• Tamura, Y. et al. Detection of the far-infrared [O III] and dust emission in a galaxy at redshift 8.312: early metal enrichment in the heart of the reionization era. Astrophys. J. 874, 27 (2019).

    Article 

    Google Scholar
     

  • Witstok, J. et al. Dual constraints with ALMA: new [O III] 88-μm and dust-continuum observations reveal the ISM conditions of luminous LBGs at z ~ 7. Mon. Not. R. Astron. Soc. 515, 1751–1773 (2022).

    Article 

    Google Scholar
     

  • Algera, H. S. B. et al. The ALMA REBELS survey: the dust-obscured cosmic star formation rate density at redshift 7. Mon. Not. R. Astron. Soc. 518, 6142–6161 (2023).

    Article 

    Google Scholar
     

  • Mauerhofer, V. & Dayal, P. The dust enrichment of early galaxies in the JWST and ALMA era. Mon. Not. R. Astron. Soc. 526, 2196–2210 (2023).

    Article 

    Google Scholar
     

  • Palla, M. et al. Metal and dust evolution in ALMA REBELS galaxies: insights for future JWST observations. Mon. Not. R. Astron. Soc. 528, 2407–2423 (2024).

    Article 

    Google Scholar
     

  • Witstok, J. et al. Carbonaceous dust grains seen in the first billion years of cosmic time. Nature 621, 267–270 (2023).

    Article 

    Google Scholar
     

  • Spilker, J. S. et al. Spatial variations in aromatic hydrocarbon emission in a dust-rich galaxy. Nature 618, 708–712 (2023).

    Article 

    Google Scholar
     

  • D’Eugenio, F. et al. JADES: carbon enrichment 350 Myr after the Big Bang. Astron. Astrophys. 689, 152 (2024).

    Article 

    Google Scholar
     

  • Castellano, M. et al. JWST NIRSpec spectroscopy of the remarkable bright galaxy GHZ2/GLASS-z12 at redshift 12.34. Astrophys. J. 972, 2 (2024).

    Article 

    Google Scholar
     

  • Placco, V. et al. Carbon-enhanced metal-poor star frequencies in the Galaxy: corrections for the effect of evolutionary status on carbon abundances. Astrophys. J. 797, 1 (2014).

    Article 

    Google Scholar
     

  • Carniani, S. et al. The eventful life of a luminous galaxy at z = 14: metal enrichment, feedback, and low gas fraction. Astron. Astrophys. 696, 87 (2025).

    Article 

    Google Scholar
     

  • Schouws, S. et al. Detection of [O III] 88 μm in JADES-GS-z14-0 at z = 14.1793. Astrophys. J. 977, L9 (2024).


    Google Scholar
     

  • Ferrara, A., Pallottini, A. & Sommovigo, L. Blue monsters at z > 10: where has all their dust gone?. Astron. Astrophys. 694, 286 (2025).

    Article 

    Google Scholar
     

  • Sanders, R. et al. The AURORA Survey: high-redshift empirical metallicity calibrations from electron temperature measurements at z = 2–10. Preprint at https://arxiv.org/abs/2508.10099 (2025).

  • Harikane, Y. et al. JWST and ALMA joint analysis with [O II] λλ3726, 3729, [O III] λ4363, [O III] 88 μm, and [O III] 52 μm: Multizone evolution of electron densities at z ∼ 0–14 and its impact on metallicity measurements. Astrophys. J. 993, 204 (2025).

  • Isobe, Y. et al. Redshift evolution of electron density in the interstellar medium at z 0–9 uncovered with JWST/NIRSpec spectra and line-spread function determinations. Astrophys. J. 956, 139 (2023).

    Article 

    Google Scholar
     

  • Laseter, I. H. et al. JADES NIRSpec spectroscopy of GN-z11: Lyman-α emission and possible enhanced nitrogen abundance in a z = 10.60 luminous galaxy. Astron. Astrophys. 681, A70 (2024).

    Article 

    Google Scholar
     

  • Bunker, A. et al. JADES NIRSpec spectroscopy of GN-z11: Lyman-α emission and possible enhanced nitrogen abundance in a z = 10.60 luminous galaxy. Astron. Astrophys. 677, 88 (2023).

    Article 

    Google Scholar
     

  • Isobe, Y. et al. JADES: nitrogen enhancement in high-redshift broad-line active galactic nuclei. Mon. Not. R. Astron. Soc. 541, L71 (2025).

    Article 

    Google Scholar
     

  • Cameron, A. et al. Nitrogen enhancements 440 Myr after the big bang: supersolar N/O, a tidal disruption event, or a dense stellar cluster in GN-z11?. Mon. Not. R. Astron. Soc. 523, 3516 (2023).

