• Liu, W. et al. A review of the removal of microplastics in global wastewater treatment plants: characteristics and mechanisms. Environ. Int. 146, 106277 (2021).


    Google Scholar
     

  • Pfohl, P. et al. Environmental degradation of microplastics: how to measure fragmentation rates to secondary micro- and nanoplastic fragments and dissociation into dissolved organics. Environ. Sci. Technol. 56, 11323–11334 (2022).


    Google Scholar
     

  • Marcharla, E. et al. Microplastics in marine ecosystems: a comprehensive review of biological and ecological implications and its mitigation approach using nanotechnology for the sustainable environment. Environ. Res. 256, 119181 (2024).


    Google Scholar
     

  • Mennekes, D. & Nowack, B. Predicting microplastic masses in river networks with high spatial resolution at country level. Nat. Water 1, 523–533 (2023).


    Google Scholar
     

  • Mishra, A. K., Singh, J. & Mishra, P. P. Microplastics in polar regions: an early warning to the world’s pristine ecosystem. Sci. Total Environ. 784, 147149 (2021).


    Google Scholar
     

  • Tang, K. H. D. & Hadibarata, T. Microplastics removal through water treatment plants: its feasibility, efficiency, future prospects and enhancement by proper waste management. Environ. Chall. 5, 100264 (2021).


    Google Scholar
     

  • Yang, L., Kang, S., Luo, X. & Wang, Z. Microplastics in drinking water: a review on methods, occurrence, sources, and potential risks assessment. Environ. Pollut. 348, 123857 (2024).


    Google Scholar
     

  • Zettler, E. R., Mincer, T. J. & Amaral-Zettler, L. A. Life in the “Plastisphere”: microbial communities on plastic marine debris. Environ. Sci. Technol. 47, 7137–7146 (2013).


    Google Scholar
     

  • Wu, X. et al. Selective enrichment of bacterial pathogens by microplastic biofilm. Water Res. 165, 114979 (2019).


    Google Scholar
     

  • Kapetanović, D. et al. A preliminary study of the cultivable microbiota on the plastic litter collected by commercial fishing trawlers in the south-eastern Adriatic Sea, with emphasis on Vibrio isolates and their antibiotic resistance. Mar. Pollut. Bull. 187, 114592 (2023).


    Google Scholar
     

  • Wang, Z. et al. Plastisphere enrich antibiotic resistance genes and potential pathogenic bacteria in sewage with pharmaceuticals. Sci. Total Environ. https://doi.org/10.1016/j.scitotenv.2020.144663 (2021).

  • Lin, W. et al. Size effects of microplastics on antibiotic resistome and core microbiome in an urban river. Sci. Total Environ. 919, 170716 (2024).


    Google Scholar
     

  • Galafassi, S. et al. Contribution of microplastic particles to the spread of resistances and pathogenic bacteria in treated wastewaters. Water Res. https://doi.org/10.1016/j.watres.2021.117368 (2021).

  • Wu, X. et al. Integrated metagenomic and metatranscriptomic analysis reveals actively expressed antibiotic resistomes in the plastisphere. J. Hazard. Mater. https://doi.org/10.1016/j.jhazmat.2022.128418 (2022).

  • Perveen, S. et al. Growth and prevalence of antibiotic-resistant bacteria in microplastic biofilm from wastewater treatment plant effluents. Sci. Total Environ. 856, 159024 (2023).


    Google Scholar
     

  • Wu, L., Dong, J., Shen, Z. & Zhou, Y. Microplastics as vectors for antibiotic resistance: Role of pathogens, heavy metals, and pharmaceuticals and personal care products. J. Water Process Eng. 67, 106124 (2024).


    Google Scholar
     

  • Bouaziz, A., Houfani, A. A., Arab, M. & Baoune, H. in Micro and Nanoplastics in Soil: Threats to Plant-Based Food (eds Maddela, N. R. et al.) 147–161 (Springer International Publishing, 2023).

  • Rizzo, L. et al. Urban wastewater treatment plants as hotspots for antibiotic resistant bacteria and genes spread into the environment: a review. Sci. Total Environ. 447, 345–360 (2013).


    Google Scholar
     

  • Yamahara, S. et al. Open dumping site as a point source of microplastics and plastic additives: a case study in Thailand. Sci. Total Environ. 948, 174827 (2024).


    Google Scholar
     

  • Gilman, E. et al. Highest risk abandoned, lost and discarded fishing gear. Sci. Rep. 11, 7195 (2021).


    Google Scholar
     

  • Talukdar, A., Kundu, P., Bhattacharya, S. & Dutta, N. Microplastic contamination in wastewater: sources, distribution, detection and remediation through physical and chemical-biological methods. Sci. Total Environ. 916, 170254 (2024).


    Google Scholar
     

  • Yang, T., Luo, J. & Nowack, B. Characterization of nanoplastics, fibrils, and microplastics released during washing and abrasion of polyester textiles. Environ. Sci. Technol. 55, 15873–15881 (2021).


    Google Scholar
     

  • Lusher, A. L., Tirelli, V., O’Connor, I. & Officer, R. Microplastics in Arctic polar waters: the first reported values of particles in surface and sub-surface samples. Sci. Rep. 5, 14947 (2015).


