• Christakis, N. A. & Fowler, J. H. Connected: The Surprising Power of Our Social Networks and How They Shape Our Lives (Little, Brown, 2009).

  • Easley, D. & Kleinberg, J. Networks, Crowds, and Markets (Cambridge Univ. Press, 2010).

  • Moreno, J. L. & Jennings, H. H. Statistics of social configurations. Sociometry 1, 342–374 (1938).

    Article 

    Google Scholar
     

  • Granovetter, M. S. The strength of weak ties. Am. J. Sociol. 78, 1360–1380 (1973).

    Article 

    Google Scholar
     

  • Milgram, S. The small world problem. Psychol. Today 2, 60–67 (1967).


    Google Scholar
     

  • Newman, M. E. J. Networks: An Introduction (Oxford Univ. Press, 2010).

  • Estrada, E. The Structure of Complex Networks: Theory and Applications (Oxford Univ. Press, 2011).

  • Barabási, A.-L. & Pósfai, M. Network Science (Cambridge Univ. Press, 2016).

  • Latora, V., Nicosia, V. & Russo, G. Complex Networks: Principles, Methods and Applications (Cambridge Univ. Press, 2017).

  • Atkin, R. H. From cohomology in physics to q-connectivity in social science. Int. J. Man Mach. Stud. 4, 139–167 (1972).

    Article 

    Google Scholar
     

  • Atkin, R. Mathematical Structure in Human Affairs (Heinemann Educational, 1974).

  • Berge, C. Graphs and Hypergraphs (North-Holland Pub. Co., 1973).

  • Le Bon, G. The Crowd: A Study of the Popular Mind (Routledge, 1895).

  • Simmel, G. The number of members as determining the sociological form of the group. II. Am. J. Sociol. 8, 158–196 (1902).

    Article 

    Google Scholar
     

  • Lewin, K. Principles of Topological Psychology (McGraw-Hill, 1936).

  • Wasserman, S. & Faust, K. Social Network Analysis: Methods and Applications. Structural Analysis in the Social Sciences (Cambridge Univ. Press, 1994).

  • Battiston, F. et al. Networks beyond pairwise interactions: structure and dynamics. Phys. Rep. 874, 1–92 (2020).

    Article 

    Google Scholar
     

  • Milo, R. et al. Network motifs: simple building blocks of complex networks. Science 298, 824–827 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Girvan, M. & Newman, M. E. J. Community structure in social and biological networks. Proc. Natl Acad. Sci. USA 99, 7821–7826 (2002).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fortunato, S. Community detection in graphs. Phys. Rep. 486, 75–174 (2010).

    Article 

    Google Scholar
     

  • Aleksandrov, P. S. Combinatorial Topology Vol. 1 (Courier Corporation, 1998).

  • Salnikov, V., Cassese, D. & Lambiotte, R. Simplicial complexes and complex systems. Eur. J. Phys. 40, 014001 (2018).

    Article 

    Google Scholar
     

  • Newman, M. E. J., Strogatz, S. H. & Watts, D. J. Random graphs with arbitrary degree distributions and their applications. Phys. Rev. E 64, 026118 (2001).

    Article 
    CAS 

    Google Scholar
     

  • Gomez-Gardenes, J., Romance, M., Criado, R., Vilone, D. & Sánchez, A. Evolutionary games defined at the network mesoscale: the public goods game. Chaos Interdiscip. J. Nonlinear Sci. 21, 016113 (2011).

    Article 

    Google Scholar
     

  • Grabowski, A. & Kosiński, R. Epidemic spreading in a hierarchical social network. Phys. Rev. E 70, 031908 (2004).

    Article 
    CAS 

    Google Scholar
     

  • Benson, A. R. Three hypergraph eigenvector centralities. SIAM J. Math. Data Sci. 1, 293–312 (2019).

    Article 

    Google Scholar
     

  • Tudisco, F. & Higham, D. J. Node and edge nonlinear eigenvector centrality for hypergraphs. Commun. Phys. 4, 201 (2021).

    Article 

    Google Scholar
     

  • Benson, A. R., Abebe, R., Schaub, M. T., Jadbabaie, A. & Kleinberg, J. Simplicial closure and higher-order link prediction. Proc. Natl Acad. Sci. USA 115, E11221–E11230 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lotito, Q. F., Musciotto, F., Montresor, A. & Battiston, F. Higher-order motif analysis in hypergraphs. Commun. Phys. 5, 79 (2022).

    Article 

    Google Scholar
     

  • Lotito, Q. F., Musciotto, F., Battiston, F. & Montresor, A. Exact and sampling methods for mining higher-order motifs in large hypergraphs. Computing 106, 475–494 (2023).

    Article 

    Google Scholar
     

  • Chodrow, P. S., Veldt, N. & Benson, A. R. Generative hypergraph clustering: from blockmodels to modularity. Sci. Adv. 7, eabh1303 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Eriksson, A., Edler, D., Rojas, A., de Domenico, M. & Rosvall, M. How choosing random-walk model and network representation matters for flow-based community detection in hypergraphs. Commun. Phys. 4, 133 (2021).

    Article 

    Google Scholar
     

  • Contisciani, M., Battiston, F. & De Bacco, C. Inference of hyperedges and overlapping communities in hypergraphs. Nat. Commun. 13, 7229 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ruggeri, N., Contisciani, M., Battiston, F. & De Bacco, C. Community detection in large hypergraphs. Sci. Adv. 9, eadg9159 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tudisco, F. & Higham, D. J. Core–periphery detection in hypergraphs. SIAM J. Math. Data Sci. 5, 1–21 (2023).

    Article 

    Google Scholar
     

  • Cencetti, G., Battiston, F., Lepri, B. & Karsai, M. Temporal properties of higher-order interactions in social networks. Sci. Rep. 11, 7028 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Di Gaetano, L., Battiston, F. & Starnini, M. Percolation and topological properties of temporal higher-order networks. Phys. Rev. Lett. 132, 037401 (2024).

    Article 
    PubMed 

    Google Scholar
     

  • Gallo, L., Lacasa, L., Latora, V. & Battiston, F. Higher-order correlations reveal complex memory in temporal hypergraphs. Nat. Commun. 15, 4754 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Iacopini, I., Karsai, M. & Barrat, A. The temporal dynamics of group interactions in higher-order social networks. Nat. Commun. 15, 7391 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lotito, Q. F. et al. Hypergraphx: a library for higher-order network analysis. J. Complex Netw. 11, cnad019 (2023).

