Christakis, N. A. & Fowler, J. H. Connected: The Surprising Power of Our Social Networks and How They Shape Our Lives (Little, Brown, 2009).
Easley, D. & Kleinberg, J. Networks, Crowds, and Markets (Cambridge Univ. Press, 2010).
Moreno, J. L. & Jennings, H. H. Statistics of social configurations. Sociometry 1, 342–374 (1938).
Granovetter, M. S. The strength of weak ties. Am. J. Sociol. 78, 1360–1380 (1973).
Milgram, S. The small world problem. Psychol. Today 2, 60–67 (1967).
Newman, M. E. J. Networks: An Introduction (Oxford Univ. Press, 2010).
Estrada, E. The Structure of Complex Networks: Theory and Applications (Oxford Univ. Press, 2011).
Barabási, A.-L. & Pósfai, M. Network Science (Cambridge Univ. Press, 2016).
Latora, V., Nicosia, V. & Russo, G. Complex Networks: Principles, Methods and Applications (Cambridge Univ. Press, 2017).
Atkin, R. H. From cohomology in physics to q-connectivity in social science. Int. J. Man Mach. Stud. 4, 139–167 (1972).
Atkin, R. Mathematical Structure in Human Affairs (Heinemann Educational, 1974).
Berge, C. Graphs and Hypergraphs (North-Holland Pub. Co., 1973).
Le Bon, G. The Crowd: A Study of the Popular Mind (Routledge, 1895).
Simmel, G. The number of members as determining the sociological form of the group. II. Am. J. Sociol. 8, 158–196 (1902).
Lewin, K. Principles of Topological Psychology (McGraw-Hill, 1936).
Wasserman, S. & Faust, K. Social Network Analysis: Methods and Applications. Structural Analysis in the Social Sciences (Cambridge Univ. Press, 1994).
Battiston, F. et al. Networks beyond pairwise interactions: structure and dynamics. Phys. Rep. 874, 1–92 (2020).
Milo, R. et al. Network motifs: simple building blocks of complex networks. Science 298, 824–827 (2002).
Girvan, M. & Newman, M. E. J. Community structure in social and biological networks. Proc. Natl Acad. Sci. USA 99, 7821–7826 (2002).
Fortunato, S. Community detection in graphs. Phys. Rep. 486, 75–174 (2010).
Aleksandrov, P. S. Combinatorial Topology Vol. 1 (Courier Corporation, 1998).
Salnikov, V., Cassese, D. & Lambiotte, R. Simplicial complexes and complex systems. Eur. J. Phys. 40, 014001 (2018).
Newman, M. E. J., Strogatz, S. H. & Watts, D. J. Random graphs with arbitrary degree distributions and their applications. Phys. Rev. E 64, 026118 (2001).
Gomez-Gardenes, J., Romance, M., Criado, R., Vilone, D. & Sánchez, A. Evolutionary games defined at the network mesoscale: the public goods game. Chaos Interdiscip. J. Nonlinear Sci. 21, 016113 (2011).
Grabowski, A. & Kosiński, R. Epidemic spreading in a hierarchical social network. Phys. Rev. E 70, 031908 (2004).
Benson, A. R. Three hypergraph eigenvector centralities. SIAM J. Math. Data Sci. 1, 293–312 (2019).
Tudisco, F. & Higham, D. J. Node and edge nonlinear eigenvector centrality for hypergraphs. Commun. Phys. 4, 201 (2021).
Benson, A. R., Abebe, R., Schaub, M. T., Jadbabaie, A. & Kleinberg, J. Simplicial closure and higher-order link prediction. Proc. Natl Acad. Sci. USA 115, E11221–E11230 (2018).
Lotito, Q. F., Musciotto, F., Montresor, A. & Battiston, F. Higher-order motif analysis in hypergraphs. Commun. Phys. 5, 79 (2022).
Lotito, Q. F., Musciotto, F., Battiston, F. & Montresor, A. Exact and sampling methods for mining higher-order motifs in large hypergraphs. Computing 106, 475–494 (2023).
Chodrow, P. S., Veldt, N. & Benson, A. R. Generative hypergraph clustering: from blockmodels to modularity. Sci. Adv. 7, eabh1303 (2021).
Eriksson, A., Edler, D., Rojas, A., de Domenico, M. & Rosvall, M. How choosing random-walk model and network representation matters for flow-based community detection in hypergraphs. Commun. Phys. 4, 133 (2021).
Contisciani, M., Battiston, F. & De Bacco, C. Inference of hyperedges and overlapping communities in hypergraphs. Nat. Commun. 13, 7229 (2022).
Ruggeri, N., Contisciani, M., Battiston, F. & De Bacco, C. Community detection in large hypergraphs. Sci. Adv. 9, eadg9159 (2023).
Tudisco, F. & Higham, D. J. Core–periphery detection in hypergraphs. SIAM J. Math. Data Sci. 5, 1–21 (2023).
Cencetti, G., Battiston, F., Lepri, B. & Karsai, M. Temporal properties of higher-order interactions in social networks. Sci. Rep. 11, 7028 (2021).
Di Gaetano, L., Battiston, F. & Starnini, M. Percolation and topological properties of temporal higher-order networks. Phys. Rev. Lett. 132, 037401 (2024).
Gallo, L., Lacasa, L., Latora, V. & Battiston, F. Higher-order correlations reveal complex memory in temporal hypergraphs. Nat. Commun. 15, 4754 (2024).
Iacopini, I., Karsai, M. & Barrat, A. The temporal dynamics of group interactions in higher-order social networks. Nat. Commun. 15, 7391 (2024).
Lotito, Q. F. et al. Hypergraphx: a library for higher-order network analysis. J. Complex Netw. 11, cnad019 (2023).