    Google Scholar
     

  • Roy, P., Mohanty, A. K. & Misra, M. Microplastics in ecosystems: their implications and mitigation pathways. Environ. Sci. Adv. 1, 9–29 (2022).


    Google Scholar
     

  • Xu, Y. et al. Microplastic pollution in Chinese urban rivers: the influence of urban factors. Resour. Conserv. Recycl. 173, 105686 (2021).


    Google Scholar
     

  • Ward, C. P., Reddy, C. M., Edwards, B. & Perri, S. T. To curb plastic pollution, industry and academia must unite. Nature 625, 658–662 (2024).


    Google Scholar
     

  • Ta, A. T., Babel, S., Nguyen, L. T. P. & Sembiring, E. Microplastic pollution in high population density zones of selected rivers from Southeast Asia. Bull. Environ. Contam. Toxicol. 112, 73 (2024).


    Google Scholar
     

  • Chauhan, A. & Banerjee, R. A critical review of microplastic contamination in high altitude ecosystems, transport pathways, ecological risks, and imminent solutions. Water Air Soil Pollut. 236, 785 (2025).


    Google Scholar
     

  • K.L, P. et al. Fate, transport and degradation pathway of microplastics in aquatic environment — a critical review. Reg. Stud. Mar. Sci. 56, 102647 (2022).


    Google Scholar
     

  • Lebreton, L. C. M. et al. River plastic emissions to the world’s oceans. Nat. Commun. 8, 15611 (2017).


    Google Scholar
     

  • Rahman, M. et al. Plastic pollutions in the ocean: their sources, causes, effects and control measures. J. Biol. Stud. https://doi.org/10.62400/jbs.v6i1.7755 (2023).

  • Jia, J. et al. Biofilm formation on microplastics and interactions with antibiotics, antibiotic resistance genes and pathogens in aquatic environment. Eco Environ. Health 3, 516–528 (2024).


    Google Scholar
     

  • Kalčíková, G., Skalar, T., Marolt, G. & Jemec Kokalj, A. An environmental concentration of aged microplastics with adsorbed silver significantly affects aquatic organisms. Water Res. 175, 115644 (2020).


    Google Scholar
     

  • Wang, Y. et al. Biofilm alters tetracycline and copper adsorption behaviors onto polyethylene microplastics. Chem. Eng. J. 392, 123808 (2020).


    Google Scholar
     

  • Lim, J.-H. & Kang, J.-W. Assessing biofilm formation and resistance of vibrio parahaemolyticus on UV-aged microplastics in aquatic environments. Water Res. 254, 121379 (2024).


    Google Scholar
     

  • Han, X. et al. Effects of erythromycin on biofilm formation and resistance mutation of Escherichia coli on pristine and UV-aged polystyrene microplastics. Water Res. 256, 121628 (2024).


    Google Scholar
     

  • Xu, Y., Ou, Q., van der Hoek, J. P., Liu, G. & Lompe, K. M. Photo-oxidation of micro- and nanoplastics: physical, chemical, and biological effects in environments. Environ. Sci. Technol. 58, 991–1009 (2024).


    Google Scholar
     

  • Ye, T. et al. Changes of the physicochemical properties of extracellular polymeric substances (EPS) from Microcystis aeruginosa in response to microplastics. Environ. Pollut. 315, 120354 (2022).


    Google Scholar
     

  • Flemming, H. C. & Wingender, J. The biofilm matrix. Nat. Rev. Microbiol. 8, 623–633 (2010).


    Google Scholar
     

  • Dang, H. & Lovell, C. R. Microbial surface colonization and biofilm development in marine environments. Microbiol. Mol. Biol. Rev. 80, 91–138 (2016).


    Google Scholar
     

  • Fortin, S. G., Uhlig, K., Hale, R. C. & Song, B. Microplastic biofilms as potential hotspots for plastic biodegradation and nitrogen cycling: a metagenomic perspective. FEMS Microbiol. Ecol. https://doi.org/10.1093/femsec/fiaf035 (2025).

  • Lin, H. et al. A critical review of extracellular polymeric substances (EPSs) in membrane bioreactors: Characteristics, roles in membrane fouling and control strategies. J. Membr. Sci. 460, 110–125 (2014).


    Google Scholar
     

  • Akkanen, J. et al. The Handbook of Environmental Chemistry (ed. Akkanen, J.) 511–512 (Springer International Publishing, 2010).

  • Toyofuku, M. et al. Environmental factors that shape biofilm formation. Biosci. Biotechnol. Biochem. 80, 7–12 (2016).


    Google Scholar
     

  • Flemming, H.-C. et al. Biofilms: an emergent form of bacterial life. Nat. Rev. Microbiol. 14, 563–575 (2016).


    Google Scholar
     

  • Kaplan, J. B. Biofilm dispersal: mechanisms, clinical implications, and potential therapeutic uses. J. Dent. Res. 89, 205–218 (2010).


    Google Scholar
     

  • McCormick, A. et al. Microplastic is an abundant and distinct microbial habitat in an urban river. Environ. Sci. Technol. 48, 11863–11871 (2014).


    Google Scholar
     

  • Frère, L. et al. Microplastic bacterial communities in the Bay of Brest: influence of polymer type and size. Environ. Pollut. 242, 614–625 (2018).


