• Arimura GI. Making sense of the way plants sense herbivores. Trends Plant Sci. 2021;26(3):288–98.


    Google Scholar
     

  • Hwang BC, Giardina CP, Adu-Bredu S, Barrios-Garcia MN, Calvo-Alvarado JC, Dargie GC, Diao H, Duboscq-Carra VG, Hemp A, Hemp C, et al. The impact of insect herbivory on biogeochemical cycling in broadleaved forests varies with temperature. Nat Commun. 2024;15(1):6011.


    Google Scholar
     

  • Danner H, Desurmont GA, Cristescu SM, van Dam NM. Herbivore-induced plant volatiles accurately predict history of coexistence, diet breadth, and feeding mode of herbivores. New Phytol. 2018;220(3):726–38.


    Google Scholar
     

  • Jin M, Peng Y, Peng J, Zhang H, Shan Y, Liu K, et al. Transcriptional regulation and overexpression of GST cluster enhances pesticide resistance in the cotton bollworm, Helicoverpa armigera (Lepidoptera: Noctuidae). Commun Biol. 2023;6(1):1064.


    Google Scholar
     

  • Chen S, Zhang L, Cai X, Li X, Bian L, Luo Z, et al. (E)-nerolidol is a volatile signal that induces defenses against insects and pathogens in tea plants. Hortic Res. 2020;7(1):52.


    Google Scholar
     

  • Wang Z, Qu L, Fan Z, Hou L, Hu J, Wang L. Dynamic metabolic responses of resistant and susceptible Poplar clones induced by Hyphantria cunea feeding. Biology. 2024;13(9):723.


    Google Scholar
     

  • Aerts N, Pereira Mendes M, Van Wees SCM. Multiple levels of crosstalk in hormone networks regulating plant defense. Plant J. 2021;105(2):489–504.


    Google Scholar
     

  • Vitiello A, Molisso D, Digilio MC, Giorgini M, Corrado G, Bruce TJA, et al. Zucchini plants alter gene expression and emission of (E)-β-caryophyllene following Aphis gossypii infestation. Front Plant Sci. 2020;11:592603.


    Google Scholar
     

  • Li Z, Huang Y, Shen Z, Wu M, Huang M, Hong SB, Xu L, Zang Y. Advances in functional studies of plant MYC transcription factors. Theor Appl Genet. 2024;137(8):195.


    Google Scholar
     

  • Wu H, Han WH, Liang KL, Wang JX, Zhang FB, Ji SX, et al. Using salicylic acid-responsive promoters to drive the expression of jasmonic acid-regulated genes enhances plant resistance to whiteflies. Pest Manag Sci. 2024. https://doi.org/10.1002/ps.8461.


    Google Scholar
     

  • Wang J, Wu D, Wang Y, Xie D. Jasmonate action in plant defense against insects. J Exp Bot. 2019;70(13):3391–400.


    Google Scholar
     

  • Li C, Xu M, Cai X, Han Z, Si J, Chen D. Jasmonate signaling pathway modulates plant defense, growth, and their trade-offs. Int J Mol Sci. 2022;23(7):3945.


    Google Scholar
     

  • Figon F, Baldwin IT, Gaquerel E. Ethylene is a local modulator of jasmonate-dependent phenolamide accumulation during Manduca sexta herbivory in Nicotiana attenuata. Plant Cell Environ. 2021;44(3):964–81.


    Google Scholar
     

  • Isah T. Stress and defense responses in plant secondary metabolites production. Biol Res. 2019;52(1):39.


    Google Scholar
     

  • Divekar PA, Narayana S, Divekar BA, Kumar R, Gadratagi BG, Ray A, et al. Plant secondary metabolites as defense tools against herbivores for sustainable crop protection. Int J Mol Sci. 2022;23(5):2690.


    Google Scholar
     

  • Silva DB, Jiménez A, Urbaneja A, Pérez-Hedo M, Bento JM. Changes in plant responses induced by an arthropod influence the colonization behavior of a subsequent herbivore. Pest Manag Sci. 2021;77(9):4168–80.


