• Harvey, C. & Aultman-Hall, L. Measuring urban streetscapes for livability: a review of approaches. Prof. Geogr. 68, 149–158 (2016).

    Article 

    Google Scholar
     

  • Ma, X. et al. Measuring human perceptions of streetscapes to better inform urban renewal: a perspective of scene semantic parsing. Cities 110, 103086 (2021).

    Article 

    Google Scholar
     

  • Koo, B. W., Hwang, U. & Guhathakurta, S. Streetscapes as part of servicescapes: can walkable streetscapes make local businesses more attractive?. Comput. Environ. Urban Syst. 106, 102030 (2023).

    Article 

    Google Scholar
     

  • Anand, S. & Pujara, T. Towards anxiety alleviating streetscape design: a comprehensive literature review. Cities Health 8, 1134–1152 (2024).

    Article 

    Google Scholar
     

  • Latkin, C. A. & Curry, A. D. Stressful neighborhoods and depression: a prospective study of the impact of neighborhood disorder. J. Health Soc. Behav. 44, 34–44 (2003).

    Article 

    Google Scholar
     

  • Jiang, Y., Christopher Zegras, P. & Mehndiratta, S. Walk the line: station context, corridor type and bus rapid transit walk access in Jinan, China. J. Transp. Geogr. 20, 1–14 (2012).

    Article 

    Google Scholar
     

  • Rossetti, T., Lobel, H., Rocco, V. & Hurtubia, R. Explaining subjective perceptions of public spaces as a function of the built environment: a massive data approach. Landsc. Urban Plan. 181, 169–178 (2019).

    Article 

    Google Scholar
     

  • Dharmasthala, S., Sun, Q. & Langenheim, N. Are high distributed streetscapes also located in the high social interaction streets? A Space syntax approach on street liveability assessment. In 2021 28th International Conference on Geoinformatics 1–7, https://doi.org/10.1109/IEEECONF54055.2021.9687512 (2021).

  • Inoue, T., Manabe, R., Murayama, A. & Koizumi, H. The effect of culture-specific differences in urban streetscapes on the inference accuracy of deep learning models. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. X-4-W3-2022, 73–80 (2022).


    Google Scholar
     

  • Qiu, W. et al. Subjective and objective measures of streetscape perceptions: Relationships with property value in Shanghai. Cities 132, 104037 (2023).

    Article 

    Google Scholar
     

  • Ogawa, Y., Oki, T., Zhao, C., Sekimoto, Y. & Shimizu, C. Evaluating the subjective perceptions of streetscapes using street-view images. Landsc. Urban Plan. 247, 105073 (2024).

    Article 

    Google Scholar
     

  • Lee, S. & Cho, N. Nonlinear and interaction effects of multi-dimensional street-level built environment features on urban vitality in Seoul. Cities 165, 106145 (2025).

    Article 

    Google Scholar
     

  • Said, S. & Samadi, Z. The evolution of historic streetscape in adapting modern demand in achieving the quality of life. Proc. Soc. Behav. Sci. 234, 488–497 (2016).

    Article 

    Google Scholar
     

  • Wey, W. M. & Wei, W. L. Urban street environment design for quality of urban life. Soc. Indic. Res. 126, 161–186 (2016).

    Article 

    Google Scholar
     

  • Sharifi, A. Resilient urban forms: a review of literature on streets and street networks. Build. Environ. 147, 171–187 (2019).

    Article 

    Google Scholar
     

  • Chen, Z. & Huang, B. Achieving urban vibrancy through effective city planning: a spatial and temporal perspective. Cities 152, 105230 (2024).

    Article 

    Google Scholar
     

  • Yang, L., Ao, Y., Ke, J., Lu, Y. & Liang, Y. To walk or not to walk? Examining non-linear effects of streetscape greenery on walking propensity of older adults. J. Transp. Geogr. 94, 103099 (2021).

    Article 

    Google Scholar
     

  • Devlin, A. S. Environmental Psychology and Human Well-Being (Academic Press, 2018).

  • Rapoport, A. The Meaning of the Built Environment: A Nonverbal Communication Approach (University of Arizona Press, 1990).

  • Hawley, A. H. Human Ecology: A Theory of Community Structure (The Ronald Press Company, 1950).

  • Zacharias, J. Pedestrian behavior pedestrian behavior and perception in urban walking environments. J. Plan. Lit. 16, 3–18 (2001).

    Article 

    Google Scholar
     

  • Kim, S. Are small cities disappearing? The policy responses to urban shrinkage oriented toward young people in Uiseong-gun, South Korea. Cities 155, 105450 (2024).

