• Convention on Biological Diversity. Decision 15/28: biodiversity and agriculture. CBD https://www.cbd.int/doc/decisions/cop-15/cop-15-dec-28-en.pdf (2022).

  • FAO, ITPS, GSBI, SCBD & EC. State of Knowledge of Soil Biodiversity – Status, Challenges and Potentialities. Summary for Policy Makers (FAO, 2020).

  • Guerra, C. A. et al. Foundations for a national assessment of soil biodiversity. J. Sustain. Agric. Environ. 3, e12116 (2024).

    Article 

    Google Scholar
     

  • Delgado-Baquerizo, M. et al. Microbial diversity drives multifunctionality in terrestrial ecosystems. Nat. Commun. 7, 10541 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Anthony, M. A., Bender, S. F. & van der Heijden, M. G. A. Enumerating soil biodiversity. Proc. Natl Acad. Sci. USA 120, e2304663120 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Delgado-Baquerizo, M. et al. Multiple elements of soil biodiversity drive ecosystem functions across biomes. Nat. Ecol. Evol. 4, 210–220 (2020).

    Article 

    Google Scholar
     

  • Timmis, K. et al. The contribution of microbial biotechnology to Sustainable Development Goals. Microb. Biotechnol. 10, 984–987 (2017).

    Article 

    Google Scholar
     

  • United Nations Framework Convention on Climate Change. The Paris Agreement. UNFCCC https://unfccc.int/process-and-meetings/the-paris-agreement (2018).

  • Food and Agriculture Organization of the United Nations. Global Soil Partnership, Action Framework 2022–2030: healthy soils for a healthy life and environment: from promotion to consolidation of sustainable soil management. FAO https://www.fao.org/fileadmin/user_upload/GSP/tenth_PA/GSP_Action_Framework_FINAL.pdf (2025).

  • Nielsen, U. N., Wall, D. H. & Six, J. Soil biodiversity and the environment. Annu. Rev. Environ. Resour. 40, 63–90 (2015).

    Article 

    Google Scholar
     

  • Singh, B. K., Bardgett, R. D., Smith, P. & Reay, D. S. Microorganisms and climate change: terrestrial feedbacks and mitigation options. Nat. Rev. Microbiol. 8, 779–790 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Crowther, T. W. et al. Microbes, planetary health, and the Sustainable Development Goals. Cell 187, 5195–5216 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Singh, B. K. et al. Climate change impacts on plant pathogens, food security and paths forward. Nat. Rev. Microbiol. 21, 640–656 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Singh, B. K., Yan, Z. Z., Whittaker, M., Vargas, R. & Abdelfattah, A. Soil microbiomes must be explicitly included in one health policy. Nat. Microbiol. 8, 1367–1372 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Samaddar, S. et al. Role of soil in the regulation of human and plant pathogens: soils’ contributions to people. Philos. Trans. R. Soc. B: Biol. Sci. 376, 20200179 (2021).

    Article 

    Google Scholar
     

  • WWF-UK. Living Planet Report 2022. WWF https://www.wwf.org.uk/our-reports/living-planet-report-2022 (2022).

  • Geisen, S., Wall, D. H. & van der Putten, W. H. Challenges and opportunities for soil biodiversity in the anthropocene. Curr. Biol. 29, R1036–R1044 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Pisa, L. W. et al. Effects of neonicotinoids and fipronil on non-target invertebrates. Environ. Sci. Pollut. Res. 22, 68–102 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Veresoglou, S. D., Halley, J. M. & Rillig, M. C. Extinction risk of soil biota. Nat. Commun. 6, 8862 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Gillespie, A. Conservation, Biodiversity and International Law (Edward Elgar, 2013).

  • Junker, R. R. & Farwig, N. Microbes as conservation targets. Preprint at https://ecoevorxiv.org/repository/view/8188/ (2024).

  • IUCN. The IUCN Red List of threatened species. Version 2024-3. IUCN Red List https://www.iucnredlist.org (2024).

  • Redford, K. H., Segre, J. A., Salafsky, N., Martinez del Rio, C. & McAloose, D. Conservation and the microbiome. Conserv. Biol. 26, 195–197 (2012).

    Article 

    Google Scholar
     

  • Guerra, C. A. et al. Global hotspots for soil nature conservation. Nature 610, 693–698 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Averill, C. et al. Defending Earth’s terrestrial microbiome. Nat. Microbiol. 7, 1717–1725 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Convention on Biological Diversity. Review of the International Initiative for the Conservation and Sustainable Use of Soil Biodiversity and Updated Plan of Action 2020–2030. CBD https://www.cbd.int/doc/c/b782/c3cd/f1a6c03975a063a95ef6ff5b/sbstta-24-l-07-rev1-en.pdf (2022).