    Google Scholar
     

  • Zeng W, Sun Z, Cai Z, Chen H, Lai Z, Yang S, et al. Proteomic analysis by iTRAQ-MRM of soybean resistance to Lamprosema Indicate. BMC Genomics. 2017;18(1):444.


    Google Scholar
     

  • Ramaroson ML, Koutouan C, Helesbeux JJ, Le Clerc V, Hamama L, Geoffriau E, Briard M. Role of phenylpropanoids and flavonoids in plant resistance to pests and diseases. Molecules. 2022;27(23):8371.


    Google Scholar
     

  • Kaminski KP, Bovet L, Laparra H, Lang G, De Palo D, Sierro N, et al. Alkaloid chemophenetics and transcriptomics of the Nicotiana genus. Phytochemistry. 2020;177:112424.


    Google Scholar
     

  • Shakeel A, Noor JJ, Jan U, Gul A, Handoo Z, Ashraf N. Saponins, the unexplored secondary metabolites in plant defense: opportunities in integrated pest management. Plants. 2025;14(6):861.


    Google Scholar
     

  • Li H, Zhou Z, Hua H, Ma W. Comparative transcriptome analysis of defense response of rice to Nilaparvata lugens and Chilo suppressalis infestation. Int J Biol Macromol. 2020;163:2270–85.


    Google Scholar
     

  • Xie Q, Dong W, Wang M, Wang J, Sun L, Liu Z, et al. BpWRKY6 regulates insect resistance by affecting jasmonic acid and terpenoid synthesis in Betula platyphylla. Plant Biotechnol J. 2025. https://doi.org/10.1111/pbi.70169.


    Google Scholar
     

  • Liu M, Li H, Chen Y, Wu Z, Wu S, Zhang J, Sun R, Lou Y, Lu J, Li R. The MYC2-JAMYB transcriptional cascade regulates rice resistance to brown planthoppers. New Phytol. 2025;246(4):1834–47.


    Google Scholar
     

  • Chowański S, Adamski Z, Marciniak P, Rosiński G, Büyükgüzel E, Büyükgüzel K, Falabella P, Scrano L, Ventrella E, Lelario F, et al. A review of bioinsecticidal activity of Solanaceae alkaloids. Toxins. 2016;8(3):60.


    Google Scholar
     

  • Pinto CF, Torrico-Bazoberry D, Penna M, Cossio-Rodríguez R, Cocroft R, Appel H, et al. Chemical responses of Nicotiana tabacum (Solanaceae) induced by vibrational signals of a generalist herbivore. J Chem Ecol. 2019;45(8):708–14.


    Google Scholar
     

  • Murad L, Lim KY, Christopodulou V, Matyasek R, Lichtenstein CP, Kovarik A, et al. The origin of tobacco’s T genome is traced to a particular lineage within Nicotiana tomentosiformis (Solanaceae). Am J Bot. 2002;89(6):921–8.


    Google Scholar
     

  • Edwards KD, Fernandez-Pozo N, Drake-Stowe K, Humphry M, Evans AD, Bombarely A, et al. A reference genome for Nicotiana tabacum enables map-based cloning of homeologous loci implicated in nitrogen utilization efficiency. BMC Genomics. 2017;18(1):448.


    Google Scholar
     

  • Wang J, Zhang Q, Tung J, Zhang X, Liu D, Deng Y, et al. High-quality assembled and annotated genomes of Nicotiana tabacum and Nicotiana benthamiana reveal chromosome evolution and changes in defense arsenals. Mol Plant. 2024;17(3):423–37.


    Google Scholar
     

  • Barah P, Bones AM. Multidimensional approaches for studying plant defence against insects: from ecology to omics and synthetic biology. J Exp Bot. 2015;66(2):479–93.


    Google Scholar
     

  • Ge SX, Li TF, Ren LL, Zong SX. Host-plant adaptation in xylophagous insect-microbiome systems: contributionsof longicorns and gut symbionts revealed by parallel metatranscriptome. iScience. 2023;26(5):106680.