    Article 

    Google Scholar
     

  • He, X., Gao, W., Guan, D. & Zhou, L. Impacts of urban shrinkage on the built environment and its environmental sustainability: an analytical review. Environ. Res. Lett. 18, 103004 (2023).

    Article 

    Google Scholar
     

  • Lima, M. F. & Eischeid, M. R. Shrinking cities: rethinking landscape in depopulating urban contexts. Landsc. Res. 42, 691–698 (2017).

    Article 

    Google Scholar
     

  • Haase, A., Rink, D., Grossmann, K., Bernt, M. & Mykhnenko, V. Conceptualizing Urban Shrinkage. Environ. Plan. Econ. Space 46, 1519–1534 (2014).

    Article 

    Google Scholar
     

  • Sarif, N. & Roy, A. K. Measuring urban shrinkage in India using night-light data from DMSP-OLS and VIIRS-NPP satellite sensors. Cities 152, 105176 (2024).

    Article 

    Google Scholar
     

  • Li, Z. & Long, Y. Analysis of the Variation in Quality of Street Space in Shrinking Cities Based on Dynamic Street View Picture Recognition: A Case Study of Qiqihar. In Shrinking Cities in China: The Other Facet of Urbanization (eds. Long, Y. & Gao, S.) 141–155 (Springer, 2019). https://doi.org/10.1007/978-981-13-2646-2_8.

  • Barreira, A. P., Nunes, L. C., Guimarães, M. H. & Panagopoulos, T. Satisfied but thinking about leaving: the reasons behind residential satisfaction and residential attractiveness in shrinking Portuguese cities. Int. J. Urban Sci. 23, 67–87 (2019).

    Article 

    Google Scholar
     

  • Khavarian-Garmsir, A. R. A systematic review of shrinking cities literature: lessons from the past and directions for the future. Int. Plan. Stud. 28, 219–238 (2023).

    Article 

    Google Scholar
     

  • Istrate, A.-L., Bosák, V., Nováček, A. & Slach, O. How attractive for walking are the main streets of a shrinking city?. Sustainability 12, 6060 (2020).

    Article 

    Google Scholar
     

  • Boarnet, M. G., Forsyth, A., Day, K. & Oakes, J. M. The street level built environment and physical activity and walking: results of a predictive validity study for the Irvine Minnesota Inventory. Environ. Behav. 43, 735–775 (2011).

    Article 

    Google Scholar
     

  • Park, K., Ewing, R., Sabouri, S. & Larsen, J. Street life and the built environment in an auto-oriented US region. Cities 88, 243–251 (2019).

    Article 

    Google Scholar
     

  • Jiang, Y., Han, Y., Liu, M. & Ye, Y. Street vitality and built environment features: a data-informed approach from fourteen Chinese cities. Sustain. Cities Soc. 79, 103724 (2022).

    Article 

    Google Scholar
     

  • Lee, S., Lee, S. & Putri, D. W. Multifaceted associations between built environments and POI visit patterns by trip purposes. Cities 161, 105903 (2025).

    Article 

    Google Scholar
     

  • Chen, L., Lu, Y., Ye, Y., Xiao, Y. & Yang, L. Examining the association between the built environment and pedestrian volume using street view images. Cities 127, 103734 (2022).

    Article 

    Google Scholar
     

  • Vallebueno, A. & Lee, Y. S. Measuring urban quality and change through the detection of physical attributes of decay. Sci. Rep. 13, 17316 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Xu, Y., Tong, H., Liu, J., Su, Y. & Li, M. An assessment of the urban streetscape using multiscale data and semantic segmentation in Jinan Old City, China. Buildings 14, 2687 (2024).

    Article 

    Google Scholar
     

  • Cetintahra, G. E. & Cubukcu, E. The influence of environmental aesthetics on economic value of housing: an empirical research on virtual environments. J. Hous. Built Environ. 30, 331–340 (2015).

    Article 

    Google Scholar
     

  • Sheets, V. L. & Manzer, C. D. Affect, cognition, and urban vegetation: some effects of adding trees along city streets. Environ. Behav. 23, 285–304 (1991).

    Article 

    Google Scholar
     

  • Foster, S., Hooper, P., Knuiman, M., Bull, F. & Giles-Corti, B. Are liveable neighbourhoods safer neighbourhoods? Testing the rhetoric on new urbanism and safety from crime in Perth, Western Australia. Soc. Sci. Med. 164, 150–157 (2016).

