• Poewe, W. et al. Parkinson disease. Nat. Rev. Dis. Prim. 3, 17013 (2017).

    PubMed 

    Google Scholar
     

  • Stocchi, F. et al. Parkinson disease therapy: current strategies and future research priorities. Nat. Rev. Neurol. 20, 695–707 (2024).

    PubMed 

    Google Scholar
     

  • Steib, S. et al. A single bout of aerobic exercise improves motor skill consolidation in Parkinson’s disease. Front. Aging Neurosci. 10, 328 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fang, X. et al. Association of levels of physical activity with risk of Parkinson disease: a systematic review and meta-analysis. JAMA Netw. Open 1, e182421 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Langeskov-Christensen, M. et al. Exercise as medicine in Parkinson’s disease. J. Neurol. Neurosurg. Psychiatry 95, 1077–1088 (2024).

    PubMed 

    Google Scholar
     

  • Walzik, D. et al. Molecular insights of exercise therapy in disease prevention and treatment. Signal Transduct. Target. Ther. 9, 138 (2024).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Petzinger, G. M. et al. Exercise-enhanced neuroplasticity targeting motor and cognitive circuitry in Parkinson’s disease. Lancet Neurol. 12, 716–726 (2013).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yao, H. et al. Exercise training upregulates CD55 to suppress complement-mediated synaptic phagocytosis in Parkinson’s disease. J. Neuroinflammation 21, 246 (2024).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, Z. et al. Exercise attenuates mitochondrial autophagy and neuronal degeneration in MPTP induced Parkinson’s disease by regulating inflammatory pathway. Folia Neuropathol. 61, 426–432 (2023).

    PubMed 

    Google Scholar
     

  • Safdar, A., Saleem, A. & Tarnopolsky, M. A. The potential of endurance exercise-derived exosomes to treat metabolic diseases. Nat. Rev. Endocrinol. 12, 504–517 (2016).

    PubMed 

    Google Scholar
     

  • Ruiz-González, D. et al. Effects of physical exercise on plasma brain-derived neurotrophic factor in neurodegenerative disorders: a systematic review and meta-analysis of randomized controlled trials. Neurosci. Biobehav. Rev. 128, 394–405 (2021).

    PubMed 

    Google Scholar
     

  • Soke, F. et al. Effects of task-oriented training combined with aerobic training on serum BDNF, GDNF, IGF-1, VEGF, TNF-α, and IL-1β levels in people with Parkinson’s disease: a randomized controlled study. Exp. Gerontol. 150, 111384 (2021).

    PubMed 

    Google Scholar
     

  • Speck, A. E. et al. Treadmill exercise attenuates L-DOPA-induced dyskinesia and increases striatal levels of glial cell-derived neurotrophic factor (GDNF) in hemiparkinsonian mice. Mol. Neurobiol. 56, 2944–2951 (2019).

    PubMed 

    Google Scholar
     

  • Pérez-Domínguez, M., Tovar-Y-Romo, L. B. & Zepeda, A. Neuroinflammation and physical exercise as modulators of adult hippocampal neural precursor cell behavior. Rev. Neurosci 29, 1–20 (2018).

    PubMed 

    Google Scholar
     

  • Chuang, C.-S. et al. Modulation of mitochondrial dynamics by treadmill training to improve gait and mitochondrial deficiency in a rat model of Parkinson’s disease. Life Sci. 191, 236–244 (2017).

    PubMed 

    Google Scholar
     

  • Ebanks, B. et al. The dysregulated Pink1- Drosophila mitochondrial proteome is partially corrected with exercise. Aging 13, 14709–14728 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cadet, P. et al. Cyclic exercise induces anti-inflammatory signal molecule increases in the plasma of Parkinson’s patients. Int. J. Mol. Med. 12, 485–492 (2003).