    Google Scholar
     

  • De Tender, C. A. et al. Bacterial community profiling of plastic litter in the Belgian part of the North Sea. Environ. Sci. Technol. 49, 9629–9638 (2015).


    Google Scholar
     

  • Ogonowski, M. et al. Evidence for selective bacterial community structuring on microplastics. Environ. Microbiol. 20, 2796–2808 (2018).


    Google Scholar
     

  • Sun, X. et al. Impact of mariculture-derived microplastics on bacterial biofilm formation and their potential threat to mariculture: a case in situ study on the Sungo Bay, China. Environ. Pollut. 262, 114336 (2020).


    Google Scholar
     

  • Miao, L. et al. Distinct community structure and microbial functions of biofilms colonizing microplastics. Sci. Total Environ. 650, 2395–2402 (2019).


    Google Scholar
     

  • Hu, H. et al. Distinct profile of bacterial community and antibiotic resistance genes on microplastics in Ganjiang River at the watershed level. Environ. Res. 200, 111363 (2021).


    Google Scholar
     

  • Kettner, M. T. et al. Microplastics alter composition of fungal communities in aquatic ecosystems. Environ. Microbiol. 19, 4447–4459 (2017).


    Google Scholar
     

  • Wang, J. et al. The behaviors of microplastics in the marine environment. Mar. Environ. Res. 113, 7–17 (2016).


    Google Scholar
     

  • Ali, S. S. et al. Plastic wastes biodegradation: mechanisms, challenges and future prospects. Sci. Total Environ. 780, 146590 (2021).


    Google Scholar
     

  • Shah, A. A., Hasan, F., Hameed, A. & Ahmed, S. Biological degradation of plastics: a comprehensive review. Biotechnol. Adv. 26, 246–265 (2008).


    Google Scholar
     

  • Asiandu, A., Wahyudi, A. & Sari, S. Aquatic plastics waste biodegradation using plastic degrading microbes. J. Microbiol. Biotechnol. Food Sci. 11, e3724 (2021).


    Google Scholar
     

  • Tsiota, P. et al., Microbial degradation of HDPE secondary microplastics: preliminary results (ed. Tsiota, P.) 181–188 (Springer International Publishing, 2018).

  • Summers, S. et al. Identification of the bacterial community that degrades phenanthrene sorbed to polystyrene nanoplastics using DNA-based stable isotope probing. Sci. Rep. 14, 5229 (2024).


    Google Scholar
     

  • Okamoto, S., Kojiyama, K., Tsujioka, H. & Sudo, A. Metal-free reductive coupling of C=O and C=N bonds driven by visible light: use of perylene as a simple photoredox catalyst. Chem. Commun. https://doi.org/10.1039/c6cc05867a (2016).

  • Kirstein, I. V., Wichels, A., Krohne, G. & Gerdts, G. Mature biofilm communities on synthetic polymers in seawater – specific or general?. Mar. Environ. Res. 142, 147–154 (2018).


    Google Scholar
     

  • Bao, Y., Liu, G. & Yao, H. Microplastic aging mediates bacterial and antibiotic resistance gene composition in plastisphere and the associated soil solution. Environ. Pollut. 385, 127134 (2025).


    Google Scholar
     

  • Bao, R. et al. Secondary microplastics formation and colonized microorganisms on the surface of conventional and degradable plastic granules during long-term UV aging in various environmental media. J. Hazard. Mater. 439, 129686 (2022).


    Google Scholar
     

  • Oberbeckmann, S., Kreikemeyer, B. & Labrenz, M. Environmental factors support the formation of specific bacterial assemblages on microplastics. Front. Microbiol. 8, 2709 (2017).


    Google Scholar
     

  • Kirstein, I. V. et al. Dangerous hitchhikers? Evidence for potentially pathogenic Vibrio spp. on microplastic particles. Mar. Environ. Res. 120, 1–8 (2016).


    Google Scholar
     

  • Baker-Austin, C., Stockley, L., Rangdale, R. & Martinez-Urtaza, J. Environmental occurrence and clinical impact of Vibrio vulnificus and Vibrio parahaemolyticus: a European perspective. Environ. Microbiol. Rep. 2, 7–18 (2010).


    Google Scholar
     

  • Oberbeckmann, S., Löder, M. & Labrenz, M. Marine microplastic-associated biofilms – a review. Environ. Chem. https://doi.org/10.1071/en15069 (2015).

  • Jiang, P., Zhao, S., Zhu, L. & Li, D. Microplastic-associated bacterial assemblages in the intertidal zone of the Yangtze Estuary. Sci. Total Environ. 624, 48–52 (2018).


    Google Scholar
     

  • Chen, H. et al. Microplastic surface biofilms: a review of structural assembly, influencing factors, and ecotoxicity. Front. Mar. Sci. 12, 1701766 (2025).


    Google Scholar
     

  • Smith, V. H. & Schindler, D. W. Eutrophication science: where do we go from here?. Trends Ecol. Evol. 24, 201–207 (2009).


    Google Scholar
     

  • Mougi, A. pH Adaptation stabilizes bacterial communities. npj Biodivers. 3, 32 (2024).