    Article 

    Google Scholar
     

  • Landry, N. W. et al. XGI: a Python package for higher-order interaction networks. J. Open Source Softw. 8, 5162 (2023).

    Article 

    Google Scholar
     

  • Praggastis, B. et al. HyperNetX: a Python package for modeling complex network data as hypergraphs. J. Open Source Softw. 9, 6016 (2024).

    Article 

    Google Scholar
     

  • McPherson, J. Hypernetwork sampling: duality and differentiation among voluntary organizations. Soc. Netw. 3, 225–249 (1982).

    Article 

    Google Scholar
     

  • Foster, B. & Seidman, S. Urban structures derived from collections of overlapping subsets. Urban Anthropol. 11, 177–192 (1982).


    Google Scholar
     

  • Foster, B. & Seidman, S. Overlap structure of ceremonial events in two Thai villages. Thai J. Dev. Adm. 24, 143–157 (1984).


    Google Scholar
     

  • Faust, K. Centrality in affiliation networks. Soc. Netw. 19, 157–191 (1997).

    Article 

    Google Scholar
     

  • Bonacich, P., Holdren, A. C. & Johnston, M. Hyper-edges and multidimensional centrality. Soc. Netw. 26, 189–203 (2004).

    Article 

    Google Scholar
     

  • Estrada, E. & Rodríguez-Velázquez, J. A. Subgraph centrality and clustering in complex hyper-networks. Phys. A 364, 581–594 (2006).

    Article 

    Google Scholar
     

  • Ghoshal, G., Zlatić, V., Caldarelli, G. & Newman, M. E. J. Random hypergraphs and their applications. Phys. Rev. E 79, 066118 (2009).

    Article 

    Google Scholar
     

  • Zlatić, V., Ghoshal, G. & Caldarelli, G. Hypergraph topological quantities for tagged social networks. Phys. Rev. E 80, 036118 (2009).

    Article 

    Google Scholar
     

  • Manton, K. G. & Woodbury, M. A. Grade of membership generalizations and aging research. Exp. Aging Res. 17, 217–226 (1991).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chiyo, P. I., Moss, C. J. & Alberts, S. C. The influence of life history milestones and association networks on crop-raiding behavior in male African elephants. PLoS ONE 7, e31382 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Newman, M. E. J. Scientific collaboration networks. I. Network construction and fundamental results. Phys. Rev. E 64, 016131 (2001).

    Article 
    CAS 

    Google Scholar
     

  • Newman, M. E. J. Scientific collaboration networks. II. Shortest paths, weighted networks, and centrality. Phys. Rev. E 64, 016132 (2001).

    Article 
    CAS 

    Google Scholar
     

  • Newman, M. E. J. The structure of scientific collaboration networks. Proc. Natl Acad. Sci. USA 98, 404–409 (2001).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wuchty, S., Jones, B. F. & Uzzi, B. The increasing dominance of teams in production of knowledge. Science 316, 1036–1039 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Milojević, S. Principles of scientific research team formation and evolution. Proc. Natl Acad. Sci. USA 111, 3984–3989 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Moore, T. J., Drost, R. J., Basu, P., Ramanathan, R. & Swami, A. Analyzing collaboration networks using simplicial complexes: a case study. In 2012 Proceedings IEEE INFOCOM Workshops 238–243 (IEEE, 2012).

  • Xiao, Q. Node importance measure for scientific research collaboration from hypernetwork perspective. Teh. Vjesn. 23, 397–404 (2016).


    Google Scholar
     

  • Juul, J. L., Benson, A. R. & Kleinberg, J. Hypergraph patterns and collaboration structure. Front. Phys. 11, 1301994 (2024).

    Article 

    Google Scholar
     

  • Carley, K. A theory of group stability. Am. Sociol. Rev. 56, 331–354 (1991).

    Article 

    Google Scholar
     

  • Guimera, R., Uzzi, B., Spiro, J. & Amaral, L. A. N. Team assembly mechanisms determine collaboration network structure and team performance. Science 308, 697–702 (2005).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Musciotto, F., Battiston, F. & Mantegna, R. N. Identifying maximal sets of significantly interacting nodes in higher-order networks. Preprint at https://doi.org/10.48550/arXiv.2209.12712 (2022).

  • Chowdhary, S., Gallo, L., Musciotto, F. & Battiston, F. Team careers in science: formation, composition and success of persistent collaborations. Preprint at https://doi.org/10.48550/arXiv.2407.09326 (2024).

  • Patania, A., Vaccarino, F. & Petri, G. Topological analysis of data. EPJ Data Sci. 6, 7 (2017).

    Article 

    Google Scholar
     

  • Carstens, C. J. & Horadam, K. J. Persistent homology of collaboration networks. Math. Probl. Eng. 2013, 1–7 (2013).

    Article 

    Google Scholar
     

  • Patania, A., Petri, G. & Vaccarino, F. The shape of collaborations. EPJ Data Sci. 6, 18 (2017).

    Article 

    Google Scholar
     

  • Burt, R. S. Structural Holes: The Social Structure of Competition (Harvard Univ. Press, 2009).

  • Moreland, R. L. Are dyads really groups? Small Group Res. 41, 251–267 (2010).

    Article 

    Google Scholar
     

  • Stopczynski, A. et al. Measuring large-scale social networks with high resolution. PLoS ONE 9, e95978 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sekara, V., Stopczynski, A. & Lehmann, S. Fundamental structures of dynamic social networks. Proc. Natl Acad. Sci. USA 113, 9977–9982 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sapiezynski, P., Stopczynski, A., Lassen, D. D. & Lehmann, S. Interaction data from the Copenhagen Networks Study. Sci. Data 6, 315 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Eagle, N. & Pentland, A. S. Reality mining: sensing complex social systems. Pers. Ubiquitous Comput. 10, 255–268 (2006).

    Article 

    Google Scholar
     

  • ISI Foundation, CNRS and Bitmanufactory. SocioPatterns. sociopatterns.org http://www.sociopatterns.org (2008).