    Google Scholar
     

  • Li Y, Cheah BH, Fang YF, Kuang YH, Lin SC, Liao CT, Huang SH, Lin YF, Chuang WP. Transcriptomics identifies key defense mechanisms in rice resistant to both leaf-feeding and phloem feeding herbivores. BMC Plant Biol. 2021;21(1):306.


    Google Scholar
     

  • Chen LM, Li XW, He TJ, Li PJ, Liu Y, Zhou SX, et al. Comparative biochemical and transcriptome analyses in tomato and eggplant reveal their differential responses to Tuta absoluta infestation. Genomics. 2021;113(4):2108–21.


    Google Scholar
     

  • Kiani M, Bryan B, Rush C, Szczepaniec A. Transcriptional responses of resistant and susceptible wheat exposed to wheat curl mite. Int J Mol Sci. 2021;22(5):2703.


    Google Scholar
     

  • Keerthana R, Rakshana P, Salunkhe SR, Sakthi AR, Kokiladevi E, Saraswathi T, Pushpam R, Raveendran M, Sudha M. CRISPR-Cas9 mediated enhancement of abiotic stress resilience in tomato: a comprehensive review of target genes. Mol Biol Rep. 2025;52(1):538.


    Google Scholar
     

  • Choi H, Yi TG, Gho YS, Kim JH, Kim S, Choi YJ, et al. Augmenting carotenoid accumulation by multiplex genome editing of the redundant CCD family in rice. Plant Physiol Biochem. 2025;225:110008.


    Google Scholar
     

  • Kang B, Venkatesh J, Lee JH, Kim JM, Kwon JK, Kang BC. CRISPR/Cas9-mediated editing of eukaryotic elongation factor 1B gamma (eEF1Bγ) reduces tobacco etch virus accumulation in Nicotiana benthamiana. Plant Cell Rep. 2025;44(3):62.


    Google Scholar
     

  • Liu J, Gunapati S, Mihelich NT, Stec AO, Michno JM, Stupar RM. Genome editing in soybean with CRISPR/Cas9. Methods Mol Biol. 2019;1917:217–34.


    Google Scholar
     

  • Woldemariam MG, Onkokesung N, Baldwin IT, Galis I. Jasmonoyl-L-isoleucine hydrolase 1 (JIH1) regulates jasmonoyl-L-isoleucine levels and attenuates plant defenses against herbivores. Plant J. 2012;72(5):758–67.


    Google Scholar
     

  • Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for illumina sequence data. Bioinformatics. 2014;30(15):2114–20.


    Google Scholar
     

  • Chen C, Wu Y, Li J, Wang X, Zeng Z, Xu J, Liu Y, Feng J, Chen H, He Y, et al. TBtools-II: A one for all, all for one bioinformatics platform for biological big-data mining. Mol Plant. 2023;16(11):1733–42.


    Google Scholar
     

  • Ernst J, Bar-Joseph Z. STEM: a tool for the analysis of short time series gene expression data. BMC Bioinformatics. 2006;7:191.


    Google Scholar
     

  • Weston DJ, Karve AA, Gunter LE, Jawdy SS, Yang X, Allen SM, Wullschleger SD. Comparative physiology and transcriptional networks underlying the heat shock response in Populus trichocarpa, Arabidopsis Thaliana and Glycine max. Plant Cell Environ. 2011;34(9):1488–506.


    Google Scholar
     

  • Otasek D, Morris JH, Bouças J, Pico AR, Demchak B. Cytoscape automation: empowering workflow-based network analysis. Genome Biol. 2019;20(1):185.


    Google Scholar
     

  • Bastian M, Heymann S, Jacomy M. Gephi: an open source software for exploring and manipulating networks. ICWSM. 2009;2009:17–20.


    Google Scholar
     

  • Jin J, Tian F, Yang DC, Meng YQ, Kong L, Luo J, Gao G. PlantTFDB 4.0: toward a central hub for transcription factors and regulatory interactions in plants. Nucleic Acids Res. 2017;45(D1):D1040–5.


    Google Scholar
     

  • Li JF, Norville JE, Aach J, McCormack M, Zhang D, Bush J, Church GM, Sheen J. Multiplex and homologous recombination-mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9. Nat Biotechnol. 2013;31(8):688–91.