    Google Scholar
     

  • Nguyen, H. T., Choi, W., Kim, E.-J. & Cho, K. Microbial community niches on microplastics and prioritized environmental factors under various urban riverine conditions. Sci. Total Environ. 849, 157781 (2022).


    Google Scholar
     

  • Amaral-Zettler, L. A., Zettler, E. R. & Mincer, T. J. Ecology of the plastisphere. Nat. Rev. Microbiol 18, 139–151 (2020).


    Google Scholar
     

  • Li, W. et al. Colonization characteristics of bacterial communities on plastic debris influenced by environmental factors and polymer types in the Haihe Estuary of Bohai Bay, China. Environ. Sci. Technol. https://doi.org/10.1021/acs.est.9b03659 (2019).

  • Wang, C. et al. Effects of tidal action on the stability of microbiota, antibiotic resistance genes, and microplastics in the Pearl River Estuary, Guangzhou, China. Chemosphere 327, 138485 (2023).


    Google Scholar
     

  • Zheng, J. et al. High-throughput profiling of seasonal variations of antibiotic resistance gene transport in a peri-urban river. Environ. Int. 114, 87–94 (2018).


    Google Scholar
     

  • Zhao, Y. et al. Responses of bacterial communities and resistance genes on microplastics to antibiotics and heavy metals in sewage environment. J. Hazard. Mater. 402, 123550 (2021).


    Google Scholar
     

  • Wang, J. et al. PAHs accelerate the propagation of antibiotic resistance genes in coastal water microbial community. Environ. Pollut. 231, 1145–1152 (2017).


    Google Scholar
     

  • Marguerettaz, M. et al. Sputum containing zinc enhances carbapenem resistance, biofilm formation and virulence of Pseudomonas aeruginosa. Microb. Pathog. 77, 36–41 (2014).


    Google Scholar
     

  • Michaelis, C. & Grohmann, E. Horizontal gene transfer of antibiotic resistance genes in biofilms. Antibiotics https://doi.org/10.3390/antibiotics12020328 (2023).

  • McCormick, A. et al. Microplastic in surface waters of urban rivers: Concentration, sources, and associated bacterial assemblages. Ecosphere 7, e01556 (2016).


    Google Scholar
     

  • Bydalek, F. et al. Microplastic biofilm, associated pathogen and antimicrobial resistance dynamics through a wastewater treatment process incorporating a constructed wetland. Water Res. 235, 119936 (2023).


    Google Scholar
     

  • Shi, J., Wu, D., Su, Y. & Xie, B. (Nano)microplastics promote the propagation of antibiotic resistance genes in landfill leachate.Environ. Sci. Nano 7, 3536–3546 (2020).


    Google Scholar
     

  • Zhang, H. et al. Foam shares antibiotic resistomes and bacterial pathogens with activated sludge in wastewater treatment plants. J. Hazard. Mater. 408, 124855 (2021).


    Google Scholar
     

  • Junaid, M., Liu, X., Wu, Y. & Wang, J. Selective enrichment of antibiotic resistome and bacterial pathogens by aquatic microplastics. J. Hazard. Mater. Adv. 7, 100106 (2022).


    Google Scholar
     

  • Martínez-Campos, S. et al. Early and differential bacterial colonization on microplastics deployed into the effluents of wastewater treatment plants. Sci. Total Environ. https://doi.org/10.1016/j.scitotenv.2020.143832 (2021).

  • Parrish, K. & Fahrenfeld, N. L. Microplastic biofilm in fresh- and wastewater as a function of microparticle type and size class. Environ. Sci. Water Res. Technol. 5, 495–505 (2019).


    Google Scholar
     

  • Shi, J., Wu, D., Su, Y. & Xie, B. Selective enrichment of antibiotic resistance genes and pathogens on polystyrene microplastics in landfill leachate. Sci. Total Environ. https://doi.org/10.1016/j.scitotenv.2020.142775 (2021).

  • Su, Y. et al. Microplastics act as vectors for antibiotic resistance genes in landfill leachate: The enhanced roles of the long-term aging process. Environ. Pollut. 270, 116278 (2021).


    Google Scholar
     

  • Zhong, H. et al. The hidden risk of microplastic-associated pathogens in aquatic environments. Eco Environ. Health 2, 142–151 (2023).


    Google Scholar
     

  • Massahi, T. et al. Microplastic occurrence and its potential role as a carrier for SARS-CoV-2 in health center wastewater treatment plant and surface water. J. Sea Res. 198, 102477 (2024).


    Google Scholar
     

  • Luppens Suzanne, B. I. et al. Development of a standard test to assess the resistance of Staphylococcus aureus biofilm cells to disinfectants. Appl. Environ. Microbiol. 68, 4194–4200 (2002).


    Google Scholar
     

  • Di Pippo, F. et al. Plastisphere in lake waters: microbial diversity, biofilm structure, and potential implications for freshwater ecosystems. Environ. Pollut. 310, 119876 (2022).


    Google Scholar
     

  • Xu, C. et al. Lake plastisphere as a new biotope in the Anthropocene: potential pathogen colonization and distinct microbial functionality. J. Hazard. Mater. 461, 132693 (2024).


    Google Scholar
     

  • Jiang, P., Zhao, S., Zhu, L. & Li, D. Microplastic-associated bacterial assemblages in the intertidal zone of the Yangtze Estuary. Sci. Total Environ. 624, 48–54 (2018).