Landry, N. W. et al. XGI: a Python package for higher-order interaction networks. J. Open Source Softw. 8, 5162 (2023).
Praggastis, B. et al. HyperNetX: a Python package for modeling complex network data as hypergraphs. J. Open Source Softw. 9, 6016 (2024).
McPherson, J. Hypernetwork sampling: duality and differentiation among voluntary organizations. Soc. Netw. 3, 225–249 (1982).
Foster, B. & Seidman, S. Urban structures derived from collections of overlapping subsets. Urban Anthropol. 11, 177–192 (1982).
Foster, B. & Seidman, S. Overlap structure of ceremonial events in two Thai villages. Thai J. Dev. Adm. 24, 143–157 (1984).
Faust, K. Centrality in affiliation networks. Soc. Netw. 19, 157–191 (1997).
Bonacich, P., Holdren, A. C. & Johnston, M. Hyper-edges and multidimensional centrality. Soc. Netw. 26, 189–203 (2004).
Estrada, E. & Rodríguez-Velázquez, J. A. Subgraph centrality and clustering in complex hyper-networks. Phys. A 364, 581–594 (2006).
Ghoshal, G., Zlatić, V., Caldarelli, G. & Newman, M. E. J. Random hypergraphs and their applications. Phys. Rev. E 79, 066118 (2009).
Zlatić, V., Ghoshal, G. & Caldarelli, G. Hypergraph topological quantities for tagged social networks. Phys. Rev. E 80, 036118 (2009).
Manton, K. G. & Woodbury, M. A. Grade of membership generalizations and aging research. Exp. Aging Res. 17, 217–226 (1991).
Chiyo, P. I., Moss, C. J. & Alberts, S. C. The influence of life history milestones and association networks on crop-raiding behavior in male African elephants. PLoS ONE 7, e31382 (2012).
Newman, M. E. J. Scientific collaboration networks. I. Network construction and fundamental results. Phys. Rev. E 64, 016131 (2001).
Newman, M. E. J. Scientific collaboration networks. II. Shortest paths, weighted networks, and centrality. Phys. Rev. E 64, 016132 (2001).
Newman, M. E. J. The structure of scientific collaboration networks. Proc. Natl Acad. Sci. USA 98, 404–409 (2001).
Wuchty, S., Jones, B. F. & Uzzi, B. The increasing dominance of teams in production of knowledge. Science 316, 1036–1039 (2007).
Milojević, S. Principles of scientific research team formation and evolution. Proc. Natl Acad. Sci. USA 111, 3984–3989 (2014).
Moore, T. J., Drost, R. J., Basu, P., Ramanathan, R. & Swami, A. Analyzing collaboration networks using simplicial complexes: a case study. In 2012 Proceedings IEEE INFOCOM Workshops 238–243 (IEEE, 2012).
Xiao, Q. Node importance measure for scientific research collaboration from hypernetwork perspective. Teh. Vjesn. 23, 397–404 (2016).
Juul, J. L., Benson, A. R. & Kleinberg, J. Hypergraph patterns and collaboration structure. Front. Phys. 11, 1301994 (2024).
Carley, K. A theory of group stability. Am. Sociol. Rev. 56, 331–354 (1991).
Guimera, R., Uzzi, B., Spiro, J. & Amaral, L. A. N. Team assembly mechanisms determine collaboration network structure and team performance. Science 308, 697–702 (2005).
Musciotto, F., Battiston, F. & Mantegna, R. N. Identifying maximal sets of significantly interacting nodes in higher-order networks. Preprint at https://doi.org/10.48550/arXiv.2209.12712 (2022).
Chowdhary, S., Gallo, L., Musciotto, F. & Battiston, F. Team careers in science: formation, composition and success of persistent collaborations. Preprint at https://doi.org/10.48550/arXiv.2407.09326 (2024).
Patania, A., Vaccarino, F. & Petri, G. Topological analysis of data. EPJ Data Sci. 6, 7 (2017).
Carstens, C. J. & Horadam, K. J. Persistent homology of collaboration networks. Math. Probl. Eng. 2013, 1–7 (2013).
Patania, A., Petri, G. & Vaccarino, F. The shape of collaborations. EPJ Data Sci. 6, 18 (2017).
Burt, R. S. Structural Holes: The Social Structure of Competition (Harvard Univ. Press, 2009).
Moreland, R. L. Are dyads really groups? Small Group Res. 41, 251–267 (2010).
Stopczynski, A. et al. Measuring large-scale social networks with high resolution. PLoS ONE 9, e95978 (2014).
Sekara, V., Stopczynski, A. & Lehmann, S. Fundamental structures of dynamic social networks. Proc. Natl Acad. Sci. USA 113, 9977–9982 (2016).
Sapiezynski, P., Stopczynski, A., Lassen, D. D. & Lehmann, S. Interaction data from the Copenhagen Networks Study. Sci. Data 6, 315 (2019).
Eagle, N. & Pentland, A. S. Reality mining: sensing complex social systems. Pers. Ubiquitous Comput. 10, 255–268 (2006).
ISI Foundation, CNRS and Bitmanufactory. SocioPatterns. sociopatterns.org http://www.sociopatterns.org (2008).
Cattuto, C. et al. Dynamics of person-to-person interactions from distributed RFID sensor networks. PLoS ONE 5, e11596 (2010).
Isella, L. et al. What’s in a crowd? Analysis of face-to-face behavioral networks. J. Theor. Biol. 271, 166–180 (2011).
Génois, M. et al. Data on face-to-face contacts in an office building suggest a low-cost vaccination strategy based on community linkers. Netw. Sci. 3, 326–347 (2015).