    Article 

    Google Scholar
     

  • Mertens, L. et al. Which environmental factors most strongly influence a street’s appeal for bicycle transport among adults? A conjoint study using manipulated photographs. Int. J. Health Geogr. 15, 31 (2016).

    Article 

    Google Scholar
     

  • Ki, D. & Lee, S. Analyzing the effects of Green View Index of neighborhood streets on walking time using Google Street View and deep learning. Landsc. Urban Plan. 205, 103920 (2021).

    Article 

    Google Scholar
     

  • Ding, C., Jason Cao, X. & Næss, P. Applying gradient boosting decision trees to examine non-linear effects of the built environment on driving distance in Oslo. Transp. Res. Part Policy Pract. 110, 107–117 (2018).

    Article 

    Google Scholar
     

  • Gao, K., Yang, Y., Gil, J. & Qu, X. Data-driven interpretation on interactive and nonlinear effects of the correlated built environment on shared mobility. J. Transp. Geogr. 110, 103604 (2023).

    Article 

    Google Scholar
     

  • Lee, S. Relationships between transportation expenditures and built environment in the United States: insights from interpretable machine-learning approach. J. Plan. Educ. Res. https://doi.org/10.1177/0739456X241268464 (2024).

    Article 

    Google Scholar
     

  • Lee, S., Ki, D., Hipp, J. R. & Kim, J. H. Analysing non-linearities and threshold effects between street-level built environments and local crime patterns: an interpretable machine learning approach. Urban Stud. https://doi.org/10.1177/00420980241270948 (2024).

    Article 

    Google Scholar
     

  • Jin, K., Guo, W. & Yang, T. Urban street quality measurement in central city by combining street view images and deep learning. In 2023 5th International Academic Exchange Conference on Science and Technology Innovation (IAECST) 592–601. https://doi.org/10.1109/IAECST60924.2023.10502610 (2023).

  • Liang, X., Chang, J. H., Gao, S., Zhao, T. & Biljecki, F. Evaluating human perception of building exteriors using street view imagery. Build. Environ. 263, 111875 (2024).

    Article 

    Google Scholar
     

  • Jacobs, J. The Death and Life of Great American Cities (Random House, 1961).

  • Woo, A., Han, J., Shin, H. & Lee, S. Economic benefits of urban streetscapes: analyzing the interrelationships between visual street environments and single-family property values in Seoul, Korea. Appl. Geogr. 163, 103182 (2024).

    Article 

    Google Scholar
     

  • Bibri, S. E., Krogstie, J. & Kärrholm, M. Compact city planning and development: emerging practices and strategies for achieving the goals of sustainability. Dev. Built Environ. 4, 100021 (2020).

    Article 

    Google Scholar
     

  • Hu, Y., Liu, Y., Chen, P. & Zhang, M. The impact of residents’ perceptions of urban shrinkage on overall life satisfaction – The case of Yichun, China. Cities 141, 104445 (2023).

    Article 

    Google Scholar
     

  • Rupprecht, C. D. D. Informal urban green space: residents’ perception, use, and management preferences across four major Japanese shrinking cities. Land 6, 59 (2017).

    Article 

    Google Scholar
     

  • Xu, J. et al. Understanding the nonlinear effects of the street canyon characteristics on human perceptions with street view images. Ecol. Indic. 154, 110756 (2023).

    Article 

    Google Scholar
     

  • Koo, B. W., Guhathakurta, S. & Botchwey, N. How are neighborhood and street-level walkability factors associated with walking behaviors? A big data approach using street view images. Environ. Behav. 54, 211–241 (2022).

    Article 

    Google Scholar
     

  • Zhou, H. et al. A multiscale assessment of the impact of perceived safety from street view imagery on street crime. Ann. Am. Assoc. Geogr. 114, 69–90 (2024).


    Google Scholar
     

  • Biljecki, F. & Ito, K. Street view imagery in urban analytics and GIS: a review. Landsc. Urban Plan. 215, 104217 (2021).

    Article 

    Google Scholar
     

  • He, J., Zhang, J., Yao, Y. & Li, X. Extracting human perceptions from street view images for better assessing urban renewal potential. Cities 134, 104189 (2023).

    Article 

    Google Scholar
     

  • Sun, H. et al. A spatial analysis of urban streets under deep learning based on street view imagery: quantifying perceptual and elemental perceptual relationships. Sustainability 15, 14798 (2023).

    Article 

    Google Scholar
     

  • Yuan, Y., Wang, R., Niu, T. & Liu, Y. Using street view images and a geographical detector to understand how street-level built environment is associated with urban poverty: a case study in Guangzhou. Appl. Geogr. 156, 102980 (2023).

    Article 

    Google Scholar
     

  • Lu, Y., Ferranti, E. J. S., Chapman, L. & Pfrang, C. Assessing urban greenery by harvesting street view data: a review. Urban. Urban Green. 83, 127917 (2023).

    Article 

    Google Scholar
     

  • Li, Y., Miller, H. J., Root, E. D., Hyder, A. & Liu, D. Understanding the role of urban social and physical environment in opioid overdose events using found geospatial data. Health Place 75, 102792 (2022).

    Article 

    Google Scholar
     

  • Quercia, D., O’Hare, N. K. & Cramer, H. Aesthetic capital: what makes london look beautiful, quiet, and happy? In Proceedings of the 17th ACM conference on Computer supported cooperative work & social computing 945–955 (Association for Computing Machinery, 2014). https://doi.org/10.1145/2531602.2531613.

  • Dubey, A., Naik, N., Parikh, D., Raskar, R. & Hidalgo, C. A. Deep learning the city: quantifying urban perception at a global scale. In Computer Vision – ECCV 2016 (eds. Leibe, B., Matas, J., Sebe, N. & Welling, M.) 196–212 (Springer International Publishing, Cham, 2016). https://doi.org/10.1007/978-3-319-46448-0_12.

  • Kushlev, K., Drummond, D. M. & Diener, E. Subjective well-being and health behaviors in 2.5 million Americans. Appl. Psychol. Health Well Being 12, 166–187 (2020).

    Article 

    Google Scholar
     

  • Li, X., Zhang, C. & Li, W. Does the visibility of greenery increase perceived safety in urban areas? Evidence from the place pulse 1.0 dataset. ISPRS Int. J. Geo Inf. 4, 1166–1183 (2015).

    Article 

    Google Scholar
     

  • Freitas, F., Berreth, T., Chen, Y.-C. & Jhala, A. Characterizing the perception of urban spaces from visual analytics of street-level imagery. AI Soc. 38, 1361–1371 (2023).

    Article 

    Google Scholar
     

  • Huang, X. et al. Comprehensive walkability assessment of urban pedestrian environments using big data and deep learning techniques. Sci. Rep. 14, 26993 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Shi, H., Yu, L., Xu, Y., Liu, Y. & Zhao, M. The impact of the streetscape built environment on recreation satisfaction: a case study of Guangzhou. J. Transp. Geogr. 112, 103702 (2023).

    Article 

    Google Scholar
     

  • Rita, L., Peliteiro, M., Bostan, T.-C., Tamagusko, T. & Ferreira, A. Using deep learning and google street view imagery to assess and improve cyclist safety in London. Sustainability 15, 10270 (2023).

    Article 

    Google Scholar
     

  • Kim, G.-E. & Lee, J.-R. The impact of historic building preservation in urban economics: focusing on accommodation prices in Jeonju Hanok Village, South Korea. Sustainability 12, 5005 (2020).

    Article 

    Google Scholar
     

  • Lee, J.-S. Measuring the benefits of the intangible cultural heritage hall in Jeonju Korea: results of a contingent valuation survey. J. Cult. Herit. 16, 236–238 (2015).

    Article 

    Google Scholar
     

  • Lee, S., Ock, Y., Kim, M. & Schrock, G. The regional uneven development and the state intervention to reshape the spatial hierarchy. Int. J. Reg. Dev. 8, 1 (2021).

    CAS 

    Google Scholar
     

  • Lee, J., Kim, D. & Park, J. A machine learning and computer vision study of the environmental characteristics of streetscapes that affect pedestrian satisfaction. Sustainability 14, 5730 (2022).

    Article 

    Google Scholar
     

  • Lavieri, P. S. & Bhat, C. R. Investigating objective and subjective factors influencing the adoption, frequency, and characteristics of ride-hailing trips. Transp. Res. Part C. Emerg. Technol. 105, 100–125 (2019).

    Article 

    Google Scholar
     

  • Kang, Y., Kim, J., Park, J. & Lee, J. Assessment of perceived and physical walkability using street view images and deep learning technology. ISPRS Int. J. Geo-Inf. 12, 186 (2023).

    Article 

    Google Scholar
     

  • Zhang, J. & Hu, A. Analyzing green view index and green view index best path using Google street view and deep learning. J. Comput. Des. Eng. 9, 2010–2023 (2022).


    Google Scholar
     

  • Aikoh, T., Homma, R. & Abe, Y. Comparing conventional manual measurement of the green view index with modern automatic methods using google street view and semantic segmentation. Urban. Urban Green. 80, 127845 (2023).

    Article 

    Google Scholar
     

  • Shin, H.-C. et al. Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning. IEEE Trans. Med. Imaging 35, 1285–1298 (2016).

    Article 

    Google Scholar
     

  • Gupta, J., Pathak, S. & Kumar, G. Deep learning (CNN) and transfer learning: a review. J. Phys. Conf. Ser. 2273, 012029 (2022).

    Article 

    Google Scholar
     

  • Lee, J. S., Won, S. & Kim, S. Describing changes in the built environment of shrinking cities: case study of Incheon, South Korea. J. Urban Plan. Dev. 142, 05015010 (2016).

    Article 

    Google Scholar
     

  • Hollander, J., Johnson, M., Drew, R. B. & Tu, J. Changing urban form in a shrinking city. Environ. Plan. B 46, 963–991 (2019).


    Google Scholar
     

  • Yin, C., Cao, J. & Sun, B. Examining non-linear associations between population density and waist-hip ratio: an application of gradient boosting decision trees. Cities 107, 102899 (2020).

    Article 

    Google Scholar
     

  • Yang, L., Liang, Y., Zhu, Q. & Chu, X. Machine learning for inference: using gradient boosting decision tree to assess non-linear effects of bus rapid transit on house prices. Ann. GIS 27, 273–284 (2021).

    Article 

    Google Scholar
     

  • Liu, J., Wang, B. & Xiao, L. Non-linear associations between built environment and active travel for working and shopping: an extreme gradient boosting approach. J. Transp. Geogr. 92, 103034 (2021).

    Article 

    Google Scholar
     

  • Lee, S. Transportation Mode Choice Behavior in the Era of Autonomous Vehicles: The Application of Discrete Choice Modeling and Machine Learning (Portland State University, 2022).

  • Wu, J. & Kulcsár, B. A modular, adaptive, and autonomous transit system (MAATS): A in-motion transfer strategy and performance evaluation in urban grid transit networks. Transp. Res. Part Policy Pract. 151, 81–98 (2021). Selpi & Qu, X.

    Article 

    Google Scholar
     

  • Shams, M. Y. et al. Water quality prediction using machine learning models based on grid search method. Multimed. Tools Appl. 83, 35307–35334 (2024).

    Article 

    Google Scholar
     

  • Refaeilzadeh, P., Tang, L. & Liu, H. Cross-validation. In Encyclopedia of Database Systems (eds. Liu, L. & Özsu, M. T.) 1–7 (Springer, 2016). https://doi.org/10.1007/978-1-4899-7993-3_565-2.

  • Malakouti, S. M., Menhaj, M. B. & Suratgar, A. A. The usage of 10-fold cross-validation and grid search to enhance ML methods performance in solar farm power generation prediction. Clean. Eng. Technol. 15, 100664 (2023).

    Article 

    Google Scholar
     

  • Huang, N., Lu, G. & Xu, D. A permutation importance-based feature selection method for short-term electricity load forecasting using random forest. Energies 9, 767 (2016).

    Article 

    Google Scholar
     

  • Mi, X., Zou, B., Zou, F. & Hu, J. Permutation-based identification of important biomarkers for complex diseases via machine learning models. Nat. Commun. 12, 3008 (2021).

    Article 

    Google Scholar
     

  • Zhao, X. et al. Factors affecting traffic risks on bridge sections of freeways based on partial dependence plots. Phys. Stat. Mech. Appl. 598, 127343 (2022).

    Article 

    Google Scholar
     

  • Shi, H., Yang, N., Yang, X. & Tang, H. Clarifying relationship between PM2.5 concentrations and spatiotemporal predictors using multi-way partial dependence plots. Remote Sens. 15, 358 (2023).

    Article 

    Google Scholar
     

  • Inglis, A., Parnell, A. & Hurley, C. B. Visualizing variable importance and variable interaction effects in machine learning models. J. Comput. Graph. Stat. 31, 766–778 (2022).

    Article 

    Google Scholar
     

  • Ullah, I., Liu, K., Yamamoto, T., Zahid, M. & Jamal, A. Modeling of machine learning with SHAP approach for electric vehicle charging station choice behavior prediction. Travel Behav. Soc. 31, 78–92 (2023).

    Article 

    Google Scholar