  • Cattuto, C. et al. Dynamics of person-to-person interactions from distributed RFID sensor networks. PLoS ONE 5, e11596 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Isella, L. et al. What’s in a crowd? Analysis of face-to-face behavioral networks. J. Theor. Biol. 271, 166–180 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Génois, M. et al. Data on face-to-face contacts in an office building suggest a low-cost vaccination strategy based on community linkers. Netw. Sci. 3, 326–347 (2015).

    Article 

    Google Scholar
     

  • Vanhems, P. et al. Estimating potential infection transmission routes in hospital wards using wearable proximity sensors. PLoS ONE 8, e73970 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, R. et al. StudentLife: assessing mental health, academic performance and behavioral trends of college students using smartphones. In Proc. 2014 ACM International Joint Conference on Pervasive and Ubiquitous Computing 3–14 (2014).

  • Dartmouth College. StudentLife Study. dartmouth.edu https://studentlife.cs.dartmouth.edu (2013).

  • Fournet, J. & Barrat, A. Contact patterns among high school students. PLoS ONE 9, e107878 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stehlé, J. et al. High-resolution measurements of face-to-face contact patterns in a primary school. PLoS ONE 6, e23176 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dai, S. et al. Longitudinal data collection to follow social network and language development dynamics at preschool. Sci. Data 9, 777 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sapiezynski, P., Stopczynski, A., Wind, D. K., Leskovec, J. & Lehmann, S. Inferring person-to-person proximity using WiFi signals. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 1, 24 (2017).

    Article 

    Google Scholar
     

  • Reichert, L., Brack, S. & Scheuermann, B. Privacy-preserving contact tracing of COVID-19 patients. IACR Cryptol. ePrint Arch. 2020, 375 (2020).


    Google Scholar
     

  • Mancastroppa, M., Iacopini, I., Petri, G. & Barrat, A. Hyper-cores promote localization and efficient seeding in higher-order processes. Nat. Commun. 14, 6223 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Krause, J., James, R., Franks, D. W. & Croft, D. P. Animal Social Networks (Oxford Univ. Press, 2015).

  • Betti, L., Musciotto, F., Papageorgiou, D., Battiston, F. & Farine, D. R. Beyond the dyad: higher-order structure within cohesive animal groups reveals the social pathway to leadership. Preprint at bioRxiv https://doi.org/10.1101/2022.05.30.494018 (2022).

  • Iacopini, I., Foote, J. R., Fefferman, N. H., Derryberry, E. P. & Silk, M. J. Not your private tête-à-tête: leveraging the power of higher-order networks to study animal communication. Phil. Trans. B 379, 20230190 (2024).

    Article 

    Google Scholar
     

  • Coleman, J. S. Foundations of Social Theory (Harvard Univ. Press, 1994).

  • Starnini, M., Baronchelli, A. & Pastor-Satorras, R. Modeling human dynamics of face-to-face interaction networks. Phys. Rev. Lett. 110, 168701 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Starnini, M., Baronchelli, A. & Pastor-Satorras, R. Model reproduces individual, group and collective dynamics of human contact networks. Soc. Netw. 47, 130–137 (2016).

    Article 

    Google Scholar
     

  • Duncan, S. & Fiske, D. W. Face-to-Face Interaction: Research, Methods, and Theory (Routledge, 2015).

  • Heider, F. The Psychology of Interpersonal Relations (John Wiley and Sons, 1958).

  • Doreian, P., Kapuscinski, R., Krackhardt, D. & Szczypula, J. in Evolution of Social Networks (eds Doreian, P. & Stokman, F.) 129–147 (Routledge, 2013).

  • Hummon, N. P. & Doreian, P. Some dynamics of social balance processes: bringing Heider back into balance theory. Soc. Netw. 25, 17–49 (2003).

    Article 

    Google Scholar
     

  • Cartwright, D. & Harary, F. Structural balance: a generalization of Heider’s theory. Psychol. Rev. 63, 277—293 (1956).

    Article 
    PubMed 

    Google Scholar
     

  • Gallo, L., Zappalà, C., Karimi, F. & Battiston, F. Higher-order modeling of face-to-face interactions. Preprint at https://doi.org/10.48550/arXiv.2406.05026 (2024).

  • Oliveira, M. et al. Group mixing drives inequality in face-to-face gatherings. Commun. Phys. 5, 127 (2022).

    Article 

    Google Scholar
     

  • Veldt, N., Benson, A. R. & Kleinberg, J. Combinatorial characterizations and impossibilities for higher-order homophily. Sci. Adv. 9, eabq3200 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sarker, A., Northrup, N. & Jadbabaie, A. Higher-order homophily on simplicial complexes. Proc. Natl Acad. Sci. USA 121, e2315931121 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Martin-Gutierrez, S., van Dissel, M. N. C. & Karimi, F. The hidden architecture of connections: how do multidimensional identities shape our social networks? Preprint at https://doi.org/10.48550/arXiv.2406.17043 (2024).

  • Garip, F. & Molina, M. D. in Research Handbook on Analytical Sociology (ed. Manzo, G.) 308–320 (Edward Elgar, 2021).

  • Grassly, N. C. & Fraser, C. Mathematical models of infectious disease transmission. Nat. Rev. Microbiol. 6, 477–487 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Daley, D. J. & Kendall, D. G. Epidemics and rumours. Nature 204, 1118 (1964).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Goffman, W. & Newill, V. A. Generalization of epidemic theory: an application to the transmission of ideas. Nature 204, 225–228 (1964).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bettencourt, L., Cintrón-Arias, A., Kaiser, D. I. & Castillo-Chavez, C. The power of a good idea: quantitative modeling of the spread of ideas from epidemiological models. Phys. A 364, 513–536 (2006).

    Article 

    Google Scholar
     

  • Centola, D. & Macy, M. Complex contagions and the weakness of long ties. Am. J. Sociol. 113, 702–734 (2007).

    Article 

    Google Scholar
     

  • Lehmann, S. & Ahn, Y.-Y. (eds) Complex Spreading Phenomena in Social Systems (Springer, 2018).

  • Guilbeault, D., Becker, J. & Centola, D. in Complex Spreading Phenomena in Social Systems (eds Lehmann, S. & Ahn, Y.-Y.) 3–25 (Springer, 2018).

  • Granovetter, M. Threshold models of collective behavior. Am. J. Sociol. 83, 1420–1443 (1978).