    PubMed 

    Google Scholar
     

  • Mak, M. K. Y. & Wong-Yu, I. S. K. Six-month community-based brisk walking and balance exercise alleviates motor symptoms and promotes functions in people with Parkinson’s disease: a randomized controlled trial. J. Parkinsons Dis. 11, 1431–1441 (2021).

    PubMed 

    Google Scholar
     

  • van der Kolk, N. M. et al. Effectiveness of home-based and remotely supervised aerobic exercise in Parkinson’s disease: a double-blind, randomised controlled trial. Lancet Neurol. 18, 998–1008 (2019).

    PubMed 

    Google Scholar
     

  • Schenkman, M. et al. Effect of high-intensity treadmill exercise on motor symptoms in patients with de novo Parkinson disease: a phase 2 randomized clinical trial. JAMA Neurol. 75, 219–226 (2018).

    PubMed 

    Google Scholar
     

  • Chen, Y.-H. et al. Exercise ameliorates motor deficits and improves dopaminergic functions in the rat hemi-Parkinson’s model. Sci. Rep. 8, 3973 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fernandez-Del-Olmo, M. et al. Directed connectivity in Parkinson’s disease patients during over-ground and treadmill walking. Exp. Gerontol. 178, 112220 (2023).

    PubMed 

    Google Scholar
     

  • Bougou, V. et al. Active and passive cycling decrease subthalamic β oscillations in Parkinson’s disease. Mov. Disord. 39, 85–93 (2024).

    PubMed 

    Google Scholar
     

  • Gaßner, H. et al. Perturbation treadmill training improves clinical characteristics of gait and balance in Parkinson’s disease. J. Parkinsons Dis. 9, 413–426 (2019).

    PubMed 

    Google Scholar
     

  • Hou, L. et al. Exercise-induced neuroprotection of the nigrostriatal dopamine system in Parkinson’s disease. Front. Aging Neurosci. 9, 358 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • de Laat, B. et al. Intense exercise increases dopamine transporter and neuromelanin concentrations in the substantia nigra in Parkinson’s disease. NPJ Parkinsons Dis. 10, 34 (2024).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Johansson, M. E. et al. Aerobic exercise alters brain function and structure in Parkinson’s disease: a randomized controlled trial. Ann. Neurol. 91, 203–216 (2022).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sacheli, M. A. et al. Exercise increases caudate dopamine release and ventral striatal activation in Parkinson’s disease. Mov. Disord.34, 1891–1900 (2019).

    PubMed 

    Google Scholar
     

  • Rotondo, R. et al. Dose-response effects of physical exercise standardized volume on peripheral biomarkers, clinical response, and brain connectivity in Parkinson’s disease: a prospective, observational, cohort study. Front. Neurol. 15, 1412311 (2024).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jansen, A. E. et al. High intensity aerobic exercise improves bimanual coordination of grasping forces in Parkinson’s disease. Parkinsonism Relat. Disord. 87, 13–19 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, F. et al. Tai chi and postural stability in patients with Parkinson’s disease. N. Engl. J. Med. 366, 511–519 (2012).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, G. et al. Effect of long-term Tai Chi training on Parkinson’s disease: a 3.5-year follow-up cohort study. J. Neurol. Neurosurg. Psychiatry 95, 222–228 (2024).

    PubMed 

    Google Scholar
     

  • Cristini, J. et al. The effects of exercise on sleep quality in persons with Parkinson’s disease: a systematic review with meta-analysis. Sleep. Med. Rev. 55, 101384 (2021).

    PubMed 

    Google Scholar
     

  • Song, R. et al. The impact of Tai Chi and Qigong mind-body exercises on motor and non-motor function and quality of life in Parkinson’s disease: A systematic review and meta-analysis. Parkinsonism Relat. Disord. 41, 3–13 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Luo, K. et al. Effectiveness of Yijinjing on cognitive and motor functions in patients with Parkinson’s disease: study protocol for a randomized controlled trial. Front. Neurol. 15, 1357777 (2024).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cherup, N. P. et al. Yoga meditation enhances proprioception and balance in individuals diagnosed with Parkinson’s disease. Percept. Mot. Skills 128, 304–323 (2021).

    PubMed 

    Google Scholar
     

  • Duarte, J. D. S. et al. Physical activity based on dance movements as complementary therapy for Parkinson’s disease: effects on movement, executive functions, depressive symptoms, and quality of life. PLoS ONE 18, e0281204 (2023).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ernst, M. et al. Physical exercise for people with Parkinson’s disease: a systematic review and network meta-analysis. Cochrane Database Syst. Rev. 1, CD013856 (2023).

    PubMed 

    Google Scholar
     

  • da Silva, P.G. et al. Neurotrophic factors in Parkinson’s disease are regulated by exercise: Evidence-based practice. J. Neurol. Sci. 363, 5–15 (2016).

    PubMed 

    Google Scholar
     

  • Gamborg, M. et al. Parkinson’s disease and intensive exercise therapy – an updated systematic review and meta-analysis. Acta Neurol. Scand. 145, 504–528 (2022).

    PubMed 

    Google Scholar
     

  • Uhrbrand, A. et al. Parkinson’s disease and intensive exercise therapy-a systematic review and meta-analysis of randomized controlled trials. J. Neurol. Sci. 353, 9–19 (2015).

    PubMed 

    Google Scholar
     

  • Ben-Zeev, T., Shoenfeld, Y. & Hoffman, J. R. The effect of exercise on neurogenesis in the brain. Isr. Med. Assoc. J. IMAJ 24, 533–538 (2022).

    PubMed 

    Google Scholar
     

  • Castro, S. L. et al. Blueberry juice augments exercise-induced neuroprotection in a Parkinson’s disease model through modulation of GDNF levels. IBRO Neurosci. Rep. 12, 217–227 (2022).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Castilla-Cortazar, I. et al. Is insulin-like growth factor-1 involved in Parkinson’s disease development? J. Transl. Med. 18, 70 (2020).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stuckenschneider, T. et al. Disease-inclusive exercise classes improve physical fitness and reduce depressive symptoms in individuals with and without Parkinson’s disease-a feasibility study. Brain Behav. 11, e2352 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chang, H.M. et al. Oocyte-somatic cell interactions in the human ovary-novel role of bone morphogenetic proteins and growth differentiation factors. Hum. Reprod. Update 23, 1–18 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Goulding, S. R. et al. The potential of bone morphogenetic protein 2 as a neurotrophic factor for Parkinson’s disease. Neural Regen. Res. 15, 1432–1436 (2020).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Goulding, S. R. et al. Gene co-expression analysis of the human substantia nigra identifies BMP2 as a neurotrophic factor that can promote neurite growth in cells overexpressing wild-type or A53T α-synuclein. Parkinsonism Relat. Disord. 64, 194–201 (2019).

    PubMed 

    Google Scholar
     

  • Hegarty, S. V., O’Keeffe, G. W. & Sullivan, A. M. BMP-Smad 1/5/8 signalling in the development of the nervous system. Prog. Neurobiol. 109, 28–41 (2013).

    PubMed 

    Google Scholar
     

  • Terauchi, A. et al. The projection-specific signals that establish functionally segregated dopaminergic synapses. Cell 186, 3845–3861 (2023).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kowianski, P. et al. BDNF: a key factor with multipotent impact on brain signaling and synaptic plasticity. Cell Mol. Neurobiol. 38, 579–593 (2018).

    PubMed 

    Google Scholar
     

  • Barreda Tomás, F.J. et al. BDNF Expression in Cortical GABAergic Interneurons. Int. J. Mol. Sci. 21, 1567 (2020).

  • Hirsch, M. A., Iyer, S. S. & Sanjak, M. Exercise-induced neuroplasticity in human Parkinson’s disease: what is the evidence telling us? Parkinsonism Relat. Disord. 22, S78–S81 (2016).