  • Guerra, C. A. et al. Tracking, targeting, and conserving soil biodiversity. Science 371, 239–241 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Egidi, E. et al. A few ascomycota taxa dominate soil fungal communities worldwide. Nat. Commun. 10, 2369 (2019).

    Article 

    Google Scholar
     

  • van den Hoogen, J. et al. Soil nematode abundance and functional group composition at a global scale. Nature 572, 194–198 (2019).

    Article 

    Google Scholar
     

  • Phillips, H. R. P. et al. Global distribution of earthworm diversity. Science 366, 480–485 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Delgado-Baquerizo, M. et al. A global atlas of the dominant bacteria found in soil. Science 359, 320–325 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Tedersoo, L. et al. Global diversity and geography of soil fungi. Science 346, 1256688 (2014).

    Article 

    Google Scholar
     

  • Sutherland, W. J. et al. A horizon scan of biological conservation issues for 2025. Trends Ecol. Evol. 40, 80–89 (2025).

    Article 

    Google Scholar
     

  • Cameron, E. K. et al. Global mismatches in aboveground and belowground biodiversity. Conserv. Biol. 33, 1187–1192 (2019).

    Article 

    Google Scholar
     

  • Van Nuland, M. E. et al. Global hotspots of mycorrhizal fungal richness are poorly protected. Nature 645, 414–422 (2025).

    Article 

    Google Scholar
     

  • Zeiss, R. et al. Challenges of and opportunities for protecting European soil biodiversity. Conserv. Biol. 36, e13930 (2022).

    Article 

    Google Scholar
     

  • Food and Agriculture Organization of the United Nations. Soil biodiversity initiatives. FAO https://www.fao.org/agriculture/crops/thematic-sitemap/theme/spi/soil-biodiversity/initiatives/en (2025).

  • Parnell, J. J. et al. Combining science and policy for a unified Global Soil Biodiversity Observatory. Nat. Ecol. Evol. 9, 1302–1306 (2025).

    Article 

    Google Scholar
     

  • Fortuna, A. The soil biota. Nat. Educ. Knowl. 3, 1 (2012).


    Google Scholar
     

  • Yang, Y. Emerging patterns of microbial functional traits. Trends Microbiol. 29, 874–882 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Guerra, C. A. et al. Blind spots in global soil biodiversity and ecosystem function research. Nat. Commun. 11, 3870 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Fungi Foundation. Fungi Foundation calls on CITES to strengthen controls over trade in fungi to reinforce fungal conservation. Fungi Foundation https://www.ffungi.org/blog/fungi-foundation-calls-on-cites-to-strengthen-controls-over-trade-in-fungi-to-reinforce-fungal-conservation (2025).

  • GEO BON. Soil BON. GEO BON https://geobon.org/bons/thematic-bon/soil-bon/ (2014).

  • Earthworm Society of Britain. Official website. Earthworm Soc https://www.earthwormsoc.org.uk (2024).

  • Gilbert, J. A. et al. Launching the IUCN Microbial Conservation Specialist Group as a global safeguard for microbial biodiversity. Nat. Microbiol. 10, 2359–2360 (2025).

    Article 
    CAS 

    Google Scholar
     

  • Food and Agriculture Organization of the United Nations. How to manage soil biodiversity. FAO https://www.fao.org/agriculture/crops/thematic-sitemap/theme/spi/scpi-home/managing-ecosystems/soil-biodiversity/soil-how/en/ (2025).

  • Gibson, B. & Eyre-Walker, A. Investigating evolutionary rate variation in bacteria. J. Mol. Evol. 87, 317–326 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Jung, M. et al. Areas of global importance for conserving terrestrial biodiversity, carbon and water. Nat. Ecol. Evol. 5, 1499–1509 (2021).

    Article 

    Google Scholar
     

  • European Union. Thematic strategy for soil protection. EUR-Lex https://eur-lex.europa.eu/EN/legal-content/summary/thematic-strategy-for-soil-protection.html (2011).

  • European Commission. EU Soil Strategy for 2030: reaping the benefits of healthy soils for people, food, nature and climate. EUR-Lex https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A52021DC0699 (2021).

  • Department of Agriculture, Fisheries and Forestry. National Soil Action Plan 2023 to 2028. Agriculture.gov https://www.agriculture.gov.au/agriculture-land/farm-food-drought/natural-resources/soils/national-soil-action-plan (2023).

  • Orgiazzi, A., Bardgett, R. D. & Barrios, E. Global Soil Biodiversity Atlas (European Commission, 2016).

  • Colella, J. P. et al. Engaging with the Nagoya Protocol on access and benefit-sharing: recommendations for noncommercial biodiversity researchers. J. Mammal. 104, 430–443 (2023).

    Article 

    Google Scholar
     

  • Overmann, J. & Scholz, A. H. Microbiological research under the Nagoya Protocol: facts and fiction. Trends Microbiol. 25, 85–88 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Deplazes-Zemp, A. et al. The Nagoya Protocol could backfire on the Global South. Nat. Ecol. Evol. 2, 917–919 (2018).

    Article 

    Google Scholar
     

  • Global Initiative of Sustainable Agriculture and Environment. Official website. Global Sustainable Agriculture https://www.globalsustainableagriculture.org (2025).

  • Bergström, A. Improving data archiving practices in ancient genomics. Sci. Data 11, 754 (2024).

    Article 

    Google Scholar
     

  • Wild, S. Quest to map Africa’s soil microbiome begins. Nature 539, 152 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Hou, D., Bolan, N. S., Tsang, D. C. W., Kirkham, M. B. & O’Connor, D. Sustainable soil use and management: an interdisciplinary and systematic approach. Sci. Total. Environ. 729, 138961 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Cafa, G. et al. Cryopreservation of a soil microbiome using a Stirling 1 cycle approach — a genomic assessment. Preprint at agriRxiv https://doi.org/10.31220/agriRxiv.2021.00066 (2021).

  • Hernández, D. L., Antia, A. & McKone, M. J. The ecosystem impacts of dominant species exclusion in a prairie restoration. Ecol. Appl. 32, e2592 (2022).

    Article 

    Google Scholar
     

  • Hou, G. et al. Dominant species play a leading role in shaping community stability in the northern Tibetan grasslands. J. Plant. Ecol. 16, rtac110 (2023).

    Article 

    Google Scholar
     

  • Berlinches de Gea, A., Hautier, Y. & Geisen, S. Interactive effects of global change drivers as determinants of the link between soil biodiversity and ecosystem functioning. Glob. Change Biol. 29, 296–307 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Põlme, S. et al. FungalTraits: a user-friendly traits database of fungi and fungus-like stramenopiles. Fungal Divers. 105, 1–16 (2020).

    Article 

    Google Scholar
     

  • Karam-Gemael, M., Decker, P., Stoev, P., Marques, M. I. & Chagas, A. Jr. Conservation of terrestrial invertebrates: a review of IUCN and regional Red Lists for Myriapoda. ZooKeys 930, 221–229 (2020).

    Article 

    Google Scholar
     

  • Interventions in conservation. Nat. Plants 11, 1–2 (2025).

  • Duarte, A. C. et al. Effects of protected areas on soil nematode communities in forests of the north of Portugal. Biodivers. Conserv. 33, 73–89 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Bolhuis, H. & Grego, M. Cryopreservation and recovery of a complex hypersaline microbial mat community. Cryobiology 114, 104859 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Choi, Y. D. Restoration ecology to the future: a call for new paradigm. Restor. Ecol. 15, 351–353 (2007).

    Article 

    Google Scholar
     

  • Russell, D. J. Quality review enhances the benefits of data publication for soil biodiversity conservation. Appl. Soil. Ecol. 206, 105893 (2025).

    Article 

    Google Scholar
     

  • Singh, B. K. et al. Enhancing science–policy interfaces for food systems transformation. Nat. Food 2, 838–842 (2021).

    Article 

    Google Scholar
     

  • Amin, A. Exploring the role of economic incentives and spillover effects in biodiversity conservation policies in sub-Saharan Africa. Ecol. Econ. 127, 185–191 (2016).

    Article 

    Google Scholar
     

  • Cai, L. et al. Global models and predictions of plant diversity based on advanced machine learning techniques. N. Phytol 237, 1432–1445 (2023).

    Article 

    Google Scholar
     

  • Delgado-Baquerizo, M. et al. Ecological drivers of soil microbial diversity and soil biological networks in the southern hemisphere. Ecology 99, 583–596 (2018).

    Article 

    Google Scholar
     

  • Delgado-Baquerizo, M. et al. Plant attributes explain the distribution of soil microbial communities in two contrasting regions of the globe. N. Phytol. 219, 574–587 (2018).

    Article 

    Google Scholar
     

  • Pugnaire, F. I. et al. Climate change effects on plant-soil feedbacks and consequences for biodiversity and functioning of terrestrial ecosystems. Sci. Adv. 5, eaaz1834 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Rillig, M. C. et al. The role of multiple global change factors in driving soil functions and microbial biodiversity. Science 366, 886–890 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Rillig, M. C. et al. Increasing the number of stressors reduces soil ecosystem services worldwide. Nat. Clim. Change 13, 478–483 (2023).

    Article 

    Google Scholar
     

  • Tang, X. et al. Multiple environmental stressors interactively affect soil phosphorus cycling microbiomes. Commun. Earth Environ. 6, 757 (2025).

    Article 

    Google Scholar
     

  • Lindo, Z. et al. The threat-work: a network of potential threats to soil biodiversity. Soil. Org. 97, 31–46 (2025).


    Google Scholar