    Article 

    Google Scholar
     

  • Watts, D. J. A simple model of global cascades on random networks. Proc. Natl Acad. Sci. USA 99, 5766–5771 (2002).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Weidlich, W. The statistical description of polarization phenomena in society. Br. J. Math. Stat. Psychol. 24, 251–266 (1971).

    Article 

    Google Scholar
     

  • Clifford, P. & Sudbury, A. A model for spatial conflict. Biometrika 60, 581–588 (1973).

    Article 

    Google Scholar
     

  • Galam, S. Minority opinion spreading in random geometry. Eur. Phys. J. B 25, 403–406 (2002).

    Article 
    CAS 

    Google Scholar
     

  • Centola, D. The spread of behavior in an online social network experiment. Science 329, 1194–1197 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Backstrom, L., Huttenlocher, D., Kleinberg, J. & Lan, X. Group formation in large social networks: membership, growth, and evolution. In Proc. 12th ACM SIGKDD International Conference 44–54 (2006).

  • Romero, D. M., Meeder, B. & Kleinberg, J. Differences in the mechanics of information diffusion across topics: idioms, political hashtags, and complex contagion on twitter. In Proc. 20th International Conference on World Wide Web 695–704 (ACM, 2011).

  • Ugander, J., Backstrom, L., Marlow, C. & Kleinberg, J. Structural diversity in social contagion. Proc. Natl Acad. Sci. USA 109, 5962–5966 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Weng, L., Menczer, F. & Ahn, Y.-Y. Virality prediction and community structure in social networks. Sci. Rep. 3, 2522 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ruan, Z., Iniguez, G., Karsai, M. & Kertész, J. Kinetics of social contagion. Phys. Rev. Lett. 115, 218702 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Mønsted, B., Sapieżyński, P., Ferrara, E. & Lehmann, S. Evidence of complex contagion of information in social media: an experiment using Twitter bots. PLoS ONE 12, e0184148 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Castellano, C., Fortunato, S. & Loreto, V. Statistical physics of social dynamics. Rev. Mod. Phys. 81, 591 (2009).

    Article 

    Google Scholar
     

  • Iacopini, I., Petri, G., Barrat, A. & Latora, V. Simplicial models of social contagion. Nat. Commun. 10, 2485 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Iacopini, I., Petri, G., Baronchelli, A. & Barrat, A. Group interactions modulate critical mass dynamics in social convention. Commun. Phys. 5, 64 (2022).

    Article 

    Google Scholar
     

  • Matamalas, J. T., Gómez, S. & Arenas, A. Abrupt phase transition of epidemic spreading in simplicial complexes. Phys. Rev. Res. 2, 012049 (2020).

    Article 
    CAS 

    Google Scholar
     

  • de Arruda, G. F., Petri, G. & Moreno, Y. Social contagion models on hypergraphs. Phys. Rev. Res. 2, 023032 (2020).

    Article 
    PubMed Central 

    Google Scholar
     

  • Landry, N. W. & Restrepo, J. G. The effect of heterogeneity on hypergraph contagion models. Chaos Interdiscip. J. Nonlinear Sci. 30, 103117 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Nowak, M. A. & Highfield, R. SuperCooperators: Altruism, Evolution, and Why We Need Each Other to Succeed (Free Press, 2011).

  • Pennisi, E. How did cooperative behavior evolve? Science 309, 93–93 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Trivers, R. L. The evolution of reciprocal altruism. Q. Rev. Biol. 46, 35–57 (1971).

    Article 

    Google Scholar
     

  • Sigmund, K. Punish or perish? Retaliation and collaboration among humans. Trends Ecol. Evol. 22, 593–600 (2007).

    Article 
    PubMed 

    Google Scholar
     

  • Nowak, M. A. & Sigmund, K. Evolution of indirect reciprocity by image scoring. Nature 393, 573–577 (1998).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Milinski, M., Semmann, D., Bakker, T. C. M. & Krambeck, H.-J. Cooperation through indirect reciprocity: image scoring or standing strategy? Proc. R. Soc. Lond. B 268, 2495–2501 (2001).

    Article 
    CAS 

    Google Scholar
     

  • Nax, H. H., Perc, M., Szolnoki, A. & Helbing, D. Stability of cooperation under image scoring in group interactions. Sci. Rep. 5, 12145 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fehr, E. Don’t lose your reputation. Nature 432, 449–450 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gächter, S. Reputation and reciprocity: consequences for the labour relation. Scand. J. Econ. 104, 1–26 (2002).

    Article 

    Google Scholar
     

  • Fu, F., Hauert, C., Nowak, M. A. & Wang, L. Reputation-based partner choice promotes cooperation in social networks. Phys. Rev. E 78, 026117 (2008).

    Article 

    Google Scholar
     

  • Nowak, M. A. Five rules for the evolution of cooperation. Science 314, 1560–1563 (2006).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Santos, F. C., Pacheco, J. M. & Lenaerts, T. Evolutionary dynamics of social dilemmas in structured heterogeneous populations. Proc. Natl Acad. Sci. USA 103, 3490–3494 (2006).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Santos, F. C., Rodrigues, J. F. & Pacheco, J. M. Graph topology plays a determinant role in the evolution of cooperation. Proc. R. Soc. B 273, 51–55 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Santos, F. C., Santos, M. D. & Pacheco, J. M. Social diversity promotes the emergence of cooperation in public goods games. Nature 454, 213–216 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Perc, M., Gómez-Gardeñes, J., Szolnoki, A., Floría, L. M. & Moreno, Y. Evolutionary dynamics of group interactions on structured populations: a review. J. R. Soc. Interface 10, 20120997 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Battiston, F., Perc, M. & Latora, V. Determinants of public cooperation in multiplex networks. N. J. Phys. 19, 073017 (2017).

    Article 

    Google Scholar
     

  • Szolnoki, A., Perc, M. & Szabó, G. Topology-independent impact of noise on cooperation in spatial public goods games. Phys. Rev. E 80, 056109 (2009).

    Article 

    Google Scholar
     

  • Szolnoki, A. & Perc, M. Group-size effects on the evolution of cooperation in the spatial public goods game. Phys. Rev. E 84, 047102 (2011).