    Google Scholar
     

  • Laverty, A. L. et al. Bacterial biofilms colonizing plastics in estuarine waters, with an emphasis on Vibrio spp. and their antibacterial resistance. PLoS ONE https://doi.org/10.1371/journal.pone.0237704 (2020).

  • Wang, S. et al. Selectively enrichment of antibiotics and ARGs by microplastics in river, estuary and marine waters. Sci. Total Environ. https://doi.org/10.1016/j.scitotenv.2019.134594 (2020).

  • Guo, X. P. et al. Antibiotic resistance genes in biofilms on plastic wastes in an estuarine environment. Sci. Total Environ. https://doi.org/10.1016/j.scitotenv.2020.140916 (2020).

  • Li, R. et al. Viral metagenome reveals microbial hosts and the associated antibiotic resistome on microplastics. Nat. Water 2, 553–565 (2024).


    Google Scholar
     

  • Niu, L. et al. Diversity and potential functional characteristics of phage communities colonizing microplastic biofilms. Environ. Res. 219, 115103 (2023).


    Google Scholar
     

  • Zhao, H. et al. Interaction between microplastics and pathogens in subsurface system: what we know so far. Water 16, 499 (2024).


    Google Scholar
     

  • Dika, C. et al. Non-DLVO adhesion of F-specific RNA bacteriophages to abiotic surfaces: Importance of surface roughness, hydrophobic and electrostatic interactions. Colloids Surf. A Physicochem. Eng. Asp. 435, 178–187 (2013).


    Google Scholar
     

  • Williams, K. et al. Relationship between organic carbon and opportunistic pathogens in simulated glass water heaters. Pathogens 4, 355–372 (2015).


    Google Scholar
     

  • Razmi, N. et al. Monitoring the effect of pH on the growth of pathogenic bacteria using electrical impedance spectroscopy. Results Eng. 20, 101425 (2023).


    Google Scholar
     

  • Rosales, D. et al. Investigating the relationship between nitrate, total dissolved nitrogen, and phosphate with abundance of pathogenic vibrios and harmful algal blooms in Rehoboth Bay, delaware. Appl. Environ. Microbiol. 88, e0035622 (2022).


    Google Scholar
     

  • Sheridan, E. A. et al. Plastic pollution fosters more microbial growth in lakes than natural organic matter. Nat. Commun. 13, 4175 (2022).


    Google Scholar
     

  • Yin, L.-Z. et al. Deciphering the pathogenic risks of microplastics as emerging particulate organic matter in aquatic ecosystem. J. Hazard. Mater. 474, 134728 (2024).


    Google Scholar
     

  • Sobrinho Pde, S., Destro, M. T., Franco, B. D. & Landgraf, M. Correlation between environmental factors and prevalence of Vibrio parahaemolyticus in oysters harvested in the southern coastal area of Sao Paulo State, Brazil. Appl. Environ. Microbiol. 76, 1290–1293 (2010).


    Google Scholar
     

  • Li, H. et al. Watershed urbanization enhances the enrichment of pathogenic bacteria and antibiotic resistance genes on microplastics in the water environment. Environ. Pollut. 313, 120185 (2022).


    Google Scholar
     

  • Hoellein, T. et al. Anthropogenic litter in urban freshwater ecosystems: distribution and microbial interactions. PLoS ONE 9, e98485 (2014).


    Google Scholar
     

  • Beloe, C. J., Browne, M. A. & Johnston, E. L. Plastic debris as a vector for bacterial disease: an interdisciplinary systematic review. Environ. Sci. Technol. 56, 2950–2958 (2022).


    Google Scholar
     

  • Sheffey, H. L., Barshis, D. J., Bochdansky, A. B. & Dobbs, F. C. Do microplastics, Vibrio bacteria, and warming water temperatures impact the health and physiology of the Northern Star Coral, Astrangia poculata?. Mar. Pollut. Bull. 217, 118066 (2025).


    Google Scholar
     

  • Chen, X. et al. Combined effects of microplastics and antibiotic-resistant bacteria on Daphnia magna growth and expression of functional genes. Sci. Total Environ. https://doi.org/10.1016/j.scitotenv.2023.166880 (2023).

  • Cho, Y. et al. Abundance and characteristics of microplastics in market bivalves from South Korea. Environ. Pollut. 245, 1107–1116 (2019).


    Google Scholar
     

  • McIlwraith, H. K. et al. Evidence of microplastic translocation in wild-caught fish and implications for microplastic accumulation dynamics in food webs. Environ. Sci. Technol. 55, 12372–12382 (2021).


    Google Scholar
     

  • Radisic, V., Nimje, P. S., Bienfait, A. M. & Marathe, N. P. Marine plastics from norwegian west coast carry potentially virulent fish pathogens and opportunistic human pathogens harboring new variants of antibiotic resistance genes. Microorganisms https://doi.org/10.3390/microorganisms8081200 (2020).

  • Bissen, R. & Chawchai, S. Microplastics on beaches along the eastern Gulf of Thailand – a preliminary study. Mar. Pollut. Bull. 157, 111345 (2020).


