanism and different gene expression level in Zea mays under abiotic stress. Sci Rep. 2024;14(1):7114. https://doi.org/10.1016/j.plaphy.2023.108174.


    Google Scholar
     

  • Simonetti E, Pasqua V, Melillo MT, Delibes Á, Andrés MF, López-Braña I. Analysis of class III peroxidase genes expressed in roots of resistant and susceptible wheat lines infected by Heterodera avenae. Mol Plant-Microbe Interact. 2009;22(9):1081–92. https://doi.org/10.1094/MPMI-22-9-1081.


    Google Scholar
     

  • Jeon HW, Cho JS, Park EJ, Han KH, Choi YI, Ko JH. Developing xylem-preferential expression of PdGA20ox1, a gibberellin 20-oxidase 1 from Pinus densiflora, improves woody biomass production in a hybrid poplar. Plant Biotechnol J. 2016;14(4):1161–70. https://doi.org/10.1111/pbi.12484.


    Google Scholar
     

  • Narayanan Z, Glick BR. Secondary metabolites produced by plant growth-promoting bacterial endophytes. Microorganisms. 2022;10(10):2008. https://doi.org/10.3390/microorganisms10102008.


    Google Scholar
     

  • Singh D, Thapa S, Mahawar H, Kumar D, Geat N, Singh SK. Prospecting potential of endophytes for modulation of biosynthesis of therapeutic bioactive secondary metabolites and plant growth promotion of medicinal and aromatic plants. Antonie Van Leeuwenhoek. 2022;115(6):699–730. https://doi.org/10.1007/s10482-022-01736-6.


    Google Scholar
     

  • Yu HY, Kittur FS, Bevan DR, Esen A. Determination of beta-glucosidase aggregating factor (BGAF) binding and polymerization regions on the maize beta-glucosidase isozyme Glu1. Phytochemistry. 2009;70(11–12):1355–65. https://doi.org/10.1016/j.phytochem.2009.07.026.


    Google Scholar
     

  • Gao K, Mao ZB, Meng EX, Li J, Liu XY, Zhang YY, et al. Effects of elevated CO2 and warming on the root-associated microbiota in an agricultural ecosystem. Environ Microbiol. 2022;24(12):6252–66. https://doi.org/10.1111/1462-2920.16246.


    Google Scholar
     

  • Hagen G. Auxin signal transduction. Essays Biochem. 2015;58:1–12. https://doi.org/10.1042/bse0580001.


    Google Scholar
     

  • Mambro RD, Ruvo MD, Pacifici E, Salvi E, Sozzani R, Benfey PN, et al. Auxin minimum triggers the developmental switch from cell division to cell differentiation in the Arabidopsis root. Proc Natl Acad Sci U S A. 2017;114(36):E7641–9. https://doi.org/10.1073/pnas.1705833114.


    Google Scholar
     

  • Jacob T, Junior OMR, Quint M. Hormonal regulation of root growth under moderately elevated temperatures. Ann Bot. 2025. https://doi.org/10.1093/aob/mcaf087.


    Google Scholar
     

  • Zhe L, Jalal AG. Salicylic acid and jasmonic acid in elevated CO2-induced plant defense response to pathogens. J Plant Physiol. 2023;286:154019. https://doi.org/10.1016/j.jplph.2023.154019.


    Google Scholar
     

  • Nadeem SM, Ahmad M, Zahir ZA, Javaid A, Ashraf M. The role of mycorrhizae and plant growth promoting rhizobacteria (PGPR) in improving crop productivity under stressful environments. Biotechnol Adv. 2014;32(2):429–48. https://doi.org/10.1016/j.biotechadv.2013.12.005.


    Google Scholar
     

  • Manglesh K, Prakash K, Vishal S, Rohit J, Ravi S, Rajiv K. Transcriptional landscape illustrates the diversified adaptation of medicinal plants to multifactorial stress combinations linked with high altitude. Planta. 2025;261(5):111. https://doi.org/10.1007/s00425-025-04686-1.


    Google Scholar
     

  • Pardo-Hernández M, García-Pérez P, Lucini L, Rivero RM. Multi-Omics exploration of ABA involvement in identifying unique molecular markers for single and combined stresses in tomato plants. J Exp Bot. 2024;erae372. https://doi.org/10.1093/jxb/erae372.

  • Vikram S, Khushboo G, Shubhangi S, Mukesh J, Rohini G. Unravelling the molecular mechanism underlying drought stress response in chickpea via integrated multi-omics analysis. Front Plant Sci. 2023;14:1156606. https://doi.org/10.3389/fpls.2023.1156606.


    Google Scholar
     

  • Song YY, Liu JW, Fu ML, Liu H, Wang WT, Wang SS, et al. The efficacy of Azotobacter chroococcum in altering maize plant-defense responses to armyworm at elevated CO2 concentration. Ecotoxicol Environ Saf. 2022;248:114296. https://doi.org/10.1016/j.ecoenv.2022.114296.


    Google Scholar
     

  • Huang YL, Fang R, Li YS, Liu XB, Wang GH, Yin KD, et al. Warming and elevated CO2 alter the transcriptomic response of maize (Zea Mays L.) at the silking stage. Sci Rep. 2019;9(1):17948. https://doi.org/10.1038/s41598-019-54325-5.


    Google Scholar
     

  • González-Guzmán A, Rey M-D, Froussart E, Quesada-Moraga E. Elucidating the effect of endophytic entomopathogenic fungi on bread wheat growth through signaling of immune response-related hormones. Appl Environ Microbiol. 2022;88(18):e0088222. https://doi.org/10.1128/aem.00882-22.


    Google Scholar
     

  • Martínez-García LB, Gerlinde BDD, Francisco IP, David K, Heijden M. Symbiotic soil fungi enhance ecosystem resilience to climate change. Global Change Biology. 2017,23(12):5228–5236. https://doi.org/10.1016/j.funeco.2020.100940.

  • Ma HZ, Li C, Ning X, Jiang L, Li PP, Xu JT, et al. Heterologous synthesis of poly-γ-glutamic acid enhanced drought resistance in maize (Zea mays L.). Int. J. Biol. Macromol. 2024;273(Pt2):133179 https://doi.org/10.1016/j.ijbiomac.2024.133179.

  • Tanjina A, Akter MA, Ashraful HM, Motaher HM, Kumar GT, Nayeematul Z, et al. Seed priming with Beauveria bassiana improves growth and salt stress response in rice. Environ. Exp. Bot. 2023;213:105427.https://doi.org/10.1016/J.ENVEXPBOT.2023.105427.