    Article 

    Google Scholar
     

  • Alvarez-Rodriguez, U. et al. Evolutionary dynamics of higher-order interactions in social networks. Nat. Hum. Behav. 5, 586–595 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Burgio, G., Matamalas, J. T., Gómez, S. & Arenas, A. Evolution of cooperation in the presence of higher-order interactions: from networks to hypergraphs. Entropy 22, 744 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hauert, C., Michor, F., Nowak, M. A. & Doebeli, M. Synergy and discounting of cooperation in social dilemmas. J. Theor. Biol. 239, 195–202 (2006).

    Article 
    PubMed 

    Google Scholar
     

  • Peña, J., Wu, B., Arranz, J. & Traulsen, A. Evolutionary games of multiplayer cooperation on graphs. PLoS Comput. Biol. 12, e1005059 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sheng, A., Su, Q., Wang, L. & Plotkin, J. B. Strategy evolution on higher-order networks. Nat. Comput. Sci. 4, 274–284 (2024).

    Article 
    PubMed 

    Google Scholar
     

  • Wang, C., Perc, M. & Szolnoki, A. Evolutionary dynamics of any multiplayer game on regular graphs. Nat. Commun. 15, 5349 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guo, H. et al. Evolutionary games on simplicial complexes. Chaos Solitons Fractals 150, 111103 (2021).

    Article 

    Google Scholar
     

  • Civilini, A., Anbarci, N. & Latora, V. Evolutionary game model of group choice dilemmas on hypergraphs. Phys. Rev. Lett. 127, 268301 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Civilini, A., Sadekar, O., Battiston, F., Gómez-Gardeñes, J. & Latora, V. Explosive cooperation in social dilemmas on higher-order networks. Phys. Rev. Lett. 132, 167401 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sadekar, O., Civilini, A., Latora, V. & Battiston, F. Drivers of cooperation in social dilemmas on higher-order networks. J. R. Soc. Interface 22, 20250134 (2025).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nowak, M. A. Evolutionary Dynamics (Harvard Univ. Press, 2006).

  • Hammond, R. A. & Axelrod, R. The evolution of ethnocentrism. J. Confl. Resolut. 50, 926–936 (2006).

    Article 

    Google Scholar
     

  • Choi, J.-K. & Bowles, S. The coevolution of parochial altruism and war. Science 318, 636–640 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jordan, M. R., Jordan, J. J. & Rand, D. G. No unique effect of intergroup competition on cooperation: non-competitive thresholds are as effective as competitions between groups for increasing human cooperative behavior. Evol. Hum. Behav. 38, 102–108 (2017).

    Article 

    Google Scholar
     

  • Bairey, E., Kelsic, E. D. & Kishony, R. High-order species interactions shape ecosystem diversity. Nat. Commun. 7, 12285 (2017).

    Article 

    Google Scholar
     

  • Grilli, J., Barabás, G., Michalska-Smith, M. J. & Allesina, S. Higher-order interactions stabilize dynamics in competitive network models. Nature 548, 210–213 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Levine, J. M., Bascompte, J., Adler, P. B. & Allesina, S. Beyond pairwise mechanisms of species coexistence in complex communities. Nature 546, 56–64 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nagel, T. Moral conflict and political legitimacy. Phil. Public Aff. 16, 215–240 (1987).


    Google Scholar
     

  • Pearce, W. B. & Littlejohn, S. W. Moral Conflict: When Social Worlds Collide (Sage, 1997).

  • Bartos, O. J. & Wehr, P. Using Conflict Theory (Cambridge Univ. Press, 2002).

  • Capraro, V. & Perc, M. Grand challenges in social physics: in pursuit of moral behavior. Front. Phys. 6, 107 (2018).

    Article 

    Google Scholar
     

  • Hendrick, S. S. Self-disclosure and marital satisfaction. J. Pers. Soc. Psychol. 40, 1150–1159 (1981).

    Article 

    Google Scholar
     

  • Argyle, M. & Henderson, M. The rules of friendship. J. Soc. Pers. Relat. 1, 211–237 (1984).

    Article 

    Google Scholar
     

  • Gravelle, J. Tax Havens: International Tax Avoidance and Evasion (DIANE, 2010).

  • Tennyson, S. Moral, social, and economic dimensions of insurance claims fraud. Soc. Res. 75, 1181–1204 (2008).

    Article 

    Google Scholar
     

  • Pennycook, G., Cannon, T. D. & Rand, D. G. Prior exposure increases perceived accuracy of fake news. J. Exp. Psychol. Gen. 147, 1865–1880 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fischbacher, U. & Föllmi-Heusi, F. Lies in disguise—an experimental study on cheating. J. Eur. Econ. Assoc. 11, 525–547 (2013).

    Article 

    Google Scholar
     

  • Mazar, N., Amir, O. & Ariely, D. The dishonesty of honest people: a theory of self-concept maintenance. J. Mark. Res. 45, 633–644 (2008).

    Article 

    Google Scholar
     

  • Maynard Smith, J. Honest signalling: the Philip Sidney game. Anim. Behav. 42, 1034–1035 (1991).

    Article 

    Google Scholar
     

  • Gneezy, U. Deception: the role of consequences. Am. Econ. Rev. 95, 384–394 (2005).

    Article 

    Google Scholar
     

  • Smith, D. et al. Cooperation and the evolution of hunter-gatherer storytelling. Nat. Commun. 8, 1853 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Marett, L. K. & George, J. F. Deception in the case of one sender and multiple receivers. Group Decis. Negot. 13, 29–44 (2004).

    Article 

    Google Scholar
     

  • Zhou, L., Wu, J. & Zhang, D. Discourse cues to deception in the case of multiple receivers. Inf. Manage. 51, 726–737 (2014).

    Article 

    Google Scholar
     

  • Skyrms, B. Evolution of signalling systems with multiple senders and receivers. Phil. Trans. R. Soc. B 364, 771–779 (2009).

    Article 
    PubMed 

    Google Scholar
     

  • Capraro, V., Perc, M. & Vilone, D. The evolution of lying in well-mixed populations. J. R. Soc. Interface 16, 20190211 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Capraro, V., Perc, M. & Vilone, D. Lying on networks: the role of structure and topology in promoting honesty. Phys. Rev. E 101, 032305 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kumar, A., Chowdhary, S., Capraro, V. & Perc, M. Evolution of honesty in higher-order social networks. Phys. Rev. E 104, 054308 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, W., Zhu, Y. & Xia, C. Evolutionary dynamics of n-player sender–receiver game in networks with community structure. Chaos Interdiscip. J. Nonlinear Sci. 33, 103117 (2023).