    Google Scholar
     

  • Metcalf, R. et al. From wastewater discharge to the beach: survival of human pathogens bound to microplastics during transfer through the freshwater-marine continuum. Environ. Pollut. 319, 120955 (2023).


    Google Scholar
     

  • Zhang, E. et al. Association of zoonotic protozoan parasites with microplastics in seawater and implications for human and wildlife health. Sci. Rep. 12, 6532 (2022).


    Google Scholar
     

  • Wang, C. et al. Polystyrene microplastics significantly facilitate influenza A virus infection of host cells. J. Hazard. Mater. 446, 130617 (2023).


    Google Scholar
     

  • Leighton, R. E. et al. Vibrio parahaemolyticus and Vibrio vulnificus in vitro colonization on plastics influenced by temperature and strain variability. Front. Microbiol. 13, 1099502 (2023).


    Google Scholar
     

  • Liang, X. et al. Buoyant polyethylene rope fragments may enhance pathogenic bacteria dispersion in aquaculture water. Environ. Chem. Ecotoxicol. 7, 2017–2032 (2025).


    Google Scholar
     

  • Maquart, P. O., Froehlich, Y. & Boyer, S. Plastic pollution and infectious diseases. Lancet Planet. Health 6, e842–e845 (2022).


    Google Scholar
     

  • Seeley, M. E. et al. Microplastics exacerbate virus-mediated mortality in fish. Sci. Total Environ. 866, 161191 (2023).


    Google Scholar
     

  • Lu, J., Yu, Z., Ngiam, L. & Guo, J. Microplastics as potential carriers of viruses could prolong virus survival and infectivity. Water Res. 225, 119115 (2022).


    Google Scholar
     

  • Moresco, V. et al. Binding, recovery, and infectiousness of enveloped and non-enveloped viruses associated with plastic pollution in surface water. Environ. Pollut. 308, 119594 (2022).


    Google Scholar
     

  • Pham, D. N., Clark, L. & Li, M. Microplastics as hubs enriching antibiotic-resistant bacteria and pathogens in municipal activated sludge. J. Hazard. Mater. Lett. 2, 100014 (2021).


    Google Scholar
     

  • Uluseker, C. et al. A review on occurrence and spread of antibiotic resistance in wastewaters and in wastewater treatment plants: mechanisms and perspectives. Front. Microbiol. 12, 717809 (2021).


    Google Scholar
     

  • Wang, Y. et al. Antibiotic resistance genes and virulence factors in the plastisphere in wastewater treatment plant effluent: Health risk quantification and driving mechanism interpretation. Water Res. 271, 122896 (2025).


    Google Scholar
     

  • Guo, J. et al. Metagenomic analysis reveals wastewater treatment plants as hotspots of antibiotic resistance genes and mobile genetic elements. Water Res. 123, 468–478 (2017).


    Google Scholar
     

  • Tulloch, C. L. et al. Microbial communities colonising plastics during transition from the wastewater treatment plant to marine waters. Environ. Microbiome 19, 27 (2024).


    Google Scholar
     

  • Stapleton, M. J., Ansari, A. J. & Hai, F. I. Antibiotic sorption onto microplastics in water: a critical review of the factors, mechanisms and implications. Water Res. 233, 119790 (2023).


    Google Scholar
     

  • Gillieatt, B. F. & Coleman, N. V. Unravelling the mechanisms of antibiotic and heavy metal resistance co-selection in environmental bacteria. FEMS Microbiol. Rev. https://doi.org/10.1093/femsre/fuae017 (2024).

  • Wang, H. et al. Microplastic biofilm: an important microniche that may accelerate the spread of antibiotic resistance genes via natural transformation. J. Hazard. Mater. 459, 132085 (2023).


    Google Scholar
     

  • Müller, N. D., Kirtane, A., Schefer, R. B. & Mitrano, D. M. eDNA adsorption onto microplastics: impacts of water chemistry and polymer physiochemical properties. Environ. Sci. Technol. 58, 7588–7599 (2024).


    Google Scholar
     

  • Sivalingam, P. et al. Microplastics, nanoplastics and nanoparticles: emerging dynamic carriers of extracellular DNA antibiotic resistance genes in the environment. BioNanoScience 15, 198 (2025).


    Google Scholar
     

  • Ellabaan, M. M. H. et al. Forecasting the dissemination of antibiotic resistance genes across bacterial genomes. Nat. Commun. 12, 2435 (2021).


    Google Scholar
     

  • Carattoli, A. Plasmids and the spread of resistance. Int. J. Med. Microbiol. 303, 298–304 (2013).


    Google Scholar
     

  • Partridge, S. R., Kwong, S. M., Firth, N. & Jensen, S. O. Mobile genetic elements associated with antimicrobial resistance. Clin. Microbiol. Rev. https://doi.org/10.1128/cmr.00088-17 (2018).

  • Liu, X. et al. Do microplastic biofilms promote the evolution and co-selection of antibiotic and metal resistance genes and their associations with bacterial communities under antibiotic and metal pressures? J. Hazard. Mater. https://doi.org/10.1016/j.jhazmat.2021.127285 (2022).

  • Jia, J. et al. Occurrence and distribution of antibiotics and antibiotic resistance genes in Ba River, China. Sci. Total Environ. 642, 1136–1144 (2018).


    Google Scholar
     

  • Wang, Z. et al. Discrepant responses of polyvinyl chloride microplastics biofilms and activated sludge under sulfadiazine stress in an anaerobic/anoxic/oxic system. Chem. Eng. J. 446, 137055 (2022).


    Google Scholar
     

  • Baker-Austin, C., Wright, M. S., Stepanauskas, R. & McArthur, J. V. Co-selection of antibiotic and metal resistance. Trends Microbiol. 14, 176–182 (2006).


    Google Scholar
     

  • Dong, H. et al. Interactions of microplastics and antibiotic resistance genes and their effects on the aquaculture environments. J. Hazard. Mater. 403, 123961 (2021).


    Google Scholar
     

  • Lin, X. et al. Oxytetracycline and heavy metals promote the migration of resistance genes in the intestinal microbiome by plasmid transfer. ISME J. 17, 2003–2013 (2023).


    Google Scholar
     

  • Ding, P. et al. Antidepressants promote the spread of antibiotic resistance via horizontally conjugative gene transfer. Environ. Microbiol. 24, 5261–5276 (2022).


    Google Scholar
     

  • Wales, A. D. & Davies, R. H. Co-Selection of resistance to antibiotics, biocides and heavy metals, and its relevance to foodborne pathogens. Antibiotics 4, 567–604 (2015).


    Google Scholar
     

  • Zhao, Y. et al. Distinct bacterial communities and resistance genes enriched by triclocarban-contaminated polyethylene microplastics in antibiotics and heavy metals polluted sewage environment. Sci. Total Environ. 839, 156330 (2022).


    Google Scholar
     

  • Wang, G. et al. Composting temperature directly affects the removal of antibiotic resistance genes and mobile genetic elements in livestock manure. Environ. Pollut. 303, 119174 (2022).


    Google Scholar
     

  • Yu, Q. et al. Metagenomics reveals the response of antibiotic resistance genes to elevated temperature in the Yellow River. Sci. Total Environ. 859, 160324 (2023).


    Google Scholar
     

  • Son, D. I. et al. Seasonal changes in antibiotic resistance genes in rivers and reservoirs in South Korea. J. Environ. Qual. 47, 1079–1085 (2018).


    Google Scholar
     

  • Cui, G. et al. Temperature impacts fate of antibiotic resistance genes during vermicomposting of domestic excess activated sludge. Environ. Res. 207, 112654 (2022).


    Google Scholar
     

  • Jones, E. M., Cochrane, C. A. & Percival, S. L. The effect of pH on the extracellular matrix and biofilms. Adv. Wound Care 4, 431–439 (2015).


    Google Scholar
     

  • Huang, H. et al. Distribution of tetracycline resistance genes in anaerobic treatment of waste sludge: the role of pH in regulating tetracycline resistant bacteria and horizontal gene transfer. Bioresour. Technol. 218, 1284–1289 (2016).


    Google Scholar
     

  • Chen, Y. R. et al. Antibiotic resistance genes (ARGs) and their associated environmental factors in the Yangtze Estuary, China: from inlet to outlet. Mar. Pollut. Bull. 158, 111360 (2020).


    Google Scholar
     

  • Bergholz Teresa, M., Tang, S., Wiedmann, M. & Boor Kathryn, J. Nisin resistance of Listeria monocytogenes is increased by exposure to salt stress and is mediated via LiaR. Appl. Environ. Microbiol. 79, 5682–5688 (2013).


    Google Scholar
     

  • Zhang, Y. J. et al. Salinity as a predominant factor modulating the distribution patterns of antibiotic resistance genes in ocean and river beach soils. Sci. Total Environ. 668, 193–203 (2019).


    Google Scholar
     

  • Wu, Z., Li, M., Qu, L., Zhang, C. & Xie, W. Metagenomic insights into microbial adaptation to the salinity gradient of a typical short residence-time estuary. Microbiome 12, 115 (2024).


    Google Scholar
     

  • Salgar-Chaparro, S. J., Lepkova, K., Pojtanabuntoeng, T., Darwin, A. & Machuca, L. L. Nutrient level determines biofilm characteristics and subsequent impact on microbial corrosion and biocide effectiveness. Appl. Environ. Microbiol. https://doi.org/10.1128/aem.02885-19 (2020).

  • Liu, S., Liu, B., Zhu, Y., Qiu, Y. & Li, B. The spatial–temporal effects of bacterial growth substrates on antibiotic resistance gene spread in the biofilm. Antibiotics 12, 1154 (2023).


    Google Scholar
     

  • Guo, X. P. et al. Biofilms as a sink for antibiotic resistance genes (ARGs) in the Yangtze Estuary. Water Res. 129, 277–286 (2018).


    Google Scholar
     

  • Guo, X. -p et al. Antibiotic resistance genes in biofilms on plastic wastes in an estuarine environment. Sci. Total Environ. 745, 140916 (2020).


    Google Scholar
     

  • Silva, I., Rodrigues, E. T., Tacão, M. & Henriques, I. Microplastics accumulate priority antibiotic-resistant pathogens: evidence from the riverine plastisphere. Environ. Pollut. 332, 121995 (2023).


    Google Scholar
     

  • Li, K. et al. Potential environmental risks of field bio/non-degradable microplastic from mulching residues in farmland: evidence from metagenomic analysis of plastisphere. J. Hazard. Mater. 465, 133428 (2024).


