• Thompson, D. W. J. & Wallace, J. M. Annular modes in the extratropical circulation. Part I: month-to-month variability. J. Clim. 13, 1000–1016 (2000).

    Article 

    Google Scholar
     

  • Rogers, J. C. & Loon, H. van Spatial variability of sea level pressure and 500 mb height anomalies over the Southern Hemisphere. Mon. Weather Rev. 110, 1375–1392 (1982).

    Article 

    Google Scholar
     

  • Gong, D. & Wang, S. Definition of Antarctic oscillation index. Geophys. Res. Lett. 26, 459–462 (1999).

    Article 

    Google Scholar
     

  • Marshall Trends in the Southern Annular Mode from observations and reanalyses. J. Clim. 16, 4134–4143 (2003).

    Article 

    Google Scholar
     

  • Hartmann, D. L. & Lo, F. Wave-driven zonal flow vacillation in the Southern Hemisphere. J. Atmos. Sci. 55, 1303–1315 (1998).

    Article 

    Google Scholar
     

  • Ho, M., Kiem, A. S. & Verdon-Kidd, D. C. The Southern Annular Mode: a comparison of indices. Hydrol. Earth Syst. Sci. 16, 967–982 (2012).

    Article 

    Google Scholar
     

  • Wright, N. M., Krause, C. E., Phipps, S. J., Boschat, G. & Abram, N. J. Influence of long-term changes in solar irradiance forcing on the Southern Annular Mode. Clim. Past 18, 1509–1528 (2022).

    Article 

    Google Scholar
     

  • Velasquez-Jimenez, L. & Abram, N. J. Technical note: an improved methodology for calculating the Southern Annular Mode index to aid consistency between climate studies. Clim. Past 20, 1125–1139 (2024).

    Article 

    Google Scholar
     

  • Lim, E.-P. et al. The 2019 Southern Hemisphere stratospheric polar vortex weakening and its impacts. Bull. Am. Meteorol. Soc. 102, E1150–E1171 (2021).

    Article 

    Google Scholar
     

  • Lim, E.-P. et al. Australian hot and dry extremes induced by weakenings of the stratospheric polar vortex. Nat. Geosci. 12, 896–901 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Harris, S. & Lucas, C. Understanding the variability of Australian fire weather between 1973 and 2017. PLoS ONE 14, e0222328 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Lenaerts, J. T. M., Fyke, J. & Medley, B. The Ssgnature of ozone depletion in recent antarctic precipitation change: a study with the community earth system model. Geophys. Res. Lett. 45, 12,931–12,939 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Fogt, R. L. & Marshall, G. J. The Southern Annular Mode: variability, trends, and climate impacts across the Southern Hemisphere. WIREs Clim. Change 11, e652 (2020).

    Article 

    Google Scholar
     

  • IPCC. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (eds Masson-Delmotte, V. et al.) (Cambridge Univ. Press, 2023).

  • Nakamura, H. & Shimpo, A. Seasonal variations in the Southern Hemisphere storm tracks and jet streams as revealed in a reanalysis dataset. J. Clim. 17, 1828–1844 (2004).

    Article 

    Google Scholar
     

  • Lorenz, D. J. & Hartmann, D. L. Eddy–zonal flow feedback in the Southern Hemisphere. J. Atmos. Sci. 58, 3312–3327 (2001).

    Article 

    Google Scholar
     

  • Hendon, H. H., Lim, E.-P. & Nguyen, H. Seasonal variations of subtropical precipitation associated with the Southern Annular Mode. J. Clim. 27, 3446–3460 (2014).

    Article 

    Google Scholar
     

  • Codron, F. Relations between annular modes and the mean state: Southern Hemisphere winter. J. Atmos. Sci. 64, 3328–3339 (2007).

    Article 

    Google Scholar
     

  • Barnes, E. A. & Hartmann, D. L. Dynamical feedbacks of the Southern Annular Mode in winter and summer. J. Atmos. Sci. 67, 2320–2330 (2010).

    Article 

    Google Scholar
     

  • Ding, Q., Steig, E. J., Battisti, D. S. & Wallace, J. M. Influence of the tropics on the Southern Annular Mode. J. Clim. 25, 6330–6348 (2012).

    Article 

    Google Scholar
     

  • Gillett, Z. E., Hendon, H. H., Arblaster, J. M. & Lin, H. Sensitivity of the Southern Hemisphere wintertime teleconnection to the location of ENSO heating. J. Clim. 36, 2497–2514 (2023).

    Article 

    Google Scholar
     

  • Hoskins, B. J. & Ambrizzi, T. Rossby wave propagation on a realistic longitudinally varying flow. J. Atmos. Sci. 50, 1661–1671 (1993).

    Article 

    Google Scholar
     

  • Fan, K. Zonal asymmetry of the Antarctic oscillation. Geophys. Res. Lett. 34, L02706 (2007).

    Article 

    Google Scholar
     

  • Fogt, R. L., Jones, J. M. & Renwick, J. Seasonal zonal asymmetries in the Southern Annular Mode and their impact on regional temperature anomalies. J. Clim. 25, 6253–6270 (2012).

    Article 

    Google Scholar
     

  • Campitelli, E., Díaz, L. B. & Vera, C. Assessment of zonally symmetric and asymmetric components of the Southern Annular Mode using a novel approach. Clim. Dyn. 58, 161–178 (2022).

    Article 

    Google Scholar
     

  • Kidston, J., Renwick, J. A. & McGregor, J. Hemispheric-scale seasonality of the Southern Annular Mode and impacts on the climate of New Zealand. J. Clim. 22, 4759–4770 (2009).

    Article 

    Google Scholar
     

  • Pezza, A. B., Rashid, H. A. & Simmonds, I. Climate links and recent extremes in Antarctic sea ice, high-latitude cyclones, Southern Annular Mode and ENSO. Clim. Dyn. 38, 57–73 (2012).

    Article 

    Google Scholar
     

  • Irving, D. & Simmonds, I. A novel approach to diagnosing Southern Hemisphere planetary wave activity and its influence on regional climate variability. J. Clim. 28, 9041–9057 (2015).

    Article 

    Google Scholar
     

  • Ciasto, L. M., Simpkins, G. R. & England, M. H. Teleconnections between tropical Pacific SST anomalies and extratropical Southern Hemisphere climate. J. Clim. 28, 56–65 (2015).

    Article 

    Google Scholar
     

  • Turner, J., Phillips, T., Hosking, J. S., Marshall, G. J. & Orr, A. The Amundsen Sea Low. Int. J. Climatol. 33, 1818–1829 (2013).

    Article 

    Google Scholar
     

  • Clem, K. R., Renwick, J. A. & McGregor, J. Large-scale forcing of the Amundsen Sea Low and its influence on sea ice and West Antarctic temperature. J. Clim. 30, 8405–8424 (2017).

    Article 

    Google Scholar
     

  • Schroeter, S., O’Kane, T. J. & Sandery, P. A. Antarctic sea ice regime shift associated with decreasing zonal symmetry in the Southern Annular Mode. Cryosphere 17, 701–717 (2023).

    Article 

    Google Scholar
     

  • Baldwin, M. P. & Dunkerton, T. J. Stratospheric harbingers of anomalous weather regimes. Science 294, 581–584 (2001).

    Article 
    CAS 

    Google Scholar
     

  • Thompson, D. W. J., Baldwin, M. P. & Solomon, S. Stratosphere–troposphere coupling in the Southern Hemisphere. J. Atmos. Sci. 62, 708–715 (2005).

    Article 

    Google Scholar
     

  • Byrne, N. J. & Shepherd, T. G. Seasonal persistence of circulation anomalies in the Southern Hemisphere stratosphere and its implications for the troposphere. J. Clim. 31, 3467–3483 (2018).

    Article 

    Google Scholar
     

  • Lim, E.-P., Hendon, H. H. & Thompson, D. W. J. Seasonal evolution of stratosphere–troposphere coupling in the Southern Hemisphere and implications for the predictability of surface climate. J. Geophys. Res. Atmos. 123, 12,002–12,016 (2018).

    Article 

    Google Scholar
     

  • Jucker, M. & Reichler, T. Life cycle of major sudden stratospheric warmings in the Southern Hemisphere from a multimillennial GCM simulation. J. Clim. 36, 643–661 (2023).

    Article 

    Google Scholar
     

  • Ambaum, M. H. P. & Hoskins, B. J. The NAO troposphere–stratosphere connection. J. Clim. 15, 1969–1978 (2002).

    Article 

    Google Scholar
     

  • Baldwin, M. P., Birner, T. & Ayarzagüena, B. Tropospheric amplification of stratosphere–troposphere coupling. Q. J. R. Meteorol. Soc. 150, 5188–5205 (2024).

    Article 

    Google Scholar
     

  • Jucker, M. & Goyal, R. Ozone-forced Southern Annular Mode during Antarctic stratospheric warming events. Geophys. Res. Lett. 49, e2021GL095270 (2022).

    Article 

    Google Scholar
     

  • Hendon, H. H., Lim, E.-P. & Abhik, S. Impact of interannual ozone variations on the downward coupling of the 2002 Southern Hemisphere stratospheric warming. J. Geophys. Res. Atmos. 125, e2020JD032952 (2020).

    Article 

    Google Scholar
     

  • Fogt, R. L., Bromwich, D. H. & Hines, K. M. Understanding the SAM influence on the South Pacific ENSO teleconnection. Clim. Dyn. 36, 1555–1576 (2011).

    Article 

    Google Scholar
     

  • Lu, J., Chen, G. & Frierson, D. M. W. Response of the zonal mean atmospheric circulation to El Niño versus global warming. J. Clim. 21, 5835–5851 (2008).

    Article 

    Google Scholar
     

  • L’Heureux, M. L. & Thompson, D. W. J. Observed relationships between the El Niño–Southern Oscillation and the extratropical zonal-mean circulation. J. Clim. 19, 276–287 (2006).

    Article 

    Google Scholar
     

  • Robinson, W. A. A baroclinic mechanism for the eddy feedback on the zonal index. J. Atmos. Sci. 57, 415–422 (2000).

    Article 

    Google Scholar
     

  • Lim, E.-P., Hendon, H. H. & Rashid, H. Seasonal predictability of the Southern Annular Mode due to its association with ENSO. J. Clim. 26, 8037–8054 (2013).

    Article 

    Google Scholar
     

  • Wilson, A. B., Bromwich, D. H. & Hines, K. M. Simulating the mutual forcing of anomalous high southern latitude atmospheric circulation by El Niño flavors and the Southern Annular Mode. J. Clim. 29, 2291–2309 (2016).

    Article 

    Google Scholar
     

  • Wedd, R. et al. ACCESS-S2: the upgraded bureau of meteorology multi-week to seasonal prediction system. J. South. Hemisph. Earth Syst. Sci. 72, 218–242 (2022).

    Article 

    Google Scholar
     

  • Fogt, R. L. & Bromwich, D. H. Decadal variability of the ENSO teleconnection to the high-latitude South Pacific governed by coupling with the Southern Annular Mode. J. Clim. 19, 979–997 (2006).

    Article 

    Google Scholar
     

  • Yang, D. et al. Role of tropical variability in driving decadal shifts in the Southern Hemisphere summertime eddy-driven jet. J. Clim. 33, 5445–5463 (2020).

    Article 

    Google Scholar
     

  • World Meteorological Organization. Scientific Assessment of Ozone Depletion: 2022 (WMO, 2022).

  • Matthews, A. J. & Meredith, M. P. Variability of Antarctic circumpolar transport and the Southern Annular Mode associated with the Madden–Julian Oscillation. Geophys. Res. Lett. 31, L24312 (2004).

    Article 

    Google Scholar
     

  • Flatau, M. & Kim, Y.-J. Interaction between the MJO and polar circulations. J. Clim. 26, 3562–3574 (2013).

    Article 

    Google Scholar
     

  • Pohl, B., Fauchereau, N., Reason, C. J. C. & Rouault, M. Relationships between the Antarctic Oscillation, the Madden–Julian Oscillation, and ENSO, and consequences for rainfall analysis. J. Clim. 23, 238–254 (2010).

    Article 

    Google Scholar
     

  • Fauchereau, N., Pohl, B. & Lorrey, A. Extratropical impacts of the Madden–Julian Oscillation over New Zealand from a weather regime perspective. J. Clim. 29, 2161–2175 (2016).

    Article 

    Google Scholar
     

  • Lim, E. P. & Hendon, H. H. Understanding the contrast of Australian springtime rainfall of 1997 and 2002 in the frame of two flavors of El Niño. J. Clim. 28, 2804–2822 (2015).

    Article 

    Google Scholar
     

  • Abram, N. J. et al. Evolution of the Southern Annular Mode during the past millennium. Nat. Clim. Change 4, 564–569 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Dätwyler, C. et al. Teleconnection stationarity, variability and trends of the southern annular mode (SAM) during the last millennium. Clim. Dyn. 51, 2321–2339 (2017).

    Article 

    Google Scholar
     

  • Villalba, R. et al. Unusual Southern Hemisphere tree growth patterns induced by changes in the Southern Annular Mode. Nat. Geosci. 5, 793–798 (2012).

    Article 
    CAS 

    Google Scholar
     

  • King, J., Anchukaitis, K. J., Allen, K., Vance, T. & Hessl, A. Trends and variability in the Southern Annular Mode over the Common Era. Nat. Commun. 14, 2324 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Morgenstern, O. The Southern Annular Mode in 6th Coupled Model Intercomparison Project Models. J. Geophys. Res. Atmos. 126, e2020JD034161 (2021).

    Article 

    Google Scholar
     

  • Thompson, D. W. J. et al. Signatures of the Antarctic ozone hole in Southern Hemisphere surface climate change. Nat. Geosci. 4, 741–749 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Eyring, V. et al. in Climate Change 2021 — The Physical Science Basis (eds Masson-Delmotte, V. et al.) https://doi.org/10.1017/9781009157896.005 (IPCC, Cambridge Univ. Press, 2021).

  • Polvani, L. M., Waugh, D. W., Correa, G. J. P. & Son, S.-W. Stratospheric ozone depletion: the main driver of twentieth-century atmospheric circulation changes in the Southern Hemisphere. J. Clim. 24, 795–812 (2011).

    Article 

    Google Scholar
     

  • Gillett, N. P. & Fyfe, J. C. Annular mode changes in the CMIP5 simulations. Geophys. Res. Lett. 40, 1189–1193 (2013).

    Article 

    Google Scholar
     

  • Son, S.-W. et al. Tropospheric jet response to Antarctic ozone depletion: an update with Chemistry–climate Model Initiative (CCMI) models. Environ. Res. Lett. 13, 054024 (2018).

    Article 

    Google Scholar
     

  • Shaw, T. iffany et al. Emerging climate change signals in atmospheric circulation. AGU Adv. 5, 2024AV001297 (2024).

    Article 

    Google Scholar
     

  • Garfinkel, C. I. et al. Impact of parameterized convection on the storm track and near-surface jet response to global warming: implications for mechanisms of the future poleward shift. J. Clim. 37, 2541–2564 (2024).

    Article 

    Google Scholar
     

  • Lachmy, O. The relation between the latitudinal shifts of midlatitude diabatic heating, eddy heat flux, and the eddy-driven jet in CMIP6 models. J. Geophys. Res. Atmos. 127, e2022JD036556 (2022).

    Article 

    Google Scholar
     

  • Tan, Z. & Shaw, T. A. Quantifying the impact of wind and surface humidity-induced surface heat exchange on the circulation shift in response to increased CO. Geophys. Res. Lett. 47, e2020GL088053 (2020).

    Article 

    Google Scholar
     

  • Banerjee, A., Fyfe, J. C., Polvani, L. M., Waugh, D. & Chang, K.-L. A pause in Southern Hemisphere circulation trends due to the Montreal Protocol. Nature 579, 544–548 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Zheng, F. Slowing down of the summer Southern Hemisphere annular mode trend against the background of ozone recovery. Atmos. Ocean. Sci. Lett. 17, 100375 (2024).

    Article 

    Google Scholar
     

  • Schneider, D. P., Deser, C. & Fan, T. Comparing the impacts of tropical SST variability and polar stratospheric ozone loss on the Southern Ocean westerly winds. J. Clim. 28, 9350–9372 (2015).

    Article 

    Google Scholar
     

  • Fogt, R. L. et al. A twentieth century perspective on summer Antarctic pressure change and variability and contributions from tropical SSTs and ozone depletion. Geophys. Res. Lett. 44, 9918–9927 (2017).

    Article 

    Google Scholar
     

  • Goyal, R., Sen Gupta, A., Jucker, M. & England, M. H. Historical and projected changes in the Southern Hemisphere surface westerlies. Geophys. Res. Lett. 48, e2020GL090849 (2021).

    Article 

    Google Scholar
     

  • King, A. D. et al. Exploring climate stabilisation at different global warming levels in ACCESS-ESM-1.5. Earth Syst. Dyn. 15, 1353–1383 (2024).

    Article 

    Google Scholar
     

  • Chamberlain, M. A., Ziehn, T. & Law, R. M. The Southern Ocean as the climate’s freight train — driving ongoing global warming under zero-emission scenarios with ACCESS-ESM1.5. Biogeosciences 21, 3053–3073 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Sniderman, J. M. K. et al. Southern Hemisphere subtropical drying as a transient response to warming. Nat. Clim. Change 9, 232–236 (2019).

    Article 

    Google Scholar
     

  • Grose, M. R. & King, A. D. The circulation and rainfall response in the Southern Hemisphere extra-tropics to climate stabilisation. Weather Clim. Extrem. 41, 100577 (2023).

    Article 

    Google Scholar
     

  • Boschat, G., Purich, A., Rudeva, I. & Arblaster, J. Impact of zonal and meridional atmospheric flow on surface climate and extremes in the Southern Hemisphere. J. Clim. 36, 5041–5061 (2023).

    Article 

    Google Scholar
     

  • Ortiz-Guzmán, V., Jucker, M. & Sherwood, S. Zonal Wavenumber 3 forces extreme precipitation in South America. J. Clim. 37, 3649–3660 (2024).

    Article 

    Google Scholar
     

  • Uotila, P., Vihma, T. & Tsukernik, M. Close interactions between the Antarctic cyclone budget and large-scale atmospheric circulation. Geophys. Res. Lett. 40, 3237–3241 (2013).

    Article 

    Google Scholar
     

  • Grieger, J., Leckebusch, G. C., Raible, C. C., Rudeva, I. & Simmonds, I. Subantarctic cyclones identified by 14 tracking methods, and their role for moisture transports into the continent. Tellus Dyn. Meteorol. Oceanogr. 70, 1–18 (2018).


    Google Scholar
     

  • Pepler, A. Projections of synoptic anticyclones for the twenty-first century. Clim. Dyn. 61, 3271–3287 (2023).

    Article 

    Google Scholar
     

  • Rudeva, I. & Simmonds, I. Variability and trends of global atmospheric frontal activity and links with large-scale modes of variability. J. Clim. 28, 3311–3330 (2015).

    Article 

    Google Scholar
     

  • Bernardes Pezza, A., Durrant, T., Simmonds, I. & Smith, I. Southern Hemisphere synoptic behavior in extreme phases of SAM, ENSO, sea ice extent, and southern Australia rainfall. J. Clim. 21, 5566–5584 (2008).

    Article 

    Google Scholar
     

  • Spensberger, C., Reeder, M. J., Spengler, T. & Patterson, M. The connection between the Southern Annular Mode and a feature-based perspective on Southern Hemisphere midlatitude winter variability. J. Clim. 33, 115–129 (2020).

    Article 

    Google Scholar
     

  • Simmonds, I., Keay, K. & Tristram Bye, J. A. Identification and climatology of Southern Hemisphere mobile fronts in a modern reanalysis. J. Clim. 25, 1945–1962 (2012).

    Article 

    Google Scholar
     

  • Saenko, O. A., Fyfe, J. C. & England, M. H. On the response of the oceanic wind-driven circulation to atmospheric CO2 increase. Clim. Dyn. 25, 415–426 (2005).

    Article 

    Google Scholar
     

  • Oke, P. R. & England, M. H. Oceanic response to changes in the latitude of the Southern Hemisphere subpolar westerly winds. J. Clim. 17, 1040–1054 (2004).

    Article 

    Google Scholar
     

  • Fyfe, J. C. & Saenko, O. A. Simulated changes in the extratropical Southern Hemisphere winds and currents. Geophys. Res. Lett. 33, L06701 (2006).

    Article 

    Google Scholar
     

  • Yin, J. H. A consistent poleward shift of the storm tracks in simulations of 21st century climate. Geophys. Res. Lett. 32, L18701 (2005).

    Article 

    Google Scholar
     

  • Hall, A. & Visbeck, M. Synchronous variability in the Southern Hemisphere atmosphere, sea ice, and ocean resulting from the annular mode. J. Clim. 15, 3043–3057 (2002).

    Article 

    Google Scholar
     

  • Sen Gupta, A. & England, M. H. Coupled ocean–atmosphere–ice response to variations in the Southern Annular Mode. J. Clim. 19, 4457–4486 (2006).

    Article 

    Google Scholar
     

  • Bi, D., Budd, W. F., Hirst, A. C. & Wu, X. Response of the Antarctic circumpolar current transport to global warming in a coupled model. Geophys. Res. Lett. 29, 26-1–26–4 (2002).

    Article 

    Google Scholar
     

  • Böning, C. W., Dispert, A., Visbeck, M., Rintoul, S. R. & Schwarzkopf, F. U. The response of the Antarctic circumpolar current to recent climate change. Nat. Geosci. 1, 864–869 (2008).

    Article 

    Google Scholar
     

  • Tansley, C. E. & Marshall, D. P. On the dynamics of wind-driven circumpolar currents. J. Phys. Oceanogr. 31, 3258–3273 (2001).

    Article 

    Google Scholar
     

  • Munday, D. R., Johnson, H. L. & Marshall, D. P. Eddy saturation of equilibrated circumpolar currents. J. Phys. Oceanogr. 43, 507–532 (2013).

    Article 

    Google Scholar
     

  • Morrison, A. K. & Hogg, A. M.cC. On the relationship between Southern Ocean overturning and ACC transport. J. Phys. Oceanogr. 43, 140–148 (2013).

    Article 

    Google Scholar
     

  • Martínez-Moreno, J. et al. Global changes in oceanic mesoscale currents over the satellite altimetry record. Nat. Clim. Change 11, 397–403 (2021).

    Article 

    Google Scholar
     

  • Rintoul, S. N. G., Alberto C. Rintoul, S. in Ocean Circulation and Climate — A 21st Century Perspective Vol. 103, 471–492 (Academic, 2013).

  • Schmidt, C., Morrison, A. K. & England, M. H. Wind- and sea-ice-driven interannual variability of Antarctic Bottom Water formation. J. Geophys. Res. Ocean. 128, e2023JC019774 (2023).

    Article 

    Google Scholar
     

  • Zhang, Z. et al. Evidence for large-scale climate forcing of dense shelf water variability in the Ross Sea. Nat. Commun. 15, 8190 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Marshall, J. et al. The ocean’s role in polar climate change: asymmetric Arctic and Antarctic responses to greenhouse gas and ozone forcing. Philos. Trans. R. Soc. Math. Phys. Eng. Sci. 372, 20130040 (2014).


    Google Scholar
     

  • Ferreira, D., Marshall, J., Bitz, C. M., Solomon, S. & Plumb, A. Antarctic Ocean and sea ice response to ozone depletion: a two-time-scale problem. J. Clim. 28, 1206–1226 (2015).

    Article 

    Google Scholar
     

  • Dong, Y., Polvani, L. M. & Bonan, D. B. Recent multi-decadal southern ocean surface cooling unlikely caused by Southern Annular Mode trends. Geophys. Res. Lett. 50, e2023GL106142 (2023).

    Article 

    Google Scholar
     

  • Purich, A. & Doddridge, E. W. Record low Antarctic sea ice coverage indicates a new sea ice state. Commun. Earth Environ. 4, 314 (2023).

    Article 

    Google Scholar
     

  • Kostov, Y. et al. Fast and slow responses of Southern Ocean sea surface temperature to SAM in coupled climate models. Clim. Dyn. 48, 1595–1609 (2017).

    Article 

    Google Scholar
     

  • Seviour, W. J. M. et al. The Southern Ocean sea surface temperature response to ozone depletion: a multimodel comparison. J. Clim. 32, 5107–5121 (2019).

    Article 

    Google Scholar
     

  • Doddridge, E. W. et al. Eddy compensation dampens Southern Ocean sea surface temperature response to westerly wind trends. Geophys. Res. Lett. 46, 4365–4377 (2019).

    Article 

    Google Scholar
     

  • Doddridge, E. W. & Marshall, J. C. Modulation of the seasonal cycle of Antarctic sea ice extent related to the Southern Annular Mode. Geophys. Res. Lett. 44, 9761–9768 (2017).

    Article 

    Google Scholar
     

  • Seviour, W. J. M., Gnanadesikan, A. & Waugh, D. W. The transient response of the Southern Ocean to stratospheric ozone depletion. J. Clim. 29, 7383–7396 (2016).

    Article 

    Google Scholar
     

  • Doddridge, E. W., Marshall, J., Song, H., Campin, J.-M. & Kelley, M. Southern Ocean heat storage, reemergence, and winter sea ice decline induced by summertime winds. J. Clim. 34, 1403–1415 (2021).

    Article 

    Google Scholar
     

  • Abernathey, R. P. et al. Water-mass transformation by sea ice in the upper branch of the Southern Ocean overturning. Nat. Geosci. 9, 596–601 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Pellichero, V., Sallée, J.-B., Chapman, C. C. & Downes, S. M. The Southern Ocean meridional overturning in the sea-ice sector is driven by freshwater fluxes. Nat. Commun. 9, 1789 (2018).

    Article 

    Google Scholar
     

  • Raphael, M. N. The influence of atmospheric zonal wave three on Antarctic sea ice variability. J. Geophys. Res. Atmos. 112, 2006JD007852 (2007).

    Article 

    Google Scholar
     

  • Yuan, X. & Li, C. Climate modes in southern high latitudes and their impacts on Antarctic sea ice. J. Geophys. Res. Ocean. 113, 2006JC004067 (2008).

    Article 

    Google Scholar
     

  • Eabry, M. D., Goyal, R., Taschetto, A. S., Hobbs, W. & Sen Gupta, A. Combined impacts of Southern Annular Mode and zonal wave 3 on Antarctic sea ice variability. J. Clim. 37, 1759–1775 (2024).

    Article 

    Google Scholar
     

  • Raphael, M. N. et al. The Amundsen Sea Low: variability, change, and impact on Antarctic climate. Bull. Am. Meteorol. Soc. 97, 111–121 (2016).

    Article 

    Google Scholar
     

  • Hosking, J. S., Orr, A., Marshall, G. J., Turner, J. & Phillips, T. The influence of the Amundsen–Bellingshausen seas low on the climate of West Antarctica and its representation in coupled climate model simulations. J. Clim. 26, 6633–6648 (2013).

    Article 

    Google Scholar
     

  • Seviour, W. J. M., Gnanadesikan, A., Waugh, D. & Pradal, M.-A. Transient response of the Southern Ocean to changing ozone: regional responses and physical mechanisms. J. Clim. 30, 2463–2480 (2017).

    Article 

    Google Scholar
     

  • Parkinson, C. L. A 40-y record reveals gradual antarctic sea ice increases followed by decreases at rates far exceeding the rates seen in the Arctic. Proc. Natl Acad. Sci. USA 116, 14414–14423 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Wang, G. et al. Compounding tropical and stratospheric forcing of the record low Antarctic sea-ice in 2016. Nat. Commun. 10, 13 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Meehl, G. A. et al. Sustained ocean changes contributed to sudden Antarctic sea ice retreat in late 2016. Nat. Commun. 10, 14 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Boehm, C. L., Thompson, D. W. J. & Blanchard-Wrigglesworth, E. The key role of the Southern Annular Mode during the sea-ice maximum for Antarctic sea ice and its recent loss. Commun. Earth Environ. 6, 833 (2025).

    Article 

    Google Scholar
     

  • Sigmond, M. & Fyfe, J. C. The Antarctic sea ice response to the ozone hole in climate models. J. Clim. 27, 1336–1342 (2014).

    Article 

    Google Scholar
     

  • Polvani, L. M. et al. Interannual SAM modulation of Antarctic sea ice extent does not account for its long-term trends, pointing to a limited role for ozone depletion. Geophys. Res. Lett. 48, e2021GL094871 (2021).

    Article 

    Google Scholar
     

  • Hobbs, W. et al. Observational evidence for a regime shift in summer Antarctic sea Ice. J. Clim. 37, 2263–2275 (2024).

    Article 

    Google Scholar
     

  • Meredith, M. et al. Polar regions. In IPCC Special Report on the Ocean and Cryosphere in a Changing Climate (eds Pörtner, H.-O. et al.) 203–320 (Cambridge Univ. Press, 2019).

  • Otosaka, I. N. et al. Mass balance of the Greenland and Antarctic ice sheets from 1992 to 2020. Earth Syst. Sci. Data 15, 1597–1616 (2023).

    Article 

    Google Scholar
     

  • Spence, P. et al. Rapid subsurface warming and circulation changes of Antarctic coastal waters by poleward shifting winds. Geophys. Res. Lett. 41, 4601–4610 (2014).

    Article 

    Google Scholar
     

  • Verfaillie, D. et al. The circum-Antarctic ice-shelves respond to a more positive Southern Annular Mode with regionally varied melting. Commun. Earth Environ. 3, 139 (2022).

    Article 

    Google Scholar
     

  • Pritchard, H. D. et al. Antarctic ice-sheet loss driven by basal melting of ice shelves. Nature 484, 502–505 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Heywood, K. et al. Between the devil and the deep blue sea: the role of the Amundsen Sea continental shelf in exchanges between ocean and ice shelves. Oceanography 29, 118–129 (2016).

    Article 

    Google Scholar
     

  • Schmidtko, S., Heywood, K. J., Thompson, A. F. & Aoki, S. Multidecadal warming of Antarctic waters. Science 346, 1227–1231 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Cook, A. J. et al. Ocean forcing of glacier retreat in the western Antarctic Peninsula. Science 353, 283–286 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Jenkins, A. et al. Decadal ocean forcing and Antarctic ice sheet response: lessons from the Amundsen Sea. Oceanography 29, 106–117 (2016).

    Article 

    Google Scholar
     

  • Kimura, S. et al. Oceanographic controls on the variability of ice-shelf basal melting and circulation of glacial meltwater in the Amundsen Sea Embayment, Antarctica. J. Geophys. Res. Ocean. 122, 10131–10155 (2017).

    Article 

    Google Scholar
     

  • Dinniman, M. S., Klinck, J. M. & Hofmann, E. E. Sensitivity of circumpolar deep water transport and ice shelf basal melt along the West Antarctic Peninsula to changes in the winds. J. Clim. 25, 4799–4816 (2012).

    Article 

    Google Scholar
     

  • Zhang, Z. et al. Linkage of the physical environments in the northern Antarctic Peninsula region to the Southern Annular Mode and the implications for the phytoplankton production. Prog. Oceanogr. 188, 102416 (2020).

    Article 

    Google Scholar
     

  • Hazel, J. E. & Stewart, A. L. Are the near-Antarctic easterly winds weakening in response to enhancement of the Southern Annular Mode? J. Clim. 32, 1895–1918 (2019).

    Article 

    Google Scholar
     

  • Meijers, A. J. S. The Southern Ocean in the Coupled Model Intercomparison Project phase 5. Philos. Trans. R. Soc. Math. Phys. Eng. Sci. 372, 20130296 (2014).

    CAS 

    Google Scholar
     

  • Downes, S. M. & Hogg, A. M. Southern Ocean circulation and eddy compensation in CMIP5 models. J. Clim. 26, 7198–7220 (2013).

    Article 

    Google Scholar
     

  • Spence, P. et al. Localized rapid warming of West Antarctic subsurface waters by remote winds. Nat. Clim. Change 7, 595–603 (2017).

    Article 

    Google Scholar
     

  • Holland, P. R., Bracegirdle, T. J., Dutrieux, P., Jenkins, A. & Steig, E. J. West Antarctic ice loss influenced by internal climate variability and anthropogenic forcing. Nat. Geosci. 12, 718–724 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Purich, A. & England, M. H. Historical and future projected warming of Antarctic shelf bottom water in CMIP6 models. Geophys. Res. Lett. 48, e2021GL092752 (2021).

    Article 

    Google Scholar
     

  • Hosking, J. S., Orr, A., Bracegirdle, T. J. & Turner, J. Future circulation changes off West Antarctica: sensitivity of the Amundsen Sea Low to projected anthropogenic forcing. Geophys. Res. Lett. 43, 367–376 (2016).

    Article 

    Google Scholar
     

  • Neme, J., England, M. H. & McC. Hogg, A. Projected changes of surface winds over the Antarctic continental margin. Geophys. Res. Lett. 49, e2022GL098820 (2022).

    Article 

    Google Scholar
     

  • Marshall, G. J. Half-century seasonal relationships between the Southern Annular Mode and Antarctic temperatures. Int. J. Climatol. 27, 373–383 (2007).

    Article 

    Google Scholar
     

  • Thompson, D. W. J. & Solomon, S. Interpretation of recent Southern Hemisphere climate change. Science 296, 895–899 (2002).

    Article 
    CAS 

    Google Scholar
     

  • Marshall, G. J. & Thompson, D. W. J. The signatures of large-scale patterns of atmospheric variability in Antarctic surface temperatures. J. Geophys. Res. Atmos. 121, 3276–3289 (2016).

    Article 

    Google Scholar
     

  • Saunderson, D., Mackintosh, A. N., McCormack, F. S., Jones, R. S. & van Dalum, C. T. How does the Southern Annular Mode control surface melt in East Antarctica? Geophys. Res. Lett. 51, e2023GL105475 (2024).

    Article 

    Google Scholar
     

  • Van Den Broeke, M. R. & Van Lipzig, N. P. M. Changes in Antarctic temperature, wind and precipitation in response to the Antarctic Oscillation. Ann. Glaciol. 39, 119–126 (2004).

    Article 

    Google Scholar
     

  • Reid, K. J., Arblaster, J. M., Alexander, L. V. & Siems, S. T. Spurious trends in high latitude Southern Hemisphere precipitation observations. Geophys. Res. Lett. 51, e2023GL106994 (2024).

    Article 

    Google Scholar
     

  • Marshall, G. J., Thompson, D. W. J. & van den Broeke, M. R. The signature of Southern Hemisphere atmospheric circulation patterns in Antarctic precipitation. Geophys. Res. Lett. 44, 11,580–11,589 (2017).

    Article 

    Google Scholar
     

  • Wille, J. D. et al. Antarctic atmospheric river climatology and precipitation impacts. J. Geophys. Res. Atmos. 126, e2020JD033788 (2021).

    Article 

    Google Scholar
     

  • Hartmann, D. L. A PV view of zonal flow vacillation. J. Atmos. Sci. 52, 2561–2576 (1995).

    Article 

    Google Scholar
     

  • Turner, J. et al. The dominant role of extreme precipitation events in Antarctic snowfall variability. Geophys. Res. Lett. 46, 3502–3511 (2019).

    Article 

    Google Scholar
     

  • Previdi, M. & Polvani, L. M. Impact of the montreal protocol on Antarctic surface mass balance and implications for global sea level rise. J. Clim. 30, 7247–7253 (2017).

    Article 

    Google Scholar
     

  • Chemke, R., Previdi, M., England, M. R. & Polvani, L. M. Distinguishing the impacts of ozone and ozone-depleting substances on the recent increase in Antarctic surface mass balance. Cryosphere 14, 4135–4144 (2020).

    Article 

    Google Scholar
     

  • Medley, B. & Thomas, E. R. Increased snowfall over the Antarctic ice sheet mitigated twentieth-century sea-level rise. Nat. Clim. Change 9, 34–39 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Dalaiden, Q., Goosse, H., Lenaerts, J. T. M., Cavitte, M. G. P. & Henderson, N. Future Antarctic snow accumulation trend is dominated by atmospheric synoptic-scale events. Commun. Earth Environ. 1, 62 (2020).

    Article 

    Google Scholar
     

  • Zhang, B., Yao, Y., Liu, L. & Yang, Y. Interannual ice mass variations over the Antarctic ice sheet from 2003 to 2017 were linked to El Niño–Southern Oscillation. Earth Planet. Sci. Lett. 560, 116796 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Pfeffer, J., Cazenave, A. & Barnoud, A. Analysis of the interannual variability in satellite gravity solutions: detection of climate modes fingerprints in water mass displacements across continents and oceans. Clim. Dyn. 58, 1065–1084 (2022).

    Article 

    Google Scholar
     

  • Kim, B.-H., Seo, K.-W., Eom, J., Chen, J. & Wilson, C. R. Antarctic ice mass variations from 1979 to 2017 driven by anomalous precipitation accumulation. Sci. Rep. 10, 20366 (2020).

    Article 
    CAS 

    Google Scholar
     

  • King, M. A., Lyu, K. & Zhang, X. Climate variability a key driver of recent Antarctic ice-mass change. Nat. Geosci. 16, 1128–1135 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Frölicher, T. L. et al. Dominance of the Southern Ocean in anthropogenic carbon and heat uptake in CMIP5 models. J. Clim. 28, 862–886 (2015).

    Article 

    Google Scholar
     

  • Landschützer, P. et al. The reinvigoration of the Southern Ocean carbon sink. Science 349, 1221–1224 (2015).

    Article 

    Google Scholar
     

  • Menviel, L. & Spence, P. Southern Ocean circulation’s impact on atmospheric CO2 concentration. Front. Mar. Sci. 10, 1328534 (2024).

    Article 

    Google Scholar
     

  • Lenton, A. & Matear, R. J. Role of the Southern Annular Mode (SAM) in Southern Ocean CO2 uptake. Glob. Biogeochem. Cycles 21, 2006GB002714 (2007).

    Article 

    Google Scholar
     

  • Lovenduski, N. S., Gruber, N., Doney, S. C. & Lima, I. D. Enhanced CO2 outgassing in the Southern Ocean from a positive phase of the Southern Annular Mode. Glob. Biogeochem. Cycles 21, GB2026 (2007).

    Article 

    Google Scholar
     

  • Hauck, J. et al. Seasonally different carbon flux changes in the Southern Ocean in response to the Southern Annular Mode. Glob. Biogeochem. Cycles 27, 1236–1245 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Sallée, J.-B., Speer, K. G. & Rintoul, S. R. Zonally asymmetric response of the Southern Ocean mixed-layer depth to the Southern Annular Mode. Nat. Geosci. 3, 273–279 (2010).

    Article 

    Google Scholar
     

  • Dufour, C. O. et al. Eddy compensation and controls of the enhanced sea-to-air CO2 flux during positive phases of the Southern Annular Mode. Glob. Biogeochem. Cycles 27, 950–961 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Menviel, L. C. et al. Enhanced Southern Ocean CO₂ outgassing as a result of stronger and poleward shifted Southern Hemispheric westerlies. Biogeosciences 20, 4413–4431 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Sallée, J.-B., Matear, R. J., Rintoul, S. R. & Lenton, A. Localized subduction of anthropogenic carbon dioxide in the Southern Hemisphere oceans. Nat. Geosci. 5, 579–584 (2012).

    Article 

    Google Scholar
     

  • Ito, T., Woloszyn, M. & Mazloff, M. Anthropogenic carbon dioxide transport in the Southern Ocean driven by Ekman flow. Nature 463, 80–83 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Keppler, L. & Landschützer, P. Regional wind variability modulates the Southern Ocean carbon sink. Sci. Rep. 9, 7384 (2019).

    Article 

    Google Scholar
     

  • Swart, N. C., Gille, S. T., Fyfe, J. C. & Gillett, N. P. Recent Southern Ocean warming and freshening driven by greenhouse gas emissions and ozone depletion. Nat. Geosci. 11, 836–841 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Cai, W. et al. Southern Ocean warming and its climatic impacts. Sci. Bull. 68, 946–960 (2023).

    Article 

    Google Scholar
     

  • Ayers, J. M. & Strutton, P. G. Nutrient variability in subAntarctic mode waters forced by the Southern Annular Mode and ENSO. Geophys. Res. Lett. 40, 3419–3423 (2013).

    Article 

    Google Scholar
     

  • de Baar, H. J. W., Buma, A., Nolting, R., Cadee, G. & Jacques, G. On iron limitation of the Southern Ocean: experimental observations in the Weddell and Scotia seas. Mar. Ecol. Prog. Ser. 65, 105–122 (1990).

    Article 

    Google Scholar
     

  • Lovenduski, N. S. & Gruber, N. Impact of the Southern Annular Mode on Southern Ocean circulation and biology. Geophys. Res. Lett. 32, L11603 (2005).

    Article 

    Google Scholar
     

  • Noh, K. M., Lim, H.-G. & Kug, J.-S. Zonally asymmetric phytoplankton response to the Southern Annular Mode in the marginal sea of the Southern Ocean. Sci. Rep. 11, 10266 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Greaves, B. L. et al. The Southern Annular Mode (SAM) influences phytoplankton communities in the seasonal ice zone of the Southern Ocean. Biogeosciences 17, 3815–3835 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Li, Q., England, M. H., Hogg, A. M., Rintoul, S. R. & Morrison, A. K. Abyssal ocean overturning slowdown and warming driven by Antarctic meltwater. Nature 615, 841–847 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Revell, L. E., Robertson, F., Douglas, H., Morgenstern, O. & Frame, D. Influence of ozone forcing on 21st century Southern Hemisphere surface westerlies in CMIP6 models. Geophys. Res. Lett. 49, e2022GL098252 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Yeager, S. G. et al. Reduced Southern Ocean warming enhances global skill and signal-to-noise in an eddy-resolving decadal prediction system. npj Clim. Atmos. Sci. 6, 107 (2023).

    Article 

    Google Scholar
     

  • Hartmann, D. L. The Antarctic ozone hole and the pattern effect on climate sensitivity. Proc. Natl Acad. Sci. USA 119, e2207889119 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, X. et al. Evaluation of the seasonality and spatial aspects of the Southern Annular Mode in CMIP6 models. Int. J. Climatol. 42, 3820–3837 (2022).

    Article 

    Google Scholar
     

  • Udy, D. G., Vance, T. R., Kiem, A. S. & Holbrook, N. J. A synoptic bridge linking sea salt aerosol concentrations in East Antarctic snowfall to Australian rainfall. Commun. Earth Environ. 3, 175 (2022).

    Article 

    Google Scholar
     

  • Silvestri, G. E. & Vera, C. S. Antarctic oscillation signal on precipitation anomalies over southeastern South America. Geophys. Res. Lett. 30, 2115 (2003).

    Article 

    Google Scholar
     

  • Vasconcellos, F. C. & Cavalcanti, I. F. A. Extreme precipitation over Southeastern Brazil in the austral summer and relations with the Southern Hemisphere annular mode. Atmos. Sci. Lett. 11, 21–26 (2010).

    Article 

    Google Scholar
     

  • Smith, D. M. et al. Attribution of multi-annual to decadal changes in the climate system: the Large Ensemble Single Forcing Model Intercomparison Project (LESFMIP). Front. Clim. 4, 955414 (2022).

    Article 

    Google Scholar
     

  • Fiddes, S. L., Protat, A., Mallet, M. D., Alexander, S. P. & Woodhouse, M. T. Southern Ocean cloud and shortwave radiation biases in a nudged climate model simulation: does the model ever get it right? Atmos. Chem. Phys. 22, 14603–14630 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Turner, J. & Comiso, J. Solve Antarctica’s sea-ice puzzle. Nature 547, 275–277 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Eyring, V. et al. Overview of the Coupled Model Intercomparison Project phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. 9, 1937–1958 (2016).

    Article 

    Google Scholar
     

  • Mo, K. C. Relationships between low-frequency variability in the Southern Hemisphere and sea surface temperature anomalies. J. Clim. 13, 3599–3610 (2000).

    Article 

    Google Scholar
     

  • Schmidt, G. A. et al. Climate forcing reconstructions for use in PMIP simulations of the last millennium (v1.0). Geosci. Model Dev. 4, 33–45 (2011).

    Article 

    Google Scholar
     

  • Meier, W., Fetterer, F., & Windnagel, A. NOAA/NSIDC Climate Data Record of Passive Microwave Sea Ice Concentration, Version 4 (National Snow and Ice Data Center, 2021).

  • Hersbach, H. et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 146, 1999–2049 (2020).

    Article 

    Google Scholar
     

  • Seviour, W. J. M. et al. Skillful seasonal prediction of the Southern Annular Mode and Antarctic ozone. J. Clim. 27, 7462–7474 (2014).

    Article 

    Google Scholar
     

  • Trenberth, K. E. The definition of El Niño. Bull. Am. Meteorol. Soc. 78, 2771–2778 (1997).

    Article 

    Google Scholar
     

  • Ashok, K., Behera, S. K., Rao, S. A., Weng, H. & Yamagata, T. El Niño Modoki and its possible teleconnection. J. Geophys. Res. Oceans https://doi.org/10.1029/2006JC003798 (2007).