    Google Scholar
     

  • Dupadahalli K. A modified freeze–thaw method for efficient transformation of Agrobacterium tumefaciens. Curr Sci. 2007;93(6):770.


    Google Scholar
     

  • Horsch RB. Leaf disc transformation. Plant Mol Biology Man. 1988;5:63–71.


    Google Scholar
     

  • Zhang X, Cheng T, Wang G, Yan Y, Xia Q. Cloning and evolutionary analysis of tobacco MAPK gene family. Mol Biol Rep. 2013;40(2):1407–15.


    Google Scholar
     

  • Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta delta C(T)) method. Methods. 2001;25(4):402–8.


    Google Scholar
     

  • Marlin D, Nicolson SW, Yusuf AA, Stevenson PC, Heyman HM, Krüger K. The only African wild tobacco, Nicotiana africana: alkaloid content and the effect of herbivory. PLoS ONE. 2014;9(7):e102661.


    Google Scholar
     

  • Woldemariam MG, Gális I, Baldwin IT. Jasmonoyl-l-isoleucine hydrolase 1 (JIH1) contributes to a termination of jasmonate signaling in N. attenuata. Plant Signal Behav. 2014;9:e28973.


    Google Scholar
     

  • Zhang Y, Fu Y, Wang Q, Liu X, Li Q, Chen J. Transcriptome analysis reveals rapid defence responses in wheat induced by phytotoxic aphid Schizaphis Graminum feeding. BMC Genomics. 2020;21(1):339.


    Google Scholar
     

  • Malabarba J, Meents AK, Reichelt M, Scholz SS, Peiter E, Rachowka J, Konopka-Postupolska D, Wilkins KA, Davies JM, Oelmüller R, et al. ANNEXIN1 mediates calcium-dependent systemic defense in Arabidopsis plants upon herbivory and wounding. New Phytol. 2021;231(1):243–54.


    Google Scholar
     

  • Niu L, Pan L, Zeng W, Lu Z, Cui G, Fan M, Xu Q, Wang Z, Li G. Dynamic transcriptomes of resistant and susceptible Peach lines after infestation by green Peach aphids (Myzus persicae Sülzer) reveal defence responses controlled by the Rm3 locus. BMC Genomics. 2018;19(1):846.


    Google Scholar
     

  • Tzin V, Fernandez-Pozo N, Richter A, Schmelz EA, Schoettner M, Schäfer M, Ahern KR, Meihls LN, Kaur H, Huffaker A, et al. Dynamic maize responses to aphid feeding are revealed by a time series of transcriptomic and metabolomic assays. Plant Physiol. 2015;169(3):1727–43.


    Google Scholar
     

  • Appel HM, Fescemyer H, Ehlting J, Weston D, Rehrig E, Joshi T, et al. Transcriptional responses of Arabidopsis Thaliana to chewing and sucking insect herbivores. Front Plant Sci. 2014;5:565.


    Google Scholar
     

  • Zhang Z, Liu W, Ma Z, Zhu W, Jia L. Transcriptional characterization and response to defense elicitors of mevalonate pathway genes in cotton (Gossypium arboreum L.). PeerJ. 2019;7:e8123.


    Google Scholar
     

  • Züst T, Agrawal AA. Mechanisms and evolution of plant resistance to aphids. Nat Plants. 2016;2:15206.


    Google Scholar
     

  • Erb M, Meldau S, Howe GA. Role of phytohormones in insect-specific plant reactions. Trends Plant Sci. 2012;17(5):250–9.


    Google Scholar
     

  • Pieterse CM, van Wees SC, van Pelt JA, Knoester M, Laan R, Gerrits H, et al. A novel signaling pathway controlling induced systemic resistance in Arabidopsis. Plant Cell. 1998;10(9):1571–80.


    Google Scholar
     

  • Magalhães DM, Borges M, Laumann RA, Caulfield JC, Birkett MA, Blassioli-Moraes MC. Inefficient weapon-the role of plant secondary metabolites in cotton defence against the boll weevil. Planta. 2020;252(5):94.


    Google Scholar
     

  • Prajapati VK, Vijayan V, Vadassery J. Secret weapon of insects: the oral secretion cocktail and its modulation of host immunity. Plant Cell Physiol. 2024;65(8):1213–23.


    Google Scholar
     

  • Jin S, Ren Q, Lian L, Cai X, Bian L, Luo Z, et al. Comparative transcriptomic analysis of resistant and susceptible tea cultivars in response to Empoasca Onukii (Matsuda) damage. Planta. 2020;252(1):10.


    Google Scholar
     

  • Luo Q, Duan F, Song W. Transcriptomics integrated with metabolomics reveals the defense response of insect-resistant Zea mays infested with Spodoptera exigua. Heliyon. 2025;11(4):e42565.


    Google Scholar
     

  • Tronchet M, Balagué C, Kroj T, Jouanin L, Roby D. Cinnamyl alcohol dehydrogenases-C and D, key enzymes in lignin biosynthesis, play an essential role in disease resistance in Arabidopsis. Mol Plant Pathol. 2010;11(1):83–92.


    Google Scholar
     

  • Materska M, Pabich M, Sachadyn-Król M, Konarska A, Weryszko-Chmielewska E, Chilczuk B, et al. The secondary metabolites profile in horse chestnut leaves infested with horse-chestnut leaf miner. Molecules. 2022;27(17):5471.


    Google Scholar
     

  • Nakata R, Kimura Y, Aoki K, Yoshinaga N, Teraishi M, Okumoto Y, Huffaker A, Schmelz EA, Mori N. Inducible de Novo biosynthesis of isoflavonoids in soybean leaves by Spodoptera Litura derived elicitors: tracer techniques aided by high resolution LCMS. J Chem Ecol. 2016;42(12):1226–36.


    Google Scholar
     

  • Kundu P, Shinde S, Grover S, Sattler SE, Louis J. Caffeic acid O-methyltransferase-dependent flavonoid defenses promote sorghum resistance to fall armyworm infestation. Plant Physiol. 2025;197(3):kiaf071.


    Google Scholar
     

  • Njaci I, Ngugi-Dawit A, Oduor RO, Kago L, Williams B, Hoang LTM, Mundree SG, Ghimire SR. Comparative analysis delineates the transcriptional resistance mechanisms for pod borer resistance in the Pigeonpea wild relative Cajanus scarabaeoides (L.) Thouars. Int J Mol Sci. 2020;22(1):309.


    Google Scholar
     

  • Celedon JM, Whitehill JGA, Madilao LL, Bohlmann J. Gymnosperm glandular trichomes: expanded dimensions of the conifer terpenoid defense system. Sci Rep. 2020;10(1):12464.


    Google Scholar
     

  • Câmara JS, Perestrelo R, Ferreira R, Berenguer CV, Pereira JAM, Castilho PC. Plant-derived terpenoids: a plethora of bioactive compounds with several health functions and industrial applications-a comprehensive overview. Molecules. 2024;29(16):3861.


    Google Scholar
     

  • Wu Z, Wei W, Cheng K, Zheng L, Ma C, Wang Y. Insecticidal activity of triterpenoids and volatile oil from the stems of Tetraena mongolica. Pestic Biochem Physiol. 2020;166:104551.


    Google Scholar
     

  • Halitschke R, Keßler A, Kahl J, Lorenz A, Baldwin IT. Ecophysiological comparison of direct and indirect defenses in Nicotiana attenuata. Oecologia. 2000;124(3):408–17.


    Google Scholar
     

  • Zhao D, Qin LJ, Zhao DG. RNA interference of the nicotine demethylase gene CYP82E4v1 reduces nornicotine content and enhances Myzus persicae resistance in Nicotiana tabacum L. Plant Physiol Biochem. 2016;107:214–21.


    Google Scholar
     

  • Steppuhn A, Gase K, Krock B, Halitschke R, Baldwin IT. Nicotine’s defensive function in nature. PLoS Biol. 2004;2(8):E217.


    Google Scholar
     

  • Xu S, Brockmöller T, Navarro-Quezada A, Kuhl H, Gase K, Ling Z, et al. Wild tobacco genomes reveal the evolution of nicotine biosynthesis. Proc Natl Acad Sci U S A. 2017;114(23):6133–8.


    Google Scholar
     

  • Pang S, Zhai J, Song J, Rong D, Hong Y, Qiu Y, et al. bHLH19 and bHLH20 repress jasmonate-mediated plant defense against insect herbivores in Arabidopsis. Plant J. 2024;120(6):2623–38.


    Google Scholar
     

  • Guo Q, Major IT, Kapali G, Howe GA. MYC transcription factors coordinate tryptophan-dependent defence responses and compromise seed yield in Arabidopsis. New Phytol. 2022;236(1):132–45.


    Google Scholar
     

  • Xu Z, Li C, Wang X, Lv Z, Li W, Chen W. Transcription factor AabHLH5 participates in JA signaling and negatively regulates artemisinin biosynthesis in Artemisia annua. Physiol Plant. 2025;177(2):e70207.


    Google Scholar
     

  • Lawrence SD, Novak NG. Over-expression of StZFP2 in Solanum tuberosum L. var. Kennebec (potato) inhibits growth of Tobacco Hornworm larvae (THW, Manduca sexta L.). Plant Signal Behav. 2018;13(7):e1489668.


    Google Scholar
     

  • Zhai Y, Li P, Mei Y, Chen M, Chen X, Xu H, Zhou X, Dong H, Zhang C, Jiang W. Three MYB genes co-regulate the phloem-based defence against english grain aphid in wheat. J Exp Bot. 2017;68(15):4153–69.


    Google Scholar
     

  • Ahmed J, Mercx S, Boutry M, Chaumont F. Evolutionary and predictive functional insights into the aquaporin gene family in the allotetraploid plant Nicotiana tabacum. Int J Mol Sci. 2020;21(13):4743.


    Google Scholar
     

  • Sierro N, Battey JN, Ouadi S, Bovet L, Goepfert S, Bakaher N, et al. Reference genomes and transcriptomes of Nicotiana sylvestris and Nicotiana tomentosiformis. Genome Biol. 2013;14(6):R60.


    Google Scholar
     

  • Lim KY, Matyasek R, Kovarik A, Leitch AR. Genome evolution in allotetraploid Nicotiana. Biol J Linn Soc. 2015;82(4):599–606.


    Google Scholar
     

  • Guayazán-Palacios N, Steinbrenner AD. Plant cell surface receptors at the forefront of the growth-defense trade-off. Dev Cell. 2025;60(4):491–2.


    Google Scholar
     

  • Liu X, Yin Z, Wang Y, Cao S, Yao W, Liu J, et al. Rice cellulose synthase-like protein OsCSLD4 coordinates the trade-off between plant growth and defense. Front Plant Sci. 2022;13:980424.


    Google Scholar
     

  • Guo Q, Yoshida Y, Major IT, Wang K, Sugimoto K, Kapali G, Havko NE, Benning C, Howe GA. JAZ repressors of metabolic defense promote growth and reproductive fitness in Arabidopsis. Proc Natl Acad Sci U S A. 2018;115(45):E10768–77.


    Google Scholar
     

  • Thines B, Katsir L, Melotto M, Niu Y, Mandaokar A, Liu G, Nomura K, He SY, Howe GA, Browse J. JAZ repressor proteins are targets of the SCF(COI1) complex during jasmonate signalling. Nature. 2007;448(7154):661–5.


    Google Scholar
     

  • Wang H, Wang X, Yu C, Wang C, Jin Y, Zhang H. MYB transcription factor PdMYB118 directly interacts with bHLH transcription factor PdTT8 to regulate wound-induced anthocyanin biosynthesis in Poplar. BMC Plant Biol. 2020;20(1):173.


    Google Scholar
     

  • Wager A, Browse J. Social network: JAZ protein interactions expand our knowledge of jasmonate signaling. Front Plant Sci. 2012;3:41.


    Google Scholar