    Article 

    Google Scholar
     

  • Kimbrough, E. O. & Vostroknutov, A. Norms make preferences social. J. Eur. Econ. Assoc. 14, 608–638 (2016).

    Article 

    Google Scholar
     

  • Capraro, V. & Rand, D. G. Do the right thing: experimental evidence that preferences for moral behavior, rather than equity or efficiency per se, drive human prosociality. Judgm. Decis. Mak. 13, 99–111 (2018).

    Article 

    Google Scholar
     

  • Eriksson, K., Strimling, P., Andersson, P. A. & Lindholm, T. Costly punishment in the ultimatum game evokes moral concern, in particular when framed as payoff reduction. J. Exp. Soc. Psychol. 69, 59–64 (2017).

    Article 

    Google Scholar
     

  • Haidt, J. & Joseph, C. Intuitive ethics: how innately prepared intuitions generate culturally variable virtues. Daedalus 133, 55–66 (2004).

    Article 

    Google Scholar
     

  • Iyer, R., Koleva, S., Graham, J., Ditto, P. & Haidt, J. Understanding libertarian morality: the psychological dispositions of self-identified libertarians. PLoS ONE 7, e42366 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Curry, O. S. in The Evolution of Morality (eds Shackelford, T. K. & Hansen, R. D.) 27–51 (Springer, 2016).

  • Curry, O., Whitehouse, H. & Mullins, D. Is it good to cooperate? Testing the theory of morality-as-cooperation in 60 societies. Curr. Anthropol. 60, 47–69 (2019).

    Article 

    Google Scholar
     

  • Page, K. M., Nowak, M. A. & Sigmund, K. The spatial ultimatum game. Proc. R. Soc. Lond. B 267, 2177–2182 (2000).

    Article 
    CAS 

    Google Scholar
     

  • Kuperman, M. & Risau-Gusman, S. The effect of the topology on the spatial ultimatum game. Eur. Phys. J. B 62, 233–238 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Deng, L., Tang, W. & Zhang, J. The coevolutionary ultimatum game on different network topologies. Phys. A 390, 4227–4235 (2011).

    Article 

    Google Scholar
     

  • Zheng, L., Li, Y., Zhou, J. & Li, Y. The effect of celebrity on the evolution of fairness in the ultimatum game. Phys. A 585, 126326 (2022).

    Article 

    Google Scholar
     

  • Yang, Z. Role polarization and its effects in the spatial ultimatum game. Phys. Rev. E 108, 024106 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Deng, L., Wang, H., Wang, R., Xu, R. & Wang, C. The adaptive adjustment of node weights based on reputation and memory promotes fairness. Chaos Solitons Fractals 180, 114591 (2024).

    Article 

    Google Scholar
     

  • Van Segbroeck, S., Santos, F. C., Nowé, A., Pacheco, J. M. & Lenaerts, T. The coevolution of loyalty and cooperation. In 2009 IEEE Congress on Evolutionary Computation 500–505 (IEEE, 2009).

  • Fu, F. et al. Evolution of in-group favoritism. Sci. Rep. 2, 460 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Whitaker, R. M., Colombo, G. B. & Rand, D. G. Indirect reciprocity and the evolution of prejudicial groups. Sci. Rep. 8, 13247 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fu, M., Wang, J., Cheng, L. & Chen, L. Promotion of cooperation with loyalty-based reward in the spatial prisoner’s dilemma game. Phys. A 580, 125672 (2021).

    Article 

    Google Scholar
     

  • Fu, M., Guo, W., Cheng, L., Huang, S. & Chen, D. History loyalty-based reward promotes cooperation in the spatial public goods game. Phys. A 525, 1323–1329 (2019).

    Article 

    Google Scholar
     

  • Martinez-Vaquero, L. A. Inequality leads to the evolution of intolerance in reputation-based populations. Chaos Interdiscip. J. Nonlinear Sci. 33, 033119 (2023).

    Article 

    Google Scholar
     

  • Chica, M., Chiong, R., Ramasco, J. J. & Abbass, H. Effects of update rules on networked n-player trust game dynamics. Commun. Nonlinear Sci. Numer. Simul. 79, 104870 (2019).

    Article 

    Google Scholar
     

  • Kumar, A., Capraro, V. & Perc, M. The evolution of trust and trustworthiness. J. R. Soc. Interface 17, 20200491 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lim, I. S. Stochastic evolutionary dynamics of trust games with asymmetric parameters. Phys. Rev. E 102, 062419 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hu, Z. et al. Adaptive reputation promotes trust in social networks. IEEE Trans. Netw. Sci. Eng. 8, 3087–3098 (2021).

    Article 

    Google Scholar
     

  • Liu, L. & Chen, X. Conditional investment strategy in evolutionary trust games with repeated group interactions. Inf. Sci. 609, 1694–1705 (2022).

    Article 

    Google Scholar
     

  • Meylahn, B. V., den Boer, A. V. & Mandjes, M. Interpersonal trust: asymptotic analysis of a stochastic coordination game with multi-agent learning. Chaos Interdiscip. J. Nonlinear Sci. 34, 063119 (2024).

    Article 

    Google Scholar
     

  • Wang, C. Evolution of trust in structured populations. Appl. Math. Comput. 471, 128595 (2024).


    Google Scholar
     

  • Zhou, C., Zhu, Y., Zhao, D. & Xia, C. An evolutionary trust game model with group reputation within the asymmetric population. Chaos Solitons Fractals 184, 115031 (2024).

    Article 

    Google Scholar
     

  • Kosfeld, M. Economic networks in the laboratory: a survey. Rev. Netw. Econ. 3, 20–41 (2004).

    Article 

    Google Scholar
     

  • Jackson, M. Social and Economic Networks (Princeton Univ. Press, 2008).

  • Choi, S., Gallo, E. & Kariv, S. Networks in the Laboratory (Cambridge Working Papers in Economics) (Faculty of Economics, Univ. Cambridge, 2015).