Vanhems, P. et al. Estimating potential infection transmission routes in hospital wards using wearable proximity sensors. PLoS ONE 8, e73970 (2013).
Wang, R. et al. StudentLife: assessing mental health, academic performance and behavioral trends of college students using smartphones. In Proc. 2014 ACM International Joint Conference on Pervasive and Ubiquitous Computing 3–14 (2014).
Dartmouth College. StudentLife Study. dartmouth.edu https://studentlife.cs.dartmouth.edu (2013).
Fournet, J. & Barrat, A. Contact patterns among high school students. PLoS ONE 9, e107878 (2014).
Stehlé, J. et al. High-resolution measurements of face-to-face contact patterns in a primary school. PLoS ONE 6, e23176 (2011).
Dai, S. et al. Longitudinal data collection to follow social network and language development dynamics at preschool. Sci. Data 9, 777 (2022).
Sapiezynski, P., Stopczynski, A., Wind, D. K., Leskovec, J. & Lehmann, S. Inferring person-to-person proximity using WiFi signals. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 1, 24 (2017).
Reichert, L., Brack, S. & Scheuermann, B. Privacy-preserving contact tracing of COVID-19 patients. IACR Cryptol. ePrint Arch. 2020, 375 (2020).
Mancastroppa, M., Iacopini, I., Petri, G. & Barrat, A. Hyper-cores promote localization and efficient seeding in higher-order processes. Nat. Commun. 14, 6223 (2023).
Krause, J., James, R., Franks, D. W. & Croft, D. P. Animal Social Networks (Oxford Univ. Press, 2015).
Betti, L., Musciotto, F., Papageorgiou, D., Battiston, F. & Farine, D. R. Beyond the dyad: higher-order structure within cohesive animal groups reveals the social pathway to leadership. Preprint at bioRxiv https://doi.org/10.1101/2022.05.30.494018 (2022).
Iacopini, I., Foote, J. R., Fefferman, N. H., Derryberry, E. P. & Silk, M. J. Not your private tête-à-tête: leveraging the power of higher-order networks to study animal communication. Phil. Trans. B 379, 20230190 (2024).
Coleman, J. S. Foundations of Social Theory (Harvard Univ. Press, 1994).
Starnini, M., Baronchelli, A. & Pastor-Satorras, R. Modeling human dynamics of face-to-face interaction networks. Phys. Rev. Lett. 110, 168701 (2013).
Starnini, M., Baronchelli, A. & Pastor-Satorras, R. Model reproduces individual, group and collective dynamics of human contact networks. Soc. Netw. 47, 130–137 (2016).
Duncan, S. & Fiske, D. W. Face-to-Face Interaction: Research, Methods, and Theory (Routledge, 2015).
Heider, F. The Psychology of Interpersonal Relations (John Wiley and Sons, 1958).
Doreian, P., Kapuscinski, R., Krackhardt, D. & Szczypula, J. in Evolution of Social Networks (eds Doreian, P. & Stokman, F.) 129–147 (Routledge, 2013).
Hummon, N. P. & Doreian, P. Some dynamics of social balance processes: bringing Heider back into balance theory. Soc. Netw. 25, 17–49 (2003).
Cartwright, D. & Harary, F. Structural balance: a generalization of Heider’s theory. Psychol. Rev. 63, 277—293 (1956).
Gallo, L., Zappalà, C., Karimi, F. & Battiston, F. Higher-order modeling of face-to-face interactions. Preprint at https://doi.org/10.48550/arXiv.2406.05026 (2024).
Oliveira, M. et al. Group mixing drives inequality in face-to-face gatherings. Commun. Phys. 5, 127 (2022).
Veldt, N., Benson, A. R. & Kleinberg, J. Combinatorial characterizations and impossibilities for higher-order homophily. Sci. Adv. 9, eabq3200 (2023).
Sarker, A., Northrup, N. & Jadbabaie, A. Higher-order homophily on simplicial complexes. Proc. Natl Acad. Sci. USA 121, e2315931121 (2024).
Martin-Gutierrez, S., van Dissel, M. N. C. & Karimi, F. The hidden architecture of connections: how do multidimensional identities shape our social networks? Preprint at https://doi.org/10.48550/arXiv.2406.17043 (2024).
Garip, F. & Molina, M. D. in Research Handbook on Analytical Sociology (ed. Manzo, G.) 308–320 (Edward Elgar, 2021).
Grassly, N. C. & Fraser, C. Mathematical models of infectious disease transmission. Nat. Rev. Microbiol. 6, 477–487 (2008).
Daley, D. J. & Kendall, D. G. Epidemics and rumours. Nature 204, 1118 (1964).
Goffman, W. & Newill, V. A. Generalization of epidemic theory: an application to the transmission of ideas. Nature 204, 225–228 (1964).
Bettencourt, L., Cintrón-Arias, A., Kaiser, D. I. & Castillo-Chavez, C. The power of a good idea: quantitative modeling of the spread of ideas from epidemiological models. Phys. A 364, 513–536 (2006).
Centola, D. & Macy, M. Complex contagions and the weakness of long ties. Am. J. Sociol. 113, 702–734 (2007).
Lehmann, S. & Ahn, Y.-Y. (eds) Complex Spreading Phenomena in Social Systems (Springer, 2018).
Guilbeault, D., Becker, J. & Centola, D. in Complex Spreading Phenomena in Social Systems (eds Lehmann, S. & Ahn, Y.-Y.) 3–25 (Springer, 2018).
Granovetter, M. Threshold models of collective behavior. Am. J. Sociol. 83, 1420–1443 (1978).
Watts, D. J. A simple model of global cascades on random networks. Proc. Natl Acad. Sci. USA 99, 5766–5771 (2002).