    PubMed 

    Google Scholar
     

  • Paterno, A., Polsinelli, G. & Federico, B. Changes of brain-derived neurotrophic factor (BDNF) levels after different exercise protocols: a systematic review of clinical studies in Parkinson’s disease. Front. Physiol. 15, 1352305 (2024).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bastioli, G. et al. Voluntary exercise boosts striatal dopamine release: evidence for the necessary and sufficient role of BDNF. J. Neurosci. 42, 4725–4736 (2022).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brunelli, A. et al. Acute exercise modulates BDNF and pro-BDNF protein content in immune cells. Med. Sci. Sports Exerc. 44, 1871–1880 (2012).

    PubMed 

    Google Scholar
     

  • Andreska, T. et al. Induction of BDNF expression in layer II/III and layer V neurons of the motor cortex is essential for motor learning. J. Neurosci.40, 6289–6308 (2020).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Campbell, T. S. et al. Early Life Stress Affects Bdnf Regulation: A Role for Exercise Interventions. Int. J. Mol. Sci. 23, 11729 (2022).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu, S.-Y. et al. Running exercise protects the substantia nigra dopaminergic neurons against inflammation-induced degeneration via the activation of BDNF signaling pathway. Brain Behav. Immun. 25, 135–146 (2011).

    PubMed 

    Google Scholar
     

  • Leem, Y.-H. et al. Neurogenic effects of rotarod walking exercise in subventricular zone, subgranular zone, and substantia nigra in MPTP-induced Parkinson’s disease mice. Sci. Rep. 12, 10544 (2022).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, C. et al. Analgesic effect of exercise on neuropathic pain via regulating the complement component 3 of reactive astrocytes. Anesth. Analg. 139, 840–850 (2024).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kelty, T. J. et al. Resistance-exercise training attenuates LPS-induced astrocyte remodeling and neuroinflammatory cytokine expression in female Wistar rats. J. Appl. Physiol. 132, 317–326 (2022).

    PubMed 

    Google Scholar
     

  • Nakanishi, K. et al. Effect of low-intensity motor balance and coordination exercise on cognitive functions, hippocampal Abeta deposition, neuronal loss, neuroinflammation, and oxidative stress in a mouse model of Alzheimer’s disease. Exp. Neurol. 337, 113590 (2021).

    PubMed 

    Google Scholar
     

  • Qiu, X. et al. C-reactive protein and risk of Parkinson’s disease: a systematic review and meta-analysis. Front. Neurol. 10, 384 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tang, X. Q. et al. Retraction: aerobic exercise reverses the NF-kappaB/NLRP3 inflammasome/5-HT pathway by upregulating irisin to alleviate post-stroke depression. Ann. Transl. Med. 12, 128 (2024).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang, G. et al. Changes Observed in Potential Key Candidate Genes of Peripheral Immunity Induced by Tai Chi among Patients with Parkinsonas Disease. Genes 13, 1863 (2022).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, G. et al. Mechanisms of motor symptom improvement by long-term Tai Chi training in Parkinson’s disease patients. Transl. Neurodegener. 11, 6 (2022).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Leem, Y.-H. et al. Suppression of neuroinflammation and α-synuclein oligomerization by rotarod walking exercise in subacute MPTP model of Parkinson’s disease. Neurochem. Int. 165, 105519 (2023).

    PubMed 

    Google Scholar
     

  • Jang, Y. et al. Neuroprotective effects of endurance exercise against neuroinflammation in MPTP-induced Parkinson’s disease mice. Brain Res. 1655, 186–193 (2017).

    PubMed 

    Google Scholar
     

  • Marino, G. et al. Intensive exercise ameliorates motor and cognitive symptoms in experimental Parkinson’s disease restoring striatal synaptic plasticity. Sci. Adv. 9, eadh1403 (2023).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, W. et al. Treadmill exercise alleviates neuronal damage by suppressing NLRP3 inflammasome and microglial activation in the MPTP mouse model of Parkinson’s disease. Brain Res. Bull. 174, 349–358 (2021).

    PubMed 

    Google Scholar
     

  • Xu, J. et al. Voluntary exercise alleviates neural functional deficits in Parkinson’s disease mice by inhibiting microglial ferroptosis via SLC7A11/ALOX12 axis. NPJ Parkinsons Dis. 11, 55 (2025).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Eldeeb, M. A. et al. Mitochondrial quality control in health and in Parkinson’s disease. Physiol. Rev. 102, 1721–1755 (2022).

    PubMed 

    Google Scholar
     

  • Pickrell, A. M. & Youle, R. J. The roles of PINK1, parkin, and mitochondrial fidelity in Parkinson’s disease. Neuron 85, 257–273 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Henrich, M. T. et al. Mitochondrial dysfunction in Parkinson’s disease – a key disease hallmark with therapeutic potential. Mol. Neurodegener. 18, 83 (2023).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, S. et al. Skeletal muscle-specific DJ-1 ablation-induced atrogenes expression and mitochondrial dysfunction contributing to muscular atrophy. J. Cachexia Sarcopenia Muscle 14, 2126–2142 (2023).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Alcalá-Zúniga, D. et al. Enriched environment contributes to the recovery from neurotoxin-induced Parkinson’s disease pathology. Mol. Neurobiol. 61, 6734–6753 (2024).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gan, Z. et al. Skeletal muscle mitochondrial remodeling in exercise and diseases. Cell Res. 28, 969–980 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ludtmann, M. H. R. et al. α-synuclein oligomers interact with ATP synthase and open the permeability transition pore in Parkinson’s disease. Nat. Commun. 9, 2293 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tung, Y.-T. et al. 10 weeks low intensity treadmill exercise intervention ameliorates motor deficits and sustains muscle mass via decreasing oxidative damage and increasing mitochondria function in a rat model of Parkinson’s disease. Life Sci. 350, 122733 (2024).

    PubMed 

    Google Scholar
     

  • Koo, J. H. & Cho, J. Y. Erratum to: treadmill exercise attenuates alpha-synuclein levels by promoting mitochondrial function and autophagy possibly via SIRT1 in the chronic MPTP/P-induced mouse model of Parkinson’s disease. Neurotox. Res. 32, 532–533 (2017).

    PubMed 

    Google Scholar
     

  • Rezaee, Z. et al. Effects of preventive treadmill exercise on the recovery of metabolic and mitochondrial factors in the 6-hydroxydopamine rat model of Parkinson’s disease. Neurotox. Res. 35, 908–917 (2019).

    PubMed 

    Google Scholar
     

  • Zhou, L. et al. The Role of SIRT3 in Exercise and Aging. Cells 11, 2596 (2022).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Muñoz, A. et al. Physical exercise improves aging-related changes in angiotensin, IGF-1, SIRT1, SIRT3, and VEGF in the substantia nigra. J. Gerontol. A Biol. Sci. Med. Sci. 73, 1594–1601 (2018).

    PubMed 

    Google Scholar
     

  • Koo, J.-H., Cho, J.-Y. & Lee, U.-B. Treadmill exercise alleviates motor deficits and improves mitochondrial import machinery in an MPTP-induced mouse model of Parkinson’s disease. Exp. Gerontol. 89, 20–29 (2017).

    PubMed 

    Google Scholar
     

  • Jang, Y. et al. Modulation of mitochondrial phenotypes by endurance exercise contributes to neuroprotection against a MPTP-induced animal model of PD. Life Sci. 209, 455–465 (2018).

    PubMed 

    Google Scholar
     

  • Hwang, D.-J. et al. Neuroprotective effect of treadmill exercise possibly via regulation of lysosomal degradation molecules in mice with pharmacologically induced Parkinson’s disease. J. Physiol. Sci.68, 707–716 (2018).

    PubMed 

    Google Scholar
     

  • Kelly, N. A. et al. Novel, high-intensity exercise prescription improves muscle mass, mitochondrial function, and physical capacity in individuals with Parkinson’s disease. J. Appl. Physiol.116, 582–592 (2014).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, X. et al. Irisin exhibits neuroprotection by preventing mitochondrial damage in Parkinson’s disease. NPJ Parkinsons Dis. 9, 13 (2023).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kam, T.-I. et al. Amelioration of pathologic α-synuclein-induced Parkinson’s disease by irisin. Proc. Natl. Acad. Sci. USA 119, e2204835119 (2022).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dutta, D. et al. Treadmill exercise reduces alpha-synuclein spreading via PPARalpha. Cell Rep. 40, 111058 (2022).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bao, J.-F. et al. Irisin, a fascinating field in our times. Trends Endocrinol. Metab. TEM 33, 601–613 (2022).

    PubMed 

    Google Scholar
     

  • Zhao, R. et al. Role of irisin in bone diseases. Front. Endocrinol. 14, 1212892 (2023).


    Google Scholar
     

  • Peng, J. & Wu, J. Effects of the FNDC5/irisin on elderly dementia and cognitive impairment. Front. Aging Neurosci. 14, 863901 (2022).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dicarlo, M. et al. Irisin levels in cerebrospinal fluid correlate with biomarkers and clinical dementia scores in Alzheimer disease. Ann. Neurol. 96, 61–73 (2024).

    PubMed 

    Google Scholar
     

  • Zhang, H. et al. Irisin, an exercise-induced bioactive peptide beneficial for health promotion during aging process. Ageing Res. Rev. 80, 101680 (2022).

    PubMed 

    Google Scholar
     

  • Sun, B. et al. Irisin reduces bone fracture by facilitating osteogenesis and antagonizing TGF-β/Smad signaling in a growing mouse model of osteogenesis imperfecta. J. Orthop. Translat. 38, 175–189 (2023).

    PubMed 

    Google Scholar
     

  • Guo, P. et al. Irisin rescues blood-brain barrier permeability following traumatic brain injury and contributes to the neuroprotection of exercise in traumatic brain injury. Oxid. Med. Cell. Longev. 2021, 1118981 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sadier, N. S. et al. Irisin: An unveiled bridge between physical exercise and a healthy brain. Life Sci. 339, 122393 (2024).

    PubMed 

    Google Scholar
     

  • Wagner, C. A. et al. Translational research on cognitive impairment in chronic kidney disease. Nephrol. Dialysis Transplant. 40, 621–631 (2025).


    Google Scholar
     

  • Wang, Y. et al. Irisin ameliorates neuroinflammation and neuronal apoptosis through integrin alphaVbeta5/AMPK signaling pathway after intracerebral hemorrhage in mice. J. Neuroinflammation 19, 82 (2022).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mao, M. Z. et al. FNDC5/irisin-enriched sEVs conjugated with bone-targeting aptamer alleviate osteoporosis: a potential alternative to exercise. J. Nanobiotechnology 23, 504 (2025).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shi, X. et al. Relationship of irisin with disease severity and dopamine uptake in Parkinson’s disease patients. Neuroimage Clin. 41, 103555 (2024).

    PubMed 

    Google Scholar
     

  • Li, D.-J. et al. The novel exercise-induced hormone irisin protects against neuronal injury via activation of the Akt and ERK1/2 signaling pathways and contributes to the neuroprotection of physical exercise in cerebral ischemia. Metab. Clin. Exp. 68, 31–42 (2017).

    PubMed 

    Google Scholar
     

  • Qiu, R. et al. Irisin’s emerging role in Parkinson’s disease research: a review from molecular mechanisms to therapeutic prospects. Life Sci. 357, 123088 (2024).

