Perkins, S. E., Alexander, L. & Nairn, J. Increasing frequency, intensity and duration of observed global heatwaves and warm spells. Geophys. Res. Lett. 39, 20 (2012).
Zhao, Q. et al. Global, regional, and national burden of heatwave-related mortality from 1990 to 2019: a three-stage modelling study. PLoS Med. 21, e1004364 (2024).
Sethi, S. S. & Vinoj, V. Urbanization and regional climate change-linked warming of Indian cities. Nat. Cities 1, 402–405 (2024).
Huang, S. et al. Widespread global exacerbation of extreme drought induced by urbanization. Nat. Cities 1, 597–609 (2024).
Rizwan, A. M., Dennis, L. Y. & Chunho, L. A review on the generation, determination and mitigation of urban heat Island. J. Environ. Sci. 20, 120–128 (2008).
Zou, Z. et al. Impacts of land use/land cover types on interactions between urban heat island effects and heat waves. Build. Environ. 204, 108138 (2021).
Ramamurthy, P. & Bou-Zeid, E. Heatwaves and urban heat islands: a comparative analysis of multiple cities. J. Geophys. Res. Atmos. 122, 168–178 (2017).
John, J. & Rein, G. Heatwaves and firewaves: the drivers of urban wildfires in London in the summer of 2022. Fire Technol. 61, 3451–3460 (2025).
Wang, Y., Lu, B. & Han, Z. Rapid increase of the nighttime electricity demand in Beijing due to compound heatwaves. Urban Clim. 50, 101595 (2023).
Hoag, H. How cities can beat the heat: rising temperatures are threatening urban areas, but efforts to cool them may not work as planned. Nature 524, 402–405 (2015).
Yang, Y. et al. Regulation of humid heat by urban green space across a climate wetness gradient. Nat. Cities. 1, 871–879 (2024).
Wong, N. H., Tan, C. L., Kolokotsa, D. D. & Takebayashi, H. Greenery as a mitigation and adaptation strategy to urban heat. Nat. Rev. Earth Environ. 2, 166–181 (2021).
Qiu, G. Y., Yan, C. & Liu, Y. Urban evapotranspiration and its effects on water budget and energy balance: review and perspectives. Earth-Science Reviews 246, 104577 (2023).
Trenberth, K. E., Fasullo, J. T. & Kiehl, J. Earth’s global energy budget. Bull. Am. Meteorol. Soc. 90, 311–324 (2009).
Jongen, H. J. et al. Urban water storage capacity inferred from observed evapotranspiration recession. Geophys. Res. Lett. 49, e2021GL096069 (2022).
Eyster, H. N. & Beckage, B. Conifers may ameliorate urban heat waves better than broadleaf trees: evidence from Vancouver, Canada. Atmosphere 13, 830 (2022).
Teuling, A. J. et al. Contrasting response of European forest and grassland energy exchange to heatwaves. Nat. Geosci. 3, 722–727 (2010).
Ahongshangbam, J. et al. Sap flow and leaf gas exchange response to drought and heatwave in urban green spaces in a Nordic city. Biogeosci. Discuss. 2023, 1–32 (2023).
Haase, D., Haase, A. & Rink, D. Conceptualizing the nexus between urban shrinkage and ecosystem services. Landscape Urban Plann. 132, 159–169 (2014).
Mu, M. et al. Exploring how groundwater buffers the influence of heatwaves on vegetation function during multi-year droughts. Earth Syst. Dyn. Discuss. 2021, 1–29 (2021).
Brancaleoni, L. & Gerdol, R. Habitat-dependent interactive effects of a heatwave and experimental fertilization on the vegetation of an alpine mire. J. Veg. Sci.25, 427–438 (2014).
O’sullivan, O. S. et al. Thermal limits of leaf metabolism across biomes. Global Change Biol. 23, 209–223 (2017).
Drake, J. E. et al. Trees tolerate an extreme heatwave via sustained transpirational cooling and increased leaf thermal tolerance. Global Change Biol. 24, 2390–2402 (2018).
Ameye, M. et al. The effect of induced heat waves on Pinus taeda and Quercus rubra seedlings in ambient and elevated CO2 atmospheres. New Phytol. 196, 448–461 (2012).
Kong, X. et al. Trees in cooler regions are more vulnerable to thermal stress: evidence from temperate poplar plantations in Northern China during the 2022 heatwaves. Agric. For. Meteorol. 356, 110181 (2024).
Bakhtsiyarava, M. et al. Potential drivers of urban green space availability in Latin American cities. Nat. Cities. 1, 842–852 (2024).
Winbourne, J. B. et al. Tree transpiration and urban temperatures: current understanding, implications, and future research directions. BioScience 70, 576–588 (2020).
Bühler, O. et al. Tree development in structural soil–an empirical below-ground in-situ study of urban trees in Copenhagen, Denmark. Plant Soil 413, 29–44 (2017).
Meili, N. et al. An urban ecohydrological model to quantify the effect of vegetation on urban climate and hydrology (UT&C v1. 0). Geosci. Model Dev. 13, 335–362 (2020).
Teskey, R. et al. Responses of tree species to heat waves and extreme heat events. Plant Cell Environ. 38, 1699–1712 (2015).
Joo, E., Zeri, M., Hussain, M. Z., DeLucia, E. H. & Bernacchi, C. J. Enhanced evapotranspiration was observed during extreme drought from Miscanthus, opposite of other crops. GCB Bioenergy 9, 1306–1319 (2017).
Perera, R. S., Cullen, B. R. & Eckard, R. J. Growth and physiological responses of temperate pasture species to consecutive heat and drought stresses. Plants 8, 227 (2019).
Jiang, Y. & Huang, B. Drought and heat stress injury to two cool-season turfgrasses in relation to antioxidant metabolism and lipid peroxidation. Crop Sci. 41, 436–442 (2001).
Zou, Z. et al. Different responses of evapotranspiration rates of urban lawn and tree to meteorological factors and soil water in hot summer in a subtropical megacity. Forests 12, 1463 (2021).
Thienelt, T. S. & Anderson, D. E. Estimates of energy partitioning, evapotranspiration, and net ecosystem exchange of CO2 for an urban lawn and a tallgrass prairie in the Denver metropolitan area under contrasting conditions. Urban Ecosyst. 24, 1201–1220 (2021).
Buwalda, J. & Lenz, F. Water use by European pear trees growing in drainage lysimeters. J. Hortic. Sci. 70, 531–540 (1995).
Scharfstädt, L. et al. From oasis to desert: the struggle of urban green spaces amid heatwaves and water scarcity. Sustainability 16, 3373 (2024).
Hilaire, R. S. et al. Efficient water use in residential urban landscapes. HortScience 43, 2081–2092 (2008).
Ignatieva, M., Haase, D., Dushkova, D. & Haase, A. Lawns in cities: from a globalised urban green space phenomenon to sustainable nature-based solutions. Land 9, 73 (2020).
Haase, D. et al. A quantitative review of urban ecosystem service assessments: concepts, models, and implementation. Ambio 43, 413–433 (2014).
Esperon-Rodriguez, M., Power, S. A., Tjoelker, M. G., Marchin, R. M. & Rymer, P. D. Contrasting heat tolerance of urban trees to extreme temperatures during heatwaves. Urban For. Urban Greening 66, 127387 (2021).
Bachofen, C. et al. High transpirational cooling by urban trees despite extreme summer heatwaves. Urban For. Urban Greening 107, 128819 (2025).
Gauthey, A. et al. Absence of canopy temperature variation despite stomatal adjustment in Pinus sylvestris under multidecadal soil moisture manipulation. New Phytol. 240, 19136 (2023).