Weidlich, W. The statistical description of polarization phenomena in society. Br. J. Math. Stat. Psychol. 24, 251–266 (1971).
Clifford, P. & Sudbury, A. A model for spatial conflict. Biometrika 60, 581–588 (1973).
Galam, S. Minority opinion spreading in random geometry. Eur. Phys. J. B 25, 403–406 (2002).
Centola, D. The spread of behavior in an online social network experiment. Science 329, 1194–1197 (2010).
Backstrom, L., Huttenlocher, D., Kleinberg, J. & Lan, X. Group formation in large social networks: membership, growth, and evolution. In Proc. 12th ACM SIGKDD International Conference 44–54 (2006).
Romero, D. M., Meeder, B. & Kleinberg, J. Differences in the mechanics of information diffusion across topics: idioms, political hashtags, and complex contagion on twitter. In Proc. 20th International Conference on World Wide Web 695–704 (ACM, 2011).
Ugander, J., Backstrom, L., Marlow, C. & Kleinberg, J. Structural diversity in social contagion. Proc. Natl Acad. Sci. USA 109, 5962–5966 (2012).
Weng, L., Menczer, F. & Ahn, Y.-Y. Virality prediction and community structure in social networks. Sci. Rep. 3, 2522 (2013).
Ruan, Z., Iniguez, G., Karsai, M. & Kertész, J. Kinetics of social contagion. Phys. Rev. Lett. 115, 218702 (2015).
Mønsted, B., Sapieżyński, P., Ferrara, E. & Lehmann, S. Evidence of complex contagion of information in social media: an experiment using Twitter bots. PLoS ONE 12, e0184148 (2017).
Castellano, C., Fortunato, S. & Loreto, V. Statistical physics of social dynamics. Rev. Mod. Phys. 81, 591 (2009).
Iacopini, I., Petri, G., Barrat, A. & Latora, V. Simplicial models of social contagion. Nat. Commun. 10, 2485 (2019).
Iacopini, I., Petri, G., Baronchelli, A. & Barrat, A. Group interactions modulate critical mass dynamics in social convention. Commun. Phys. 5, 64 (2022).
Matamalas, J. T., Gómez, S. & Arenas, A. Abrupt phase transition of epidemic spreading in simplicial complexes. Phys. Rev. Res. 2, 012049 (2020).
de Arruda, G. F., Petri, G. & Moreno, Y. Social contagion models on hypergraphs. Phys. Rev. Res. 2, 023032 (2020).
Landry, N. W. & Restrepo, J. G. The effect of heterogeneity on hypergraph contagion models. Chaos Interdiscip. J. Nonlinear Sci. 30, 103117 (2020).
Nowak, M. A. & Highfield, R. SuperCooperators: Altruism, Evolution, and Why We Need Each Other to Succeed (Free Press, 2011).
Pennisi, E. How did cooperative behavior evolve? Science 309, 93–93 (2005).
Trivers, R. L. The evolution of reciprocal altruism. Q. Rev. Biol. 46, 35–57 (1971).
Sigmund, K. Punish or perish? Retaliation and collaboration among humans. Trends Ecol. Evol. 22, 593–600 (2007).
Nowak, M. A. & Sigmund, K. Evolution of indirect reciprocity by image scoring. Nature 393, 573–577 (1998).
Milinski, M., Semmann, D., Bakker, T. C. M. & Krambeck, H.-J. Cooperation through indirect reciprocity: image scoring or standing strategy? Proc. R. Soc. Lond. B 268, 2495–2501 (2001).
Nax, H. H., Perc, M., Szolnoki, A. & Helbing, D. Stability of cooperation under image scoring in group interactions. Sci. Rep. 5, 12145 (2015).
Fehr, E. Don’t lose your reputation. Nature 432, 449–450 (2004).
Gächter, S. Reputation and reciprocity: consequences for the labour relation. Scand. J. Econ. 104, 1–26 (2002).
Fu, F., Hauert, C., Nowak, M. A. & Wang, L. Reputation-based partner choice promotes cooperation in social networks. Phys. Rev. E 78, 026117 (2008).
Nowak, M. A. Five rules for the evolution of cooperation. Science 314, 1560–1563 (2006).
Santos, F. C., Pacheco, J. M. & Lenaerts, T. Evolutionary dynamics of social dilemmas in structured heterogeneous populations. Proc. Natl Acad. Sci. USA 103, 3490–3494 (2006).
Santos, F. C., Rodrigues, J. F. & Pacheco, J. M. Graph topology plays a determinant role in the evolution of cooperation. Proc. R. Soc. B 273, 51–55 (2006).
Santos, F. C., Santos, M. D. & Pacheco, J. M. Social diversity promotes the emergence of cooperation in public goods games. Nature 454, 213–216 (2008).
Perc, M., Gómez-Gardeñes, J., Szolnoki, A., Floría, L. M. & Moreno, Y. Evolutionary dynamics of group interactions on structured populations: a review. J. R. Soc. Interface 10, 20120997 (2013).
Battiston, F., Perc, M. & Latora, V. Determinants of public cooperation in multiplex networks. N. J. Phys. 19, 073017 (2017).
Szolnoki, A., Perc, M. & Szabó, G. Topology-independent impact of noise on cooperation in spatial public goods games. Phys. Rev. E 80, 056109 (2009).
Szolnoki, A. & Perc, M. Group-size effects on the evolution of cooperation in the spatial public goods game. Phys. Rev. E 84, 047102 (2011).
Alvarez-Rodriguez, U. et al. Evolutionary dynamics of higher-order interactions in social networks. Nat. Hum. Behav. 5, 586–595 (2021).