    Google Scholar
     

  • Junaid, M. et al. Enrichment and dissemination of bacterial pathogens by microplastics in the aquatic environment. Sci. Total Environ. 830, 154720 (2022).


    Google Scholar
     

  • Imran, M., Das, K. R. & Naik, M. M. Co-selection of multi-antibiotic resistance in bacterial pathogens in metal and microplastic contaminated environments: An emerging health threat. Chemosphere 215, 846–857 (2019).


    Google Scholar
     

  • Song, J. et al. The travelling particles: Investigating microplastics as possible transport vectors for multidrug resistant E. coli in the Weser estuary (Germany). Sci. Total Environ. 720, 137603 (2020).


    Google Scholar
     

  • Yu, Z. et al. Nonnutritive sweeteners can promote the dissemination of antibiotic resistance through conjugative gene transfer. ISME J. 15, 2117–2130 (2021).


    Google Scholar
     

  • Zhai, X., Zhang, X.-H. & Yu, M. Microbial colonization and degradation of marine microplastics in the plastisphere: a review. Front. Microbiol. 14, 1127308 (2023).


    Google Scholar
     

  • Gangadoo, S. et al. Nano-plastics and their analytical characterisation and fate in the marine environment: From source to sea. Sci. Total Environ. https://doi.org/10.1016/j.scitotenv.2020.138792 (2020).

  • Seltenrich, N. New link in the food chain? Marine plastic pollution and seafood safety. Environ. Health Perspect. 123, A34–A41 (2015).


    Google Scholar
     

  • Bowley, J., Baker-Austin, C., Porter, A., Hartnell, R. & Lewis, C. Oceanic hitchhikers – assessing pathogen risks from marine microplastic. Trends Microbiol. 29, 107–116 (2021).


    Google Scholar
     

  • Liang, L. et al. Effect of microplastics concentration and size on pollutants removal and antibiotic resistance genes (ARGs) generation in constructed wetlands: a metagenomics insight. J. Hazard. Mater. 481, 136555 (2025).


    Google Scholar
     

  • Wu, R. et al. Hi-C metagenome sequencing reveals soil phage-host interactions. Nat. Commun. 14, 7666 (2023).


    Google Scholar
     

  • Kawano-Sugaya, T. et al. A single amplified genome catalog reveals the dynamics of mobilome and resistome in the human microbiome. Microbiome 12, 188 (2024).


    Google Scholar
     

  • Kocsmár, É. et al. Primary and secondary clarithromycin resistance in Helicobacter pylori and mathematical modeling of the role of macrolides. Nat. Commun. 12, 2255 (2021).


    Google Scholar
     

  • Zhai, K. et al. Free radicals on aging microplastics regulated the prevalence of antibiotic resistance genes in the aquatic environment: new insight into the effect of microplastics on the spreading of biofilm resistomes. Environ. Sci. Technol. 59, 11735–11744 (2025).


    Google Scholar
     

  • Murray, C. J. L. et al. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet 399, 629–655 (2022).


    Google Scholar
     

  • Meijer, L. J. J. et al. More than 1000 rivers account for 80% of global riverine plastic emissions into the ocean. Sci. Adv. https://doi.org/10.1126/sciadv.aaz5803 (2021).

  • Liu, S. et al. Temporal and spatial variation of microplastics in the urban rivers of Harbin. Sci. Total Environ. 910, 168373 (2024).


    Google Scholar
     

  • Liu, Q. et al. Homogenization of microplastics in alpine rivers: analysis of microplastic abundance and characteristics in rivers of Qilian Mountain, China. J. Environ. Manag. 340, 118011 (2023).


    Google Scholar
     

  • Wang, W., Yuan, W., Chen, Y. & Wang, J. Microplastics in surface waters of Dongting Lake and Hong Lake, China. Sci. Total Environ. 633, 539–545 (2018).


    Google Scholar
     

  • Mughini-Gras, L. et al. Riverine microplastic and microbial community compositions: a field study in the Netherlands. Water Res. 192, 116852 (2021).


    Google Scholar
     

  • Farooq, M. et al. Abundance and characteristics of microplastics in a freshwater river in northwestern Himalayas, India – scenario of riverbank solid waste disposal sites. Sci. Total Environ. 886, 164027 (2023).


    Google Scholar
     

  • Yang, L. et al. Microplastics in the Koshi River, a remote alpine river crossing the Himalayas from China to Nepal. Environ. Pollut. 290, 118121 (2021).


    Google Scholar
     

  • Xiao, S. et al. Bacterial community succession and the enrichment of antibiotic resistance genes on microplastics in an oyster farm. Mar. Pollut. Bull. 194, 115402 (2023).


    Google Scholar
     

  • Magalhães, E. A. et al. Beach sand plastispheres are hotspots for antibiotic resistance genes and potentially pathogenic bacteria even in beaches with good water quality. Environ. Pollut. 344, 123237 (2024).


    Google Scholar
     

  • Shi, J., Wu, D., Su, Y. & Xie, B. Selective enrichment of antibiotic resistance genes and pathogens on polystyrene microplastics in landfill leachate. Sci. Total Environ. 765, 142775 (2021).


    Google Scholar