  • Cassar, A. Coordination and cooperation in local, random and small world networks: experimental evidence. Games Econ. Behav. 58, 209–230 (2007).

    Article 

    Google Scholar
     

  • Kearns, M., Judd, S. & Wortman, J. Behavioral experiments on biased voting in networks. Proc. Natl Acad. Sci. USA 106, 1347–1352 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Duffy, J., Lai, E. K. & Lim, W. Coordination via correlation: an experimental study. Econ. Theory 64, 265–304 (2017).

    Article 

    Google Scholar
     

  • Bramoullé, Y., Kranton, R. & D’Amours, M. Strategic interaction and networks. Am. Econ. Rev. 104, 898–930 (2014).

    Article 

    Google Scholar
     

  • Sánchez, A. Physics of human cooperation: experimental evidence and theoretical models. J. Stat. Mech. Theory Exp. 2018, 024001 (2018).

    Article 

    Google Scholar
     

  • Han, X. et al. Equal status in ultimatum games promotes rational sharing. Sci. Rep. 8, 1222 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cardoso, F. M. et al. Effect of network topology and node centrality on trading. Sci. Rep. 10, 11113 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ledyard, J. O. in The Handbook of Experimental Economics (eds Kagel, J. H. & Roth, A. E.) 111–194 (Princeton Univ. Press, 1997).

  • Fischbacher, U. & Gächter, S. Social preferences, beliefs and the dynamics of free riding in public goods experiments. Am. Econ. Rev. 100, 541–556 (2010).

    Article 

    Google Scholar
     

  • Grujić, J., Fosco, C., Araujo, L., Cuesta, J. A. & Sánchez, A. Social experiments in the mesoscale: humans playing a spatial prisoner’s dilemma. PLoS ONE 5, e13749 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gracia-Lázaro, C. et al. Heterogeneous networks do not promote cooperation when humans play a prisoner’s dilemma. Proc. Natl Acad. Sci. USA 109, 12922–12926 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Salvato, C., Reuer, J. J. & Battigalli, P. Cooperation across disciplines: a multilevel perspective on cooperative behavior in governing interfirm relations. Acad. Manage. Ann. 11, 960–1046 (2017).

    Article 

    Google Scholar
     

  • Kessler, J. B., Low, C. & Singhal, M. Social policy instruments and the compliance environment. J. Econ. Behav. Organ. 192, 248–267 (2021).

    Article 

    Google Scholar
     

  • Bossey, L. A. Conditional cooperation in network public goods experiments. J. Behav. Exp. Econ. 69, 108–116 (2017).

    Article 

    Google Scholar
     

  • Pereda, M. A. et al. Large scale and information effects on public goods games. Sci. Rep. 9, 15023 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Grujić, J., Cuesta, J. A. & Sánchez, A. On the coexistence of cooperators, defectors and conditional cooperators in the multiplayer iterated prisoner’s dilemma. J. Theor. Biol. 300, 299–308 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Pereda, M. A., Capraro, V. & Sánchez, A. Group size effects and critical mass in public good games. Sci. Rep. 9, 5503 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Broere, J., Buskens, V., Stoof, H. & Sánchez, A. An experimental study of network effects on coordination in asymmetric games. Sci. Rep. 9, 6842 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, Y. & HE, L. Theory and experiments on network games of public goods: inequality aversion and welfare preference. J. Econ. Behav. Organ. 190, 326–347 (2021).

    Article 

    Google Scholar
     

  • Young, J.-G., Petri, G. & Peixoto, T. P. Hypergraph reconstruction from network data. Commun. Phys. 4, 135 (2021).

    Article 

    Google Scholar
     

  • Kirkley, A. Inference of dynamic hypergraph representations in temporal interaction data. Phys. Rev. E 109, 054306 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sales-Pardo, M., Mariné-Tena, A. & Guimerà, R. Hyperedge prediction and the statistical mechanisms of higher-order and lower-order interactions in complex networks. Proc. Natl Acad. Sci. USA 120, e2303887120 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Torres, L., Blevins, A. S., Bassett, D. & Eliassi-Rad, T. The why, how, and when of representations for complex systems. SIAM Rev. 63, 435–485 (2021).

    Article 

    Google Scholar
     

  • Lee, G., Bu, F., Eliassi-Rad, T. & Shin, K. A survey on hypergraph mining: patterns, tools, and generators. ACM Comput. Surv. 57, 203 (2025).

    Article 

    Google Scholar
     

  • LaRock, T. & Lambiotte, R. Encapsulation structure and dynamics in hypergraphs. J. Phys. Complex. 4, 045007 (2023).

    Article 

    Google Scholar
     

  • Neuhäuser, L., Scholkemper, M., Tudisco, F. & Schaub, M. T. Learning the effective order of a hypergraph dynamical system. Sci. Adv. 10, eadh4053 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lucas, M., Gallo, L., Ghavasieh, A., Battiston, F. & De Domenico, M. Reducibility of higher-order networks via information flow. Preprint at https://doi.org/10.48550/arXiv.2404.08547 (2024).

  • Young, J.-G., Petri, G., Vaccarino, F. & Patania, A. Construction of and efficient sampling from the simplicial configuration model. Phys. Rev. E 96, 032312 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Chodrow, P. S. Configuration models of random hypergraphs. J. Complex Netw. 8, cnaa018 (2020).

    Article 

    Google Scholar
     

  • Musciotto, F., Battiston, F. & Mantegna, R. N. Detecting informative higher-order interactions in statistically validated hypergraphs. Commun. Phys. 4, 218 (2021).

    Article 

    Google Scholar
     

  • Saracco, F., Petri, G., Lambiotte, R. & Squartini, T. Entropy-based random models for hypergraphs. Commun. Phys. 8, 284 (2025).

    Article 

    Google Scholar
     

  • Preti, G., Fazzone, A., Petri, G. & De Francisci Morales, G. Higher-order null models as a lens for social systems. Phys. Rev. X 14, 031032 (2024).

    CAS 

    Google Scholar
     

  • Karimi, F., Génois, M., Wagner, C., Singer, P. & Strohmaier, M. Homophily influences ranking of minorities in social networks. Sci. Rep. 8, 11077 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Espín-Noboa, L., Wagner, C., Strohmaier, M. & Karimi, F. Inequality and inequity in network-based ranking and recommendation algorithms. Sci. Rep. 12, 2012 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ntoutsi, E. et al. Bias in data-driven artificial intelligence systems—an introductory survey. WIREs Data Min. Knowl. Discov. 10, e1356 (2020).