Burgio, G., Matamalas, J. T., Gómez, S. & Arenas, A. Evolution of cooperation in the presence of higher-order interactions: from networks to hypergraphs. Entropy 22, 744 (2020).
Hauert, C., Michor, F., Nowak, M. A. & Doebeli, M. Synergy and discounting of cooperation in social dilemmas. J. Theor. Biol. 239, 195–202 (2006).
Peña, J., Wu, B., Arranz, J. & Traulsen, A. Evolutionary games of multiplayer cooperation on graphs. PLoS Comput. Biol. 12, e1005059 (2016).
Sheng, A., Su, Q., Wang, L. & Plotkin, J. B. Strategy evolution on higher-order networks. Nat. Comput. Sci. 4, 274–284 (2024).
Wang, C., Perc, M. & Szolnoki, A. Evolutionary dynamics of any multiplayer game on regular graphs. Nat. Commun. 15, 5349 (2024).
Guo, H. et al. Evolutionary games on simplicial complexes. Chaos Solitons Fractals 150, 111103 (2021).
Civilini, A., Anbarci, N. & Latora, V. Evolutionary game model of group choice dilemmas on hypergraphs. Phys. Rev. Lett. 127, 268301 (2021).
Civilini, A., Sadekar, O., Battiston, F., Gómez-Gardeñes, J. & Latora, V. Explosive cooperation in social dilemmas on higher-order networks. Phys. Rev. Lett. 132, 167401 (2024).
Sadekar, O., Civilini, A., Latora, V. & Battiston, F. Drivers of cooperation in social dilemmas on higher-order networks. J. R. Soc. Interface 22, 20250134 (2025).
Nowak, M. A. Evolutionary Dynamics (Harvard Univ. Press, 2006).
Hammond, R. A. & Axelrod, R. The evolution of ethnocentrism. J. Confl. Resolut. 50, 926–936 (2006).
Choi, J.-K. & Bowles, S. The coevolution of parochial altruism and war. Science 318, 636–640 (2007).
Jordan, M. R., Jordan, J. J. & Rand, D. G. No unique effect of intergroup competition on cooperation: non-competitive thresholds are as effective as competitions between groups for increasing human cooperative behavior. Evol. Hum. Behav. 38, 102–108 (2017).
Bairey, E., Kelsic, E. D. & Kishony, R. High-order species interactions shape ecosystem diversity. Nat. Commun. 7, 12285 (2017).
Grilli, J., Barabás, G., Michalska-Smith, M. J. & Allesina, S. Higher-order interactions stabilize dynamics in competitive network models. Nature 548, 210–213 (2017).
Levine, J. M., Bascompte, J., Adler, P. B. & Allesina, S. Beyond pairwise mechanisms of species coexistence in complex communities. Nature 546, 56–64 (2017).
Nagel, T. Moral conflict and political legitimacy. Phil. Public Aff. 16, 215–240 (1987).
Pearce, W. B. & Littlejohn, S. W. Moral Conflict: When Social Worlds Collide (Sage, 1997).
Bartos, O. J. & Wehr, P. Using Conflict Theory (Cambridge Univ. Press, 2002).
Capraro, V. & Perc, M. Grand challenges in social physics: in pursuit of moral behavior. Front. Phys. 6, 107 (2018).
Hendrick, S. S. Self-disclosure and marital satisfaction. J. Pers. Soc. Psychol. 40, 1150–1159 (1981).
Argyle, M. & Henderson, M. The rules of friendship. J. Soc. Pers. Relat. 1, 211–237 (1984).
Gravelle, J. Tax Havens: International Tax Avoidance and Evasion (DIANE, 2010).
Tennyson, S. Moral, social, and economic dimensions of insurance claims fraud. Soc. Res. 75, 1181–1204 (2008).
Pennycook, G., Cannon, T. D. & Rand, D. G. Prior exposure increases perceived accuracy of fake news. J. Exp. Psychol. Gen. 147, 1865–1880 (2018).
Fischbacher, U. & Föllmi-Heusi, F. Lies in disguise—an experimental study on cheating. J. Eur. Econ. Assoc. 11, 525–547 (2013).
Mazar, N., Amir, O. & Ariely, D. The dishonesty of honest people: a theory of self-concept maintenance. J. Mark. Res. 45, 633–644 (2008).
Maynard Smith, J. Honest signalling: the Philip Sidney game. Anim. Behav. 42, 1034–1035 (1991).
Gneezy, U. Deception: the role of consequences. Am. Econ. Rev. 95, 384–394 (2005).
Smith, D. et al. Cooperation and the evolution of hunter-gatherer storytelling. Nat. Commun. 8, 1853 (2017).
Marett, L. K. & George, J. F. Deception in the case of one sender and multiple receivers. Group Decis. Negot. 13, 29–44 (2004).
Zhou, L., Wu, J. & Zhang, D. Discourse cues to deception in the case of multiple receivers. Inf. Manage. 51, 726–737 (2014).
Skyrms, B. Evolution of signalling systems with multiple senders and receivers. Phil. Trans. R. Soc. B 364, 771–779 (2009).
Capraro, V., Perc, M. & Vilone, D. The evolution of lying in well-mixed populations. J. R. Soc. Interface 16, 20190211 (2019).
Capraro, V., Perc, M. & Vilone, D. Lying on networks: the role of structure and topology in promoting honesty. Phys. Rev. E 101, 032305 (2020).
Kumar, A., Chowdhary, S., Capraro, V. & Perc, M. Evolution of honesty in higher-order social networks. Phys. Rev. E 104, 054308 (2021).
Li, W., Zhu, Y. & Xia, C. Evolutionary dynamics of n-player sender–receiver game in networks with community structure. Chaos Interdiscip. J. Nonlinear Sci. 33, 103117 (2023).