    Article 

    Google Scholar
     

  • Le Fèvre, O. et al. The ALPINE-ALMA [CII] survey: multi-wavelength ancillary data and basic physical measurements. Astron. Astrophys. 643, A1 (2020).


    Google Scholar
     

  • Béthermin, M. et al. The ALPINE-ALMA [CII] survey: data processing, catalogs, and statistical source properties. Astron. Astrophys. 643, A2 (2020).

    Article 

    Google Scholar
     

  • Faisst, A. L. et al. The ALPINE-ALMA [CII] survey: physical conditions, origins, and fate of the [CII] halos. Mon. Not. R. Astron. Soc. 498, 4192–4210 (2020).

    Article 

    Google Scholar
     

  • Herrera-Camus, R. et al. The ALMA-CRISTAL survey: gas, dust, and stars in star-forming galaxies when the Universe was ∼1 Gyr old I. Survey overview and case studies. Astron. Astrophys. 699, A80 (2025).

    Article 

    Google Scholar
     

  • Bouwens, R. J. et al. Reionization Era Bright Emission Line Survey: selection and characterization of luminous interstellar medium reservoirs in the z > 6.5 universe. Astrophys. J. 931, 160 (2022).

    Article 

    Google Scholar
     

  • Harikane, Y. et al. Large population of ALMA galaxies at z > 6 with very high [O III] 88 μm to [C II] 158 μm flux ratios: evidence of extremely high ionization parameter or PDR deficit?. Astrophys. J. 896, 93 (2020).

    Article 

    Google Scholar
     

  • Witstok, J. et al. Dual constraints with ALMA: new [O III] 88-μm and dust-continuum observations reveal the ISM conditions of luminous LBGs at z = 7. Mon. Not. R. Astron. Soc. 515, 1751–1764 (2022).

    Article 

    Google Scholar
     

  • Inoue, A. K. et al. Detection of an oxygen emission line from a high-redshift galaxy in the reionization epoch. Science 352, 1559–1562 (2016).

    Article 

    Google Scholar
     

  • Algera, H. S. B. et al. Cold dust and low [O III]/[C II] ratios: an evolved star-forming population at redshift 7. Mon. Not. R. Astron. Soc. 527, 6867–6880 (2024).

    Article 

    Google Scholar
     

  • Vallini, L., Ferrara, A., Pallottini, A., Carniani, S. & Gallerani, S. High [O III]/[C II] surface brightness ratios trace early starburst galaxies. Mon. Not. R. Astron. Soc. 505, 5543–5553 (2021).

    Article 

    Google Scholar
     

  • Katz, H. et al. The nature of high [O III]88 μ m/[C II]158 μm galaxies in the epoch of reionization: low carbon abundance and a top-heavy IMF? Mon. Not. R. Astron. Soc. 510, 5603–5622 (2022).

    Article 

    Google Scholar
     

  • Gelli, V., Mason, C. & Hayward, C. C. The impact of mass-dependent stochasticity at cosmic dawn. Astrophys. J. 975, 192 (2024).

    Article 

    Google Scholar
     

  • Sommovigo, L. et al. Dust temperature in ALMA [C II]-detected high-z galaxies. Mon. Not. R. Astron. Soc. 503, 4878–4889 (2021).

    Article 

    Google Scholar
     

  • Li, J. et al. The ALMA-CRISTAL Survey: spatially resolved star formation activity and dust content in 4 z Astrophys. J. 976, 70 (2024).

    Article 

    Google Scholar
     

  • Lines, N. E. P. et al. JWST PRIMER: a lack of outshining in four normal z = 4–6 galaxies from the ALMA-CRISTAL Survey. Mon. Not. R. Astron. Soc. 539, 2685–2706 (2025).

    Article 

    Google Scholar
     

  • Villanueva, V. et al. The ALMA-CRISTAL survey: dust temperature and physical conditions of the interstellar medium in a typical galaxy at z = 5.66. Astron. Astrophys. 691, A133 (2024).

    Article 

    Google Scholar
     

  • Mitsuhashi, I. et al. SERENADE. II. An ALMA multiband dust continuum analysis of 28 galaxies at 5 z Astrophys. J. 971, 161 (2024).

    Article 

    Google Scholar
     

  • Pallottini, A. et al. A survey of high-z galaxies: SERRA simulations. Mon. Not. R. Astron. Soc. 513, 5621–5641 (2022).


    Google Scholar
     

  • Vallini, L. Spatially resolved [CII]–gas conversion factor in early galaxies. Astron. Astrophys. 700, A117 (2025).

    Article 

    Google Scholar
     

  • Nakazato, Y., Yoshida, N. & Ceverino, D. Simulations of high-redshift [O III] emitters: chemical evolution and multiline diagnostics. Astrophