• Hasan, M. Z. & Kane, C. L. Colloquium: topological insulators. Rev. Mod. Phys. 82, 3045–3067 (2010).

    Article 
    ADS 

    Google Scholar
     

  • Lu, L., Joannopoulos, J. D. & Soljačić, M. Topological photonics. Nat. Photon. 8, 821–829 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Yang, Z. et al. Topological acoustics. Phys. Rev. Lett. 114, 114301 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Tokura, Y., Yasuda, K. & Tsukazaki, A. Magnetic topological insulators. Nat. Rev. Phys. 1, 126–143 (2019).

    Article 

    Google Scholar
     

  • Ma, G., Xiao, M. & Chan, C. T. Topological phases in acoustic and mechanical systems. Nat. Rev. Phys. 1, 281–294 (2019).

    Article 

    Google Scholar
     

  • Bahari, B. et al. Nonreciprocal lasing in topological cavities of arbitrary geometries. Science 358, 636–640 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Bandres, M. A. et al. Topological insulator laser: experiments. Science 359, eaar4005 (2018).

    Article 

    Google Scholar
     

  • El-Ganainy, R. et al. Non-Hermitian physics and PT symmetry. Nat. Phys. 14, 11–19 (2018).

    Article 

    Google Scholar
     

  • Miri, M.-A. & Alù, A. Exceptional points in optics and photonics. Science 363, eaar7709 (2019).

    Article 
    MathSciNet 

    Google Scholar
     

  • Bergholtz, E. J., Budich, J. C. & Kunst, F. K. Exceptional topology of non-Hermitian systems. Rev. Mod. Phys. 93, 015005 (2021).

    Article 
    ADS 
    MathSciNet 
    MATH 

    Google Scholar
     

  • Yao, S. & Wang, Z. Edge states and topological invariants of non-Hermitian systems. Phys. Rev. Lett. 121, 086803 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Xiao, L. et al. Non-Hermitian bulk–boundary correspondence in quantum dynamics. Nat. Phys. 16, 761–766 (2020).

    Article 

    Google Scholar
     

  • Chen, W., Kaya Özdemir, Ş, Zhao, G., Wiersig, J. & Yang, L. Exceptional points enhance sensing in an optical microcavity. Nature 548, 192–196 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Hodaei, H. et al. Enhanced sensitivity at higher-order exceptional points. Nature 548, 187–191 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Yin, X., Jin, J., Soljačić, M., Peng, C. & Zhen, B. Observation of topologically enabled unidirectional guided resonances. Nature 580, 467–471 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Peng, B. et al. Loss-induced suppression and revival of lasing. Science 346, 328–332 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Shen, Z. et al. Reconfigurable optomechanical circulator and directional amplifier. Nat. Commun. 9, 1797 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Shelykh, I. A., Pavlovic, G., Solnyshkov, D. D. & Malpuech, G. Proposal for a mesoscopic optical Berry-phase interferometer. Phys. Rev. Lett. 102, 046407 (2009).

    Article 
    ADS 

    Google Scholar
     

  • Nalitov, A. V., Solnyshkov, D. D. & Malpuech, G. Polariton Z topological insulator. Phys. Rev. Lett. 114, 116401 (2015).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Bardyn, C.-E., Karzig, T., Refael, G. & Liew, T. C. H. Topological polaritons and excitons in garden-variety systems. Phys. Rev. B 91, 161413 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Solnyshkov, D. D., Nalitov, A. V. & Malpuech, G. Kibble-Zurek mechanism in topologically nontrivial zigzag chains of polariton micropillars. Phys. Rev. Lett. 116, 046402 (2016).

    Article 
    ADS 

    Google Scholar
     

  • St-Jean, P. et al. Lasing in topological edge states of a one-dimensional lattice. Nat. Photon. 11, 651–656 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Klembt, S. et al. Exciton-polariton topological insulator. Nature 562, 552–556 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Hu, G. et al. Topological polaritons and photonic magic angles in twisted α-MoO3 bilayers. Nature 582, 209–213 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Liu, W. et al. Generation of helical topological exciton-polaritons. Science 370, 600–604 (2020).

    Article 
    MathSciNet 

    Google Scholar
     

  • Guddala, S. et al. Topological phonon-polariton funneling in midinfrared metasurfaces. Science 374, 225–227 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Li, M. et al. Experimental observation of topological Z2 exciton-polaritons in transition metal dichalcogenide monolayers. Nat. Commun. 12, 4425 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Su, R., Ghosh, S., Liew, T. C. H. & Xiong, Q. Optical switching of topological phase in a perovskite polariton lattice. Sci. Adv. 7, eabf8049 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Li, M. et al. Topologically reconfigurable magnetic polaritons. Sci. Adv. 8, eadd6660 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Hu, H. et al. Doping-driven topological polaritons in graphene/α-MoO3 heterostructures. Nat. Nanotechnol. 17, 940–946 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Wu, J. et al. Higher-order topological polariton corner state lasing. Sci. Adv. 9, eadg4322 (2023).

    Article 

    Google Scholar
     

  • Smirnova, D. et al. Polaritonic states trapped by topological defects. Nat. Commun. 15, 6355 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Peng, K. et al. Topological valley Hall polariton condensation. Nat. Nanotechnol. 19, 1283–1289 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Jin, F. et al. Observation of perovskite topological valley exciton-polaritons at room temperature. Nat. Commun. 15, 10563 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Jin, F., Mandal, S., Wang, X., Zhang, B. & Su, R. Perovskite topological exciton-polariton disclination laser at room temperature. Nat. Commun. 16, 6002 (2025).

    Article 
    ADS 

    Google Scholar
     

  • Deng, H., Haug, H. & Yamamoto, Y. Exciton-polariton Bose-Einstein condensation. Rev. Mod. Phys. 82, 1489–1537 (2010).

    Article 
    ADS 

    Google Scholar
     

  • Byrnes, T., Kim, N. Y. & Yamamoto, Y. Exciton–polariton condensates. Nat. Phys. 10, 803–813 (2014).

    Article 

    Google Scholar
     

  • Amo, A. et al. Superfluidity of polaritons in semiconductor microcavities. Nat. Phys. 5, 805–810 (2009).

    Article 

    Google Scholar
     

  • Lerario, G. et al. Room-temperature superfluidity in a polariton condensate. Nat. Phys. 13, 837–841 (2017).

    Article 

    Google Scholar
     

  • Peng, K. et al. Room-temperature polariton quantum fluids in halide perovskites. Nat. Commun. 13, 7388 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Ballarini, D. et al. All-optical polariton transistor. Nat. Commun. 4, 1778 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Zasedatelev, A. V. et al. A room-temperature organic polariton transistor. Nat. Photon. 13, 378–383 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Sannikov, D. A. et al. Room temperature, cascadable, all-optical polariton universal gates. Nat. Commun. 15, 5362 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Gao, T. et al. Observation of non-Hermitian degeneracies in a chaotic exciton-polariton billiard. Nature 526, 554–558 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Gao, T. et al. Chiral modes at exceptional points in exciton-polariton quantum fluids. Phys. Rev. Lett. 120, 065301 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Su, R. et al. Direct measurement of a non-Hermitian topological invariant in a hybrid light-matter system. Sci. Adv. 7, eabj8905 (2021).

    Article 

    Google Scholar
     

  • Krol, M. et al. Annihilation of exceptional points from different Dirac valleys in a 2D photonic system. Nat. Commun. 13, 5340 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Mandal, S., Banerjee, R., Ostrovskaya, E. A. & Liew, T. C. H. Nonreciprocal transport of exciton polaritons in a non-Hermitian chain. Phys. Rev. Lett. 125, 123902 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Xu, H. et al. Nonreciprocal exciton-polariton ring lattices. Phys. Rev. B 104, 195301 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Kokhanchik, P., Solnyshkov, D. & Malpuech, G. Non-Hermitian skin effect induced by Rashba-Dresselhaus spin-orbit coupling. Phys. Rev. B 108, L041403 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Bao, R., Xu, H., Verstraelen, W. & Liew, T. C. H. Topological enhancement of exciton-polariton coherence with non-Hermitian morphing. Phys. Rev. B 108, 235305 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Rechcińska, K. et al. Engineering spin-orbit synthetic Hamiltonians in liquid-crystal optical cavities. Science 366, 727–730 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Łempicka-Mirek, K. et al. Electrically tunable Berry curvature and strong light-matter coupling in liquid crystal microcavities with 2D perovskite. Sci. Adv. 8, eabq7533 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Liang, J. et al. Polariton spin Hall effect in a Rashba–Dresselhaus regime at room temperature. Nat. Photon. 18, 357–362 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Wen, W. et al. Trembling motion of exciton polaritons close to the Rashba-Dresselhaus regime. Phys. Rev. Lett. 133, 116903 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Hu, Y. M. R., Ostrovskaya, E. A. & Estrecho, E. Wave-packet dynamics in a non-Hermitian exciton-polariton system. Phys. Rev. B 108, 115404 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Zhu, H. & Yakobson, B. I. Creating chirality in the nearly two dimensions. Nat. Mater. 23, 316–322 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Longhi, S. Non-Hermitian skin effect beyond the tight-binding models. Phys. Rev. B 104, 125109 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Feng, L., El-Ganainy, R. & Ge, L. Non-Hermitian photonics based on parity–time symmetry. Nat. Photon. 11, 752–762 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Liang, J. Data for ‘Twist-induced non-Hermitian topology of exciton polaritons’. Zenodo https://doi.org/10.5281/zenodo.17389879 (2025).