Kimbrough, E. O. & Vostroknutov, A. Norms make preferences social. J. Eur. Econ. Assoc. 14, 608–638 (2016).
Capraro, V. & Rand, D. G. Do the right thing: experimental evidence that preferences for moral behavior, rather than equity or efficiency per se, drive human prosociality. Judgm. Decis. Mak. 13, 99–111 (2018).
Eriksson, K., Strimling, P., Andersson, P. A. & Lindholm, T. Costly punishment in the ultimatum game evokes moral concern, in particular when framed as payoff reduction. J. Exp. Soc. Psychol. 69, 59–64 (2017).
Haidt, J. & Joseph, C. Intuitive ethics: how innately prepared intuitions generate culturally variable virtues. Daedalus 133, 55–66 (2004).
Iyer, R., Koleva, S., Graham, J., Ditto, P. & Haidt, J. Understanding libertarian morality: the psychological dispositions of self-identified libertarians. PLoS ONE 7, e42366 (2012).
Curry, O. S. in The Evolution of Morality (eds Shackelford, T. K. & Hansen, R. D.) 27–51 (Springer, 2016).
Curry, O., Whitehouse, H. & Mullins, D. Is it good to cooperate? Testing the theory of morality-as-cooperation in 60 societies. Curr. Anthropol. 60, 47–69 (2019).
Page, K. M., Nowak, M. A. & Sigmund, K. The spatial ultimatum game. Proc. R. Soc. Lond. B 267, 2177–2182 (2000).
Kuperman, M. & Risau-Gusman, S. The effect of the topology on the spatial ultimatum game. Eur. Phys. J. B 62, 233–238 (2008).
Deng, L., Tang, W. & Zhang, J. The coevolutionary ultimatum game on different network topologies. Phys. A 390, 4227–4235 (2011).
Zheng, L., Li, Y., Zhou, J. & Li, Y. The effect of celebrity on the evolution of fairness in the ultimatum game. Phys. A 585, 126326 (2022).
Yang, Z. Role polarization and its effects in the spatial ultimatum game. Phys. Rev. E 108, 024106 (2023).
Deng, L., Wang, H., Wang, R., Xu, R. & Wang, C. The adaptive adjustment of node weights based on reputation and memory promotes fairness. Chaos Solitons Fractals 180, 114591 (2024).
Van Segbroeck, S., Santos, F. C., Nowé, A., Pacheco, J. M. & Lenaerts, T. The coevolution of loyalty and cooperation. In 2009 IEEE Congress on Evolutionary Computation 500–505 (IEEE, 2009).
Fu, F. et al. Evolution of in-group favoritism. Sci. Rep. 2, 460 (2012).
Whitaker, R. M., Colombo, G. B. & Rand, D. G. Indirect reciprocity and the evolution of prejudicial groups. Sci. Rep. 8, 13247 (2018).
Fu, M., Wang, J., Cheng, L. & Chen, L. Promotion of cooperation with loyalty-based reward in the spatial prisoner’s dilemma game. Phys. A 580, 125672 (2021).
Fu, M., Guo, W., Cheng, L., Huang, S. & Chen, D. History loyalty-based reward promotes cooperation in the spatial public goods game. Phys. A 525, 1323–1329 (2019).
Martinez-Vaquero, L. A. Inequality leads to the evolution of intolerance in reputation-based populations. Chaos Interdiscip. J. Nonlinear Sci. 33, 033119 (2023).
Chica, M., Chiong, R., Ramasco, J. J. & Abbass, H. Effects of update rules on networked n-player trust game dynamics. Commun. Nonlinear Sci. Numer. Simul. 79, 104870 (2019).
Kumar, A., Capraro, V. & Perc, M. The evolution of trust and trustworthiness. J. R. Soc. Interface 17, 20200491 (2020).
Lim, I. S. Stochastic evolutionary dynamics of trust games with asymmetric parameters. Phys. Rev. E 102, 062419 (2020).
Hu, Z. et al. Adaptive reputation promotes trust in social networks. IEEE Trans. Netw. Sci. Eng. 8, 3087–3098 (2021).
Liu, L. & Chen, X. Conditional investment strategy in evolutionary trust games with repeated group interactions. Inf. Sci. 609, 1694–1705 (2022).
Meylahn, B. V., den Boer, A. V. & Mandjes, M. Interpersonal trust: asymptotic analysis of a stochastic coordination game with multi-agent learning. Chaos Interdiscip. J. Nonlinear Sci. 34, 063119 (2024).
Wang, C. Evolution of trust in structured populations. Appl. Math. Comput. 471, 128595 (2024).
Zhou, C., Zhu, Y., Zhao, D. & Xia, C. An evolutionary trust game model with group reputation within the asymmetric population. Chaos Solitons Fractals 184, 115031 (2024).
Kosfeld, M. Economic networks in the laboratory: a survey. Rev. Netw. Econ. 3, 20–41 (2004).
Jackson, M. Social and Economic Networks (Princeton Univ. Press, 2008).
Choi, S., Gallo, E. & Kariv, S. Networks in the Laboratory (Cambridge Working Papers in Economics) (Faculty of Economics, Univ. Cambridge, 2015).
Cassar, A. Coordination and cooperation in local, random and small world networks: experimental evidence. Games Econ. Behav. 58, 209–230 (2007).
Kearns, M., Judd, S. & Wortman, J. Behavioral experiments on biased voting in networks. Proc. Natl Acad. Sci. USA 106, 1347–1352 (2009).
Duffy, J., Lai, E. K. & Lim, W. Coordination via correlation: an experimental study. Econ. Theory 64, 265–304 (2017).