    Article 

    Google Scholar
     

  • Feng, D., Altmeyer, R., Stafford, D., Christakis, N. A. & Zhou, H. H. Testing for balance in social networks. J. Am. Stat. Assoc. 117, 156–174 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Cinardi, N. & Karimi, F. Inequality of opportunities creates structural marginalization in networks. Preprint at SocArXiv https://doi.org/10.31235/osf.io/sp8kn (2024).

  • Neuhäuser, L., Karimi, F., Bachmann, J., Strohmaier, M. & Schaub, M. T. Improving the visibility of minorities through network growth interventions. Commun. Phys. 6, 108 (2023).

    Article 

    Google Scholar
     

  • Wu, L., Wang, D. & Evans, J. A. Large teams develop and small teams disrupt science and technology. Nature 566, 378–382 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Humphrey, S. E. & Aime, F. Team microdynamics: toward an organizing approach to teamwork. Acad. Manage. Ann. 8, 443–503 (2014).

    Article 

    Google Scholar
     

  • Betti, L., Gallo, L., Wachs, J. & Battiston, F. The dynamics of leadership and success in software development teams. Nat. Commun. 16, 3956 (2025).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • O. Szabo, R., Chowdhary, S., Deritei, D. & Battiston, F. The anatomy of social dynamics in escape rooms. Sci. Rep. 12, 10498 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Uzzi, B. The sources and consequences of embeddedness for the economic performance of organizations: the network effect. Am. Sociol. Rev. 61, 674–698 (1996).

    Article 

    Google Scholar
     

  • Burt, R. S. Structural holes and good ideas. Am. J. Sociol. 110, 349–399 (2004).

    Article 

    Google Scholar
     

  • Merton, R. K. The Matthew effect in science. Science 159, 56–63 (1968).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Vinicius, L., Rizzo, L., Battiston, F. & Migliano, A. B. Cultural evolution, social ratcheting and the origins of human division of labour. Phil. Trans. R. Soc. B (in the press).

  • Migliano, A. B. et al. Hunter-gatherer multilevel sociality accelerates cumulative cultural evolution. Sci. Adv. 6, eaax5913 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Reyes-García, V. et al. Multilevel processes and cultural adaptation: examples from past and present small-scale societies. Ecol. Soc. 21, 2 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Migliano, A. B. et al. Characterization of hunter-gatherer networks and implications for cumulative culture. Nat. Hum. Behav. 1, 0043 (2017).

    Article 

    Google Scholar
     

  • Migliano, A. B. & Vinicius, L. The origins of human cumulative culture: from the foraging niche to collective intelligence. Phil. Trans. R. Soc. B 377, 20200317 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Salali, G. D. et al. Knowledge-sharing networks in hunter-gatherers and the evolution of cumulative culture. Curr. Biol. 26, 2516–2521 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Derex, M. & Boyd, R. Partial connectivity increases cultural accumulation within groups. Proc. Natl Acad. Sci. USA 113, 2982–2987 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Koster, J. et al. Kinship ties across the lifespan in human communities. Phil. Trans. R. Soc. B 374, 20180069 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Smolla, M. & Akçay, E. Cultural selection shapes network structure. Sci. Adv. 5, eaaw0609 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Muthukrishna, M. & Henrich, J. Innovation in the collective brain. Phil. Trans. R. Soc. B 371, 20150192 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tomasello, M. Origins of Human Communication (MIT Press, 2010).

  • Fedorenko, E., Piantadosi, S. T. & Gibson, E. A. Language is primarily a tool for communication rather than thought. Nature 630, 575–586 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Baronchelli, A., Felici, M., Loreto, V., Caglioti, E. & Steels, L. Sharp transition towards shared vocabularies in multi-agent systems. J. Stat. Mech. Theory Exp. 2006, P06014 (2006).

    Article 

    Google Scholar
     

  • Puglisi, A., Baronchelli, A. & Loreto, V. Cultural route to the emergence of linguistic categories. Proc. Natl Acad. Sci. USA 105, 7936–7940 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Danovski, K. & Brede, M. On the evolutionary language game in structured and adaptive populations. PLoS ONE 17, e0273608 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu, H. et al. Agent-network-computation-based evolutionary game model in language competition. IEEE Trans. Comput. Soc. Systems 11, 4226–4241 (2024).

    Article 

    Google Scholar
     

  • Giles, H., Bourhis, R. Y., & Taylor, D. in Language, Ethnicity and Intergroup Relations (ed. Giles, H.) 307–348 (Academic Press, 1977).

  • Capraro, V., Halpern, J. Y. & Perc, M. From outcome-based to language-based preferences. J. Econ. Lit. 62, 115–154 (2024).

    Article 

    Google Scholar
     

  • Clark, R. Meaningful Games: Exploring Language with Game Theory (MIT Press, 2023).

  • Gaffal, M. & Padilla Gálvez, J. Dynamics of Rational Negotiation: Game Theory, Language Games and Forms of Life (Springer, 2024).

  • Vlasceanu, M. et al. Addressing climate change with behavioral science: a global intervention tournament in 63 countries. Sci. Adv. 10, eadj5778 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brodie Rudolph, T. et al. A transition to sustainable ocean governance. Nat. Commun. 11, 3600 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Capraro, V. et al. The impact of generative artificial intelligence on socioeconomic inequalities and policy making. PNAS Nexus 3, pgae191 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Milkman, K. L. et al. Megastudies improve the impact of applied behavioural science. Nature 600, 478–483 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Milkman, K. L. et al. Megastudy shows that reminders boost vaccination but adding free rides does not. Nature 631, 179–188 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Saccardo, S. et al. Field testing the transferability of behavioural science knowledge on promoting vaccinations. Nat. Hum. Behav. 8, 878–890 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Airoldi, E. M. & Christakis, N. A. Induction of social contagion for diverse outcomes in structured experiments in isolated villages. Science 384, eadi5147 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Landry, N. W., Young, J.-G. & Eikmeier, N. The simpliciality of higher-order networks. EPJ Data Sci. 13, 17 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar