• Perkins, S. E., Alexander, L. & Nairn, J. Increasing frequency, intensity and duration of observed global heatwaves and warm spells. Geophys. Res. Lett. 39, 20 (2012).

    Article 

    Google Scholar
     

  • Zhao, Q. et al. Global, regional, and national burden of heatwave-related mortality from 1990 to 2019: a three-stage modelling study. PLoS Med. 21, e1004364 (2024).

    Article 

    Google Scholar
     

  • Sethi, S. S. & Vinoj, V. Urbanization and regional climate change-linked warming of Indian cities. Nat. Cities 1, 402–405 (2024).

    Article 

    Google Scholar
     

  • Huang, S. et al. Widespread global exacerbation of extreme drought induced by urbanization. Nat. Cities 1, 597–609 (2024).

    Article 

    Google Scholar
     

  • Rizwan, A. M., Dennis, L. Y. & Chunho, L. A review on the generation, determination and mitigation of urban heat Island. J. Environ. Sci. 20, 120–128 (2008).

    Article 

    Google Scholar
     

  • Zou, Z. et al. Impacts of land use/land cover types on interactions between urban heat island effects and heat waves. Build. Environ. 204, 108138 (2021).

    Article 

    Google Scholar
     

  • Ramamurthy, P. & Bou-Zeid, E. Heatwaves and urban heat islands: a comparative analysis of multiple cities. J. Geophys. Res. Atmos. 122, 168–178 (2017).

    Article 

    Google Scholar
     

  • John, J. & Rein, G. Heatwaves and firewaves: the drivers of urban wildfires in London in the summer of 2022. Fire Technol. 61, 3451–3460 (2025).

    Article 

    Google Scholar
     

  • Wang, Y., Lu, B. & Han, Z. Rapid increase of the nighttime electricity demand in Beijing due to compound heatwaves. Urban Clim. 50, 101595 (2023).

    Article 

    Google Scholar
     

  • Hoag, H. How cities can beat the heat: rising temperatures are threatening urban areas, but efforts to cool them may not work as planned. Nature 524, 402–405 (2015).

    Article 

    Google Scholar
     

  • Yang, Y. et al. Regulation of humid heat by urban green space across a climate wetness gradient. Nat. Cities. 1, 871–879 (2024).

    Article 

    Google Scholar
     

  • Wong, N. H., Tan, C. L., Kolokotsa, D. D. & Takebayashi, H. Greenery as a mitigation and adaptation strategy to urban heat. Nat. Rev. Earth Environ. 2, 166–181 (2021).

    Article 

    Google Scholar
     

  • Qiu, G. Y., Yan, C. & Liu, Y. Urban evapotranspiration and its effects on water budget and energy balance: review and perspectives. Earth-Science Reviews 246, 104577 (2023).

    Article 

    Google Scholar
     

  • Trenberth, K. E., Fasullo, J. T. & Kiehl, J. Earth’s global energy budget. Bull. Am. Meteorol. Soc. 90, 311–324 (2009).

    Article 

    Google Scholar
     

  • Jongen, H. J. et al. Urban water storage capacity inferred from observed evapotranspiration recession. Geophys. Res. Lett. 49, e2021GL096069 (2022).

    Article 

    Google Scholar
     

  • Eyster, H. N. & Beckage, B. Conifers may ameliorate urban heat waves better than broadleaf trees: evidence from Vancouver, Canada. Atmosphere 13, 830 (2022).

    Article 

    Google Scholar
     

  • Teuling, A. J. et al. Contrasting response of European forest and grassland energy exchange to heatwaves. Nat. Geosci. 3, 722–727 (2010).

    Article 

    Google Scholar
     

  • Ahongshangbam, J. et al. Sap flow and leaf gas exchange response to drought and heatwave in urban green spaces in a Nordic city. Biogeosci. Discuss. 2023, 1–32 (2023).


    Google Scholar
     

  • Haase, D., Haase, A. & Rink, D. Conceptualizing the nexus between urban shrinkage and ecosystem services. Landscape Urban Plann. 132, 159–169 (2014).

    Article 

    Google Scholar
     

  • Mu, M. et al. Exploring how groundwater buffers the influence of heatwaves on vegetation function during multi-year droughts. Earth Syst. Dyn. Discuss. 2021, 1–29 (2021).


    Google Scholar
     

  • Brancaleoni, L. & Gerdol, R. Habitat-dependent interactive effects of a heatwave and experimental fertilization on the vegetation of an alpine mire. J. Veg. Sci.25, 427–438 (2014).

    Article 

    Google Scholar
     

  • O’sullivan, O. S. et al. Thermal limits of leaf metabolism across biomes. Global Change Biol. 23, 209–223 (2017).