Bijoor, N. S., McCarthy, H. R., Zhang, D. & Pataki, D. E. Water sources of urban trees in the Los Angeles metropolitan area. Urban Ecosyst. 15, 195–214 (2012).
McCarthy, H. R., Pataki, D. E. & Jenerette, G. D. Plant water-use efficiency as a metric of urban ecosystem services. Ecol. Appl. 21, 3115–3127 (2011).
Bartens, J., Day, S. D., Harris, J. R., Wynn, T. M. & Dove, J. E. Transpiration and root development of urban trees in structural soil stormwater reservoirs. Environ. Manage. 44, 646–657 (2009).
Hayat, M., Xu, X. & Liu, R. Hydroclimatic constraints on tree transpiration-induced cooling across global biomes. Geophys. Res. Lett. 52, e2024GL113551 (2025).
Qin, L. et al. High-resolution spatio-temporal characteristics of urban evapotranspiration measured by unmanned aerial vehicle and infrared remote sensing. Build. Environ. 222, 109389 (2022).
Potchter, O., Cohen, P. & Bitan, A. Climatic behavior of various urban parks during hot and humid summer in the Mediterranean city of Tel Aviv, Israel. Int. J. Climatol. 26, 1695–1711 (2006).
Nichol, J. E. High-resolution surface temperature patterns related to urban morphology in a tropical city: a satellite-based study. J. Appl. Meteorol. Climatol. 35, 135–146 (1996).
Wang, C., Wang, Z. H. & Yang, J. Cooling effect of urban trees on the built environment of contiguous United States. Earth’s Future 6, 1066–1081 (2018).
Dyer, D. W., Patrignani, A. & Bremer, D. Measuring turfgrass canopy interception and throughfall using co-located pluviometers. PLoS ONE 17, e0271236 (2022).
Ettinger, A. K. et al. Street trees provide an opportunity to mitigate urban heat and reduce risk of high heat exposure. Sci. Rep. 14, 3266 (2024).
Bowen, I. S. The ratio of heat losses by conduction and by evaporation from any water surface. Phys. Rev. 27, 779 (1926).
Perez, P., Castellvi, F., Ibanez, M. & Rosell, J. Assessment of reliability of Bowen ratio method for partitioning fluxes. Agric. For. Meteorol. 97, 141–150 (1999).
Granier, A. Evaluation of transpiration in a Douglas-fir stand by means of sap flow measurements. Tree Physiol. 3, 309–320 (1987).
Pataki, D. E., McCarthy, H. R., Litvak, E. & Pincetl, S. Transpiration of urban forests in the Los Angeles metropolitan area. Ecol. Appl. 21, 661–677 (2011).
Lu, P., Urban, L. & Zhao, P. Granier’s thermal dissipation probe (TDP) method for measuring sap flow in trees: theory and practice. Acta Botan. Sin. 46, 631–646 (2004).
Granier, A. & Gross, P. Mesure du flux de sève brute dans le tronc du Douglas par une nouvelle méthode thermique. Ann. Sci. For. 44, 1–14 (1987).
Monteith, J. L., Unsworth, M. H. & Webb, A. Principles of environmental physics. Q. J. R. Meteorol. Soc. 120, 1699 (1994).
Phillips, N. & Oren, R. A comparison of daily representations of canopy conductance based on two conditional time-averaging methods and the dependence of daily conductance on environmental factors. Ann. Sci. For. 55, 217–235 (1998).
Oishi, A. C., Hawthorne, D. A. & Oren, R. Baseliner: an open-source, interactive tool for processing sap flux data from thermal dissipation probes. SoftwareX 5, 139–143 (2016).
Oren, R. et al. Survey and synthesis of intra-and interspecific variation in stomatal sensitivity to vapour pressure deficit. Plant Cell Environ. 22, 1515–1526 (1999).
Fang, T. et al. Experimental data from “Observed evaporative cooling of urban trees and lawns during heatwaves”. Figshare https://doi.org/10.6084/m9.figshare.30113521 (2025).