Bramoullé, Y., Kranton, R. & D’Amours, M. Strategic interaction and networks. Am. Econ. Rev. 104, 898–930 (2014).
Sánchez, A. Physics of human cooperation: experimental evidence and theoretical models. J. Stat. Mech. Theory Exp. 2018, 024001 (2018).
Han, X. et al. Equal status in ultimatum games promotes rational sharing. Sci. Rep. 8, 1222 (2018).
Cardoso, F. M. et al. Effect of network topology and node centrality on trading. Sci. Rep. 10, 11113 (2020).
Ledyard, J. O. in The Handbook of Experimental Economics (eds Kagel, J. H. & Roth, A. E.) 111–194 (Princeton Univ. Press, 1997).
Fischbacher, U. & Gächter, S. Social preferences, beliefs and the dynamics of free riding in public goods experiments. Am. Econ. Rev. 100, 541–556 (2010).
Grujić, J., Fosco, C., Araujo, L., Cuesta, J. A. & Sánchez, A. Social experiments in the mesoscale: humans playing a spatial prisoner’s dilemma. PLoS ONE 5, e13749 (2010).
Gracia-Lázaro, C. et al. Heterogeneous networks do not promote cooperation when humans play a prisoner’s dilemma. Proc. Natl Acad. Sci. USA 109, 12922–12926 (2012).
Salvato, C., Reuer, J. J. & Battigalli, P. Cooperation across disciplines: a multilevel perspective on cooperative behavior in governing interfirm relations. Acad. Manage. Ann. 11, 960–1046 (2017).
Kessler, J. B., Low, C. & Singhal, M. Social policy instruments and the compliance environment. J. Econ. Behav. Organ. 192, 248–267 (2021).
Bossey, L. A. Conditional cooperation in network public goods experiments. J. Behav. Exp. Econ. 69, 108–116 (2017).
Pereda, M. A. et al. Large scale and information effects on public goods games. Sci. Rep. 9, 15023 (2019).
Grujić, J., Cuesta, J. A. & Sánchez, A. On the coexistence of cooperators, defectors and conditional cooperators in the multiplayer iterated prisoner’s dilemma. J. Theor. Biol. 300, 299–308 (2012).
Pereda, M. A., Capraro, V. & Sánchez, A. Group size effects and critical mass in public good games. Sci. Rep. 9, 5503 (2019).
Broere, J., Buskens, V., Stoof, H. & Sánchez, A. An experimental study of network effects on coordination in asymmetric games. Sci. Rep. 9, 6842 (2019).
Zhang, Y. & HE, L. Theory and experiments on network games of public goods: inequality aversion and welfare preference. J. Econ. Behav. Organ. 190, 326–347 (2021).
Young, J.-G., Petri, G. & Peixoto, T. P. Hypergraph reconstruction from network data. Commun. Phys. 4, 135 (2021).
Kirkley, A. Inference of dynamic hypergraph representations in temporal interaction data. Phys. Rev. E 109, 054306 (2024).
Sales-Pardo, M., Mariné-Tena, A. & Guimerà, R. Hyperedge prediction and the statistical mechanisms of higher-order and lower-order interactions in complex networks. Proc. Natl Acad. Sci. USA 120, e2303887120 (2023).
Torres, L., Blevins, A. S., Bassett, D. & Eliassi-Rad, T. The why, how, and when of representations for complex systems. SIAM Rev. 63, 435–485 (2021).
Lee, G., Bu, F., Eliassi-Rad, T. & Shin, K. A survey on hypergraph mining: patterns, tools, and generators. ACM Comput. Surv. 57, 203 (2025).
LaRock, T. & Lambiotte, R. Encapsulation structure and dynamics in hypergraphs. J. Phys. Complex. 4, 045007 (2023).
Neuhäuser, L., Scholkemper, M., Tudisco, F. & Schaub, M. T. Learning the effective order of a hypergraph dynamical system. Sci. Adv. 10, eadh4053 (2024).
Lucas, M., Gallo, L., Ghavasieh, A., Battiston, F. & De Domenico, M. Reducibility of higher-order networks via information flow. Preprint at https://doi.org/10.48550/arXiv.2404.08547 (2024).
Young, J.-G., Petri, G., Vaccarino, F. & Patania, A. Construction of and efficient sampling from the simplicial configuration model. Phys. Rev. E 96, 032312 (2017).
Chodrow, P. S. Configuration models of random hypergraphs. J. Complex Netw. 8, cnaa018 (2020).
Musciotto, F., Battiston, F. & Mantegna, R. N. Detecting informative higher-order interactions in statistically validated hypergraphs. Commun. Phys. 4, 218 (2021).
Saracco, F., Petri, G., Lambiotte, R. & Squartini, T. Entropy-based random models for hypergraphs. Commun. Phys. 8, 284 (2025).
Preti, G., Fazzone, A., Petri, G. & De Francisci Morales, G. Higher-order null models as a lens for social systems. Phys. Rev. X 14, 031032 (2024).
Karimi, F., Génois, M., Wagner, C., Singer, P. & Strohmaier, M. Homophily influences ranking of minorities in social networks. Sci. Rep. 8, 11077 (2018).
Espín-Noboa, L., Wagner, C., Strohmaier, M. & Karimi, F. Inequality and inequity in network-based ranking and recommendation algorithms. Sci. Rep. 12, 2012 (2022).
Ntoutsi, E. et al. Bias in data-driven artificial intelligence systems—an introductory survey. WIREs Data Min. Knowl. Discov. 10, e1356 (2020).
Feng, D., Altmeyer, R., Stafford, D., Christakis, N. A. & Zhou, H. H. Testing for balance in social networks. J. Am. Stat. Assoc. 117, 156–174 (2022).