    PubMed 

    Google Scholar
     

  • Choi, J.-W. et al. Aerobic exercise attenuates LPS-induced cognitive dysfunction by reducing oxidative stress, glial activation, and neuroinflammation. Redox Biol. 71, 103101 (2024).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhu, M. et al. Irisin promotes autophagy and attenuates NLRP3 inflammasome activation in Parkinson’s disease. Int. Immunopharmacol. 149, 114201 (2025).

    PubMed 

    Google Scholar
     

  • Raefsky, S. M. & Mattson, M. P. Adaptive responses of neuronal mitochondria to bioenergetic challenges: Roles in neuroplasticity and disease resistance. Free Radic. Biol. Med. 102, 203–216 (2017).

    PubMed 

    Google Scholar
     

  • Valenzuela, P. L. et al. Exercise benefits on Alzheimer’s disease: state-of-the-science. Ageing Res. Rev. 62, 101108 (2020).

    PubMed 

    Google Scholar
     

  • Liu, Y. et al. The neuroprotective effect of irisin in ischemic stroke. Front. Aging Neurosci. 12, 588958 (2020).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lourenco, M. V. et al. Irisin stimulates protective signaling pathways in rat hippocampal neurons. Front. Cell. Neurosci. 16, 953991 (2022).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Leger, C. et al. Impact of Exercise Intensity on Cerebral BDNF Levels: Role of FNDC5/Irisin. Int. J. Mol. Sci. 25, 1213 (2024).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Boström, P. et al. A PGC1-α-dependent myokine that drives brown-fat-like development of white fat and thermogenesis. Nature 481, 463–468 (2012).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jedrychowski, M. P. et al. Detection and quantitation of circulating human irisin by tandem mass spectrometry. Cell Metab. 22, 734–740 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tsuchiya, Y. et al. Resistance exercise induces a greater irisin response than endurance exercise. Metab. Clin. Exp. 64, 1042–1050 (2015).

    PubMed 

    Google Scholar
     

  • Anastasilakis, A. D. et al. Circulating irisin in healthy, young individuals: day-night rhythm, effects of food intake and exercise, and associations with gender, physical activity, diet, and body composition. J. Clin. Endocrinol. Metab. 99, 3247–3255 (2014).

    PubMed 

    Google Scholar
     

  • Guo, M. et al. BMAL1/PGC1α4-FNDC5/irisin axis impacts distinct outcomes of time-of-day resistance exercise. J. Sport Health Sci. 14, 100968 (2024).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nowell, J. et al. Antidiabetic agents as a novel treatment for Alzheimer’s and Parkinson’s disease. Ageing Res. Rev. 89, 101979 (2023).

    PubMed 

    Google Scholar
     

  • Sun, Y. et al. Irisin delays the onset of type 1 diabetes in NOD mice by enhancing intestinal barrier. Int. J. Biol. Macromol. 265, 130857 (2024). (Pt 1).

    PubMed 

    Google Scholar
     

  • Islam, M. R. et al. Exercise hormone irisin is a critical regulator of cognitive function. Nat. Metab. 3, 1058–1070 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shin, M. S. et al. Treadmill exercise facilitates synaptic plasticity on dopaminergic neurons and fibers in the mouse model with Parkinson’s disease. Neurosci. Lett. 621, 28–33 (2016).

    PubMed 

    Google Scholar
     

  • Fathalla, A. M. et al. Adenosine A2A receptor blockade prevents rotenone-induced motor impairment in a rat model of Parkinsonism. Front. Behav. Neurosci. 10, 35 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Viana, S. D. et al. The effects of physical exercise on nonmotor symptoms and on neuroimmune RAGE network in experimental Parkinsonism. J. Appl. Physiol.123, 161–171 (2017).

    PubMed 

    Google Scholar
     

  • Li, R. et al. Exercise attenuates neuronal degeneration in Parkinson’s disease rat model by regulating the level of adenosine 2A receptor. Folia Neuropathol.61, 217–223 (2023).