    Article 

    Google Scholar
     

  • Drake, J. E. et al. Trees tolerate an extreme heatwave via sustained transpirational cooling and increased leaf thermal tolerance. Global Change Biol. 24, 2390–2402 (2018).

    Article 

    Google Scholar
     

  • Ameye, M. et al. The effect of induced heat waves on Pinus taeda and Quercus rubra seedlings in ambient and elevated CO2 atmospheres. New Phytol. 196, 448–461 (2012).

    Article 

    Google Scholar
     

  • Kong, X. et al. Trees in cooler regions are more vulnerable to thermal stress: evidence from temperate poplar plantations in Northern China during the 2022 heatwaves. Agric. For. Meteorol. 356, 110181 (2024).

    Article 

    Google Scholar
     

  • Bakhtsiyarava, M. et al. Potential drivers of urban green space availability in Latin American cities. Nat. Cities. 1, 842–852 (2024).

    Article 

    Google Scholar
     

  • Winbourne, J. B. et al. Tree transpiration and urban temperatures: current understanding, implications, and future research directions. BioScience 70, 576–588 (2020).

    Article 

    Google Scholar
     

  • Bühler, O. et al. Tree development in structural soil–an empirical below-ground in-situ study of urban trees in Copenhagen, Denmark. Plant Soil 413, 29–44 (2017).

    Article 

    Google Scholar
     

  • Meili, N. et al. An urban ecohydrological model to quantify the effect of vegetation on urban climate and hydrology (UT&C v1. 0). Geosci. Model Dev. 13, 335–362 (2020).

    Article 

    Google Scholar
     

  • Teskey, R. et al. Responses of tree species to heat waves and extreme heat events. Plant Cell Environ. 38, 1699–1712 (2015).

    Article 

    Google Scholar
     

  • Joo, E., Zeri, M., Hussain, M. Z., DeLucia, E. H. & Bernacchi, C. J. Enhanced evapotranspiration was observed during extreme drought from Miscanthus, opposite of other crops. GCB Bioenergy 9, 1306–1319 (2017).

    Article 

    Google Scholar
     

  • Perera, R. S., Cullen, B. R. & Eckard, R. J. Growth and physiological responses of temperate pasture species to consecutive heat and drought stresses. Plants 8, 227 (2019).

    Article 

    Google Scholar
     

  • Jiang, Y. & Huang, B. Drought and heat stress injury to two cool-season turfgrasses in relation to antioxidant metabolism and lipid peroxidation. Crop Sci. 41, 436–442 (2001).

    Article 

    Google Scholar
     

  • Zou, Z. et al. Different responses of evapotranspiration rates of urban lawn and tree to meteorological factors and soil water in hot summer in a subtropical megacity. Forests 12, 1463 (2021).

    Article 

    Google Scholar
     

  • Thienelt, T. S. & Anderson, D. E. Estimates of energy partitioning, evapotranspiration, and net ecosystem exchange of CO2 for an urban lawn and a tallgrass prairie in the Denver metropolitan area under contrasting conditions. Urban Ecosyst. 24, 1201–1220 (2021).

    Article 

    Google Scholar
     

  • Buwalda, J. & Lenz, F. Water use by European pear trees growing in drainage lysimeters. J. Hortic. Sci. 70, 531–540 (1995).

    Article 

    Google Scholar
     

  • Scharfstädt, L. et al. From oasis to desert: the struggle of urban green spaces amid heatwaves and water scarcity. Sustainability 16, 3373 (2024).

    Article 

    Google Scholar
     

  • Hilaire, R. S. et al. Efficient water use in residential urban landscapes. HortScience 43, 2081–2092 (2008).

    Article 

    Google Scholar
     

  • Ignatieva, M., Haase, D., Dushkova, D. & Haase, A. Lawns in cities: from a globalised urban green space phenomenon to sustainable nature-based solutions. Land 9, 73 (2020).

    Article 

    Google Scholar
     

  • Haase, D. et al. A quantitative review of urban ecosystem service assessments: concepts, models, and implementation. Ambio 43, 413–433 (2014).

    Article 

    Google Scholar
     

  • Esperon-Rodriguez, M., Power, S. A., Tjoelker, M. G., Marchin, R. M. & Rymer, P. D. Contrasting heat tolerance of urban trees to extreme temperatures during heatwaves. Urban For. Urban Greening 66, 127387 (2021).

    Article 

    Google Scholar
     

  • Bachofen, C. et al. High transpirational cooling by urban trees despite extreme summer heatwaves. Urban For. Urban Greening 107, 128819 (2025).

    Article 

    Google Scholar
     

  • Gauthey, A. et al. Absence of canopy temperature variation despite stomatal adjustment in Pinus sylvestris under multidecadal soil moisture manipulation. New Phytol. 240, 19136 (2023).

    Article 

    Google Scholar
     

  • Bijoor, N. S., McCarthy, H. R., Zhang, D. & Pataki, D. E. Water sources of urban trees in the Los Angeles metropolitan area. Urban Ecosyst. 15, 195–214 (2012).

    Article 

    Google Scholar
     

  • McCarthy, H. R., Pataki, D. E. & Jenerette, G. D. Plant water-use efficiency as a metric of urban ecosystem services. Ecol. Appl. 21, 3115–3127 (2011).

    Article 

    Google Scholar
     

  • Bartens, J., Day, S. D., Harris, J. R., Wynn, T. M. & Dove, J. E. Transpiration and root development of urban trees in structural soil stormwater reservoirs. Environ. Manage. 44, 646–657 (2009).

    Article 

    Google Scholar
     

  • Hayat, M., Xu, X. & Liu, R. Hydroclimatic constraints on tree transpiration-induced cooling across global biomes. Geophys. Res. Lett. 52, e2024GL113551 (2025).

    Article 

    Google Scholar
     

  • Qin, L. et al. High-resolution spatio-temporal characteristics of urban evapotranspiration measured by unmanned aerial vehicle and infrared remote sensing. Build. Environ. 222, 109389 (2022).

    Article 

    Google Scholar
     

  • Potchter, O., Cohen, P. & Bitan, A. Climatic behavior of various urban parks during hot and humid summer in the Mediterranean city of Tel Aviv, Israel. Int. J. Climatol. 26, 1695–1711 (2006).

    Article 

    Google Scholar
     

  • Nichol, J. E. High-resolution surface temperature patterns related to urban morphology in a tropical city: a satellite-based study. J. Appl. Meteorol. Climatol. 35, 135–146 (1996).

    Article 

    Google Scholar
     

  • Wang, C., Wang, Z. H. & Yang, J. Cooling effect of urban trees on the built environment of contiguous United States. Earth’s Future 6, 1066–1081 (2018).

    Article 

    Google Scholar
     

  • Dyer, D. W., Patrignani, A. & Bremer, D. Measuring turfgrass canopy interception and throughfall using co-located pluviometers. PLoS ONE 17, e0271236 (2022).

    Article 

    Google Scholar
     

  • Ettinger, A. K. et al. Street trees provide an opportunity to mitigate urban heat and reduce risk of high heat exposure. Sci. Rep. 14, 3266 (2024).

    Article 

    Google Scholar
     

  • Bowen, I. S. The ratio of heat losses by conduction and by evaporation from any water surface. Phys. Rev. 27, 779 (1926).

    Article 

    Google Scholar
     

  • Perez, P., Castellvi, F., Ibanez, M. & Rosell, J. Assessment of reliability of Bowen ratio method for partitioning fluxes. Agric. For. Meteorol. 97, 141–150 (1999).

    Article 

    Google Scholar
     

  • Granier, A. Evaluation of transpiration in a Douglas-fir stand by means of sap flow measurements. Tree Physiol. 3, 309–320 (1987).

    Article 

    Google Scholar
     

  • Pataki, D. E., McCarthy, H. R., Litvak, E. & Pincetl, S. Transpiration of urban forests in the Los Angeles metropolitan area. Ecol. Appl. 21, 661–677 (2011).

    Article 

    Google Scholar
     

  • Lu, P., Urban, L. & Zhao, P. Granier’s thermal dissipation probe (TDP) method for measuring sap flow in trees: theory and practice. Acta Botan. Sin. 46, 631–646 (2004).


    Google Scholar
     

  • Granier, A. & Gross, P. Mesure du flux de sève brute dans le tronc du Douglas par une nouvelle méthode thermique. Ann. Sci. For. 44, 1–14 (1987).

    Article 

    Google Scholar
     

  • Monteith, J. L., Unsworth, M. H. & Webb, A. Principles of environmental physics. Q. J. R. Meteorol. Soc. 120, 1699 (1994).


    Google Scholar
     

  • Phillips, N. & Oren, R. A comparison of daily representations of canopy conductance based on two conditional time-averaging methods and the dependence of daily conductance on environmental factors. Ann. Sci. For. 55, 217–235 (1998).

    Article 

    Google Scholar
     

  • Oishi, A. C., Hawthorne, D. A. & Oren, R. Baseliner: an open-source, interactive tool for processing sap flux data from thermal dissipation probes. SoftwareX 5, 139–143 (2016).

    Article 

    Google Scholar
     

  • Oren, R. et al. Survey and synthesis of intra-and interspecific variation in stomatal sensitivity to vapour pressure deficit. Plant Cell Environ. 22, 1515–1526 (1999).

    Article 

    Google Scholar
     

  • Fang, T. et al. Experimental data from “Observed evaporative cooling of urban trees and lawns during heatwaves”. Figshare https://doi.org/10.6084/m9.figshare.30113521 (2025).