Cinardi, N. & Karimi, F. Inequality of opportunities creates structural marginalization in networks. Preprint at SocArXiv https://doi.org/10.31235/osf.io/sp8kn (2024).
Neuhäuser, L., Karimi, F., Bachmann, J., Strohmaier, M. & Schaub, M. T. Improving the visibility of minorities through network growth interventions. Commun. Phys. 6, 108 (2023).
Wu, L., Wang, D. & Evans, J. A. Large teams develop and small teams disrupt science and technology. Nature 566, 378–382 (2019).
Humphrey, S. E. & Aime, F. Team microdynamics: toward an organizing approach to teamwork. Acad. Manage. Ann. 8, 443–503 (2014).
Betti, L., Gallo, L., Wachs, J. & Battiston, F. The dynamics of leadership and success in software development teams. Nat. Commun. 16, 3956 (2025).
O. Szabo, R., Chowdhary, S., Deritei, D. & Battiston, F. The anatomy of social dynamics in escape rooms. Sci. Rep. 12, 10498 (2022).
Uzzi, B. The sources and consequences of embeddedness for the economic performance of organizations: the network effect. Am. Sociol. Rev. 61, 674–698 (1996).
Burt, R. S. Structural holes and good ideas. Am. J. Sociol. 110, 349–399 (2004).
Merton, R. K. The Matthew effect in science. Science 159, 56–63 (1968).
Vinicius, L., Rizzo, L., Battiston, F. & Migliano, A. B. Cultural evolution, social ratcheting and the origins of human division of labour. Phil. Trans. R. Soc. B (in the press).
Migliano, A. B. et al. Hunter-gatherer multilevel sociality accelerates cumulative cultural evolution. Sci. Adv. 6, eaax5913 (2020).
Reyes-García, V. et al. Multilevel processes and cultural adaptation: examples from past and present small-scale societies. Ecol. Soc. 21, 2 (2016).
Migliano, A. B. et al. Characterization of hunter-gatherer networks and implications for cumulative culture. Nat. Hum. Behav. 1, 0043 (2017).
Migliano, A. B. & Vinicius, L. The origins of human cumulative culture: from the foraging niche to collective intelligence. Phil. Trans. R. Soc. B 377, 20200317 (2022).
Salali, G. D. et al. Knowledge-sharing networks in hunter-gatherers and the evolution of cumulative culture. Curr. Biol. 26, 2516–2521 (2016).
Derex, M. & Boyd, R. Partial connectivity increases cultural accumulation within groups. Proc. Natl Acad. Sci. USA 113, 2982–2987 (2016).
Koster, J. et al. Kinship ties across the lifespan in human communities. Phil. Trans. R. Soc. B 374, 20180069 (2019).
Smolla, M. & Akçay, E. Cultural selection shapes network structure. Sci. Adv. 5, eaaw0609 (2019).
Muthukrishna, M. & Henrich, J. Innovation in the collective brain. Phil. Trans. R. Soc. B 371, 20150192 (2016).
Tomasello, M. Origins of Human Communication (MIT Press, 2010).
Fedorenko, E., Piantadosi, S. T. & Gibson, E. A. Language is primarily a tool for communication rather than thought. Nature 630, 575–586 (2024).
Baronchelli, A., Felici, M., Loreto, V., Caglioti, E. & Steels, L. Sharp transition towards shared vocabularies in multi-agent systems. J. Stat. Mech. Theory Exp. 2006, P06014 (2006).
Puglisi, A., Baronchelli, A. & Loreto, V. Cultural route to the emergence of linguistic categories. Proc. Natl Acad. Sci. USA 105, 7936–7940 (2008).
Danovski, K. & Brede, M. On the evolutionary language game in structured and adaptive populations. PLoS ONE 17, e0273608 (2022).
Wu, H. et al. Agent-network-computation-based evolutionary game model in language competition. IEEE Trans. Comput. Soc. Systems 11, 4226–4241 (2024).
Giles, H., Bourhis, R. Y., & Taylor, D. in Language, Ethnicity and Intergroup Relations (ed. Giles, H.) 307–348 (Academic Press, 1977).
Capraro, V., Halpern, J. Y. & Perc, M. From outcome-based to language-based preferences. J. Econ. Lit. 62, 115–154 (2024).
Clark, R. Meaningful Games: Exploring Language with Game Theory (MIT Press, 2023).
Gaffal, M. & Padilla Gálvez, J. Dynamics of Rational Negotiation: Game Theory, Language Games and Forms of Life (Springer, 2024).
Vlasceanu, M. et al. Addressing climate change with behavioral science: a global intervention tournament in 63 countries. Sci. Adv. 10, eadj5778 (2024).
Brodie Rudolph, T. et al. A transition to sustainable ocean governance. Nat. Commun. 11, 3600 (2020).
Capraro, V. et al. The impact of generative artificial intelligence on socioeconomic inequalities and policy making. PNAS Nexus 3, pgae191 (2024).
Milkman, K. L. et al. Megastudies improve the impact of applied behavioural science. Nature 600, 478–483 (2021).
Milkman, K. L. et al. Megastudy shows that reminders boost vaccination but adding free rides does not. Nature 631, 179–188 (2024).
Saccardo, S. et al. Field testing the transferability of behavioural science knowledge on promoting vaccinations. Nat. Hum. Behav. 8, 878–890 (2024).
Airoldi, E. M. & Christakis, N. A. Induction of social contagion for diverse outcomes in structured experiments in isolated villages. Science 384, eadi5147 (2024).
Landry, N. W., Young, J.-G. & Eikmeier, N. The simpliciality of higher-order networks. EPJ Data Sci. 13, 17 (2024).