    PubMed 

    Google Scholar
     

  • Liu, W. et al. Regular aerobic exercise-alleviated dysregulation of CAMKIIα carbonylation to mitigate Parkinsonism via homeostasis of apoptosis with autophagy. J. Neuropathol. Exp. Neurol. 79, 46–61 (2020).

    PubMed 

    Google Scholar
     

  • Shen, J. et al. Potential molecular mechanism of exercise reversing insulin resistance and improving neurodegenerative diseases. Front. Physiol. 15, 1337442 (2024).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fischetti, F. et al. The role of exercise parameters on small extracellular vesicles and microRNAs cargo in preventing neurodegenerative diseases. Front. Physiol. 14, 1241010 (2023).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Goulding, S. R. et al. Growth differentiation factor 5: a neurotrophic factor with neuroprotective potential in Parkinson’s disease. Neural Regen. Res. 17, 38–44 (2022).

    PubMed 

    Google Scholar
     

  • Fukuchi, M. et al. Visualizing changes in brain-derived neurotrophic factor (BDNF) expression using bioluminescence imaging in living mice. Sci. Rep. 7, 4949 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rodrigues, ÉF. et al. Challenges in recombinant brain-derived neurotrophic factor production. Trends Biotechnol. 42, 522–525 (2024).

    PubMed 

    Google Scholar
     

  • Allen, S. J. et al. GDNF, NGF and BDNF as therapeutic options for neurodegeneration. Pharmacol. Ther.138, 155–175 (2013).

    PubMed 

    Google Scholar
     

  • Wang, J. et al. Irisin protects against sepsis-associated encephalopathy by suppressing ferroptosis via activation of the Nrf2/GPX4 signal axis. Free Radic. Biol. Med. 187, 171–184 (2022).

    PubMed 

    Google Scholar
     

  • Xu, X. et al. Irisin prevents hypoxic-ischemic brain damage in rats by inhibiting oxidative stress and protecting the blood-brain barrier. Peptides 161, 170945 (2023).

    PubMed 

    Google Scholar
     

  • Guo, P. et al. Effects of irisin on the dysfunction of blood-brain barrier in rats after focal cerebral ischemia/reperfusion. Brain Behav. 9, e01425 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dehghan, F. et al. Irisin injection mimics exercise effects on the brain proteome. Eur. J. Neurosci. 54, 7422–7441 (2021).

    PubMed 

    Google Scholar
     

  • Guo, M. et al. Irisin ameliorates age-associated sarcopenia and metabolic dysfunction. J. Cachexia Sarcopenia Muscle 14, 391–405 (2023).

    PubMed 

    Google Scholar
     

  • Zhao, R. et al. Aerobic Exercise Restores Hippocampal Neurogenesis and Cognitive Function by Decreasing Microglia Inflammasome Formation Through Irisin/NLRP3 Pathway. Aging Cell 24, e70061 (2025).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gonçalves, R. A. & De Felice, F. G. The crosstalk between brain and periphery: implications for brain health and disease. Neuropharmacology 197, 108728 (2021).

    PubMed 

    Google Scholar
     

  • Khalil, M.H. et al. The Impact of Walking on BDNF as a Biomarker of Neuroplasticity: A Systematic Review. Brain Sci. 15, 254 (2025).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zigmond, M. J. et al. Triggering endogenous neuroprotective processes through exercise in models of dopamine deficiency. Parkinsonism Relat. Disord. 15, S42–S45 (2009).

    PubMed 

    Google Scholar
     

  • Harvey, B. K., Hoffer, B. J. & Wang, Y. Stroke and TGF-beta proteins: glial cell line-derived neurotrophic factor and bone morphogenetic protein. Pharmacol. Ther.105, 113–125 (2005).

    PubMed 

    Google Scholar
     

  • Traor‚ M. et al. An embryonic CaVá1 isoform promotes muscle mass maintenance via GDF5 signaling in adult mouse. Sci. Transl. Med. 11, eaaw1131 (2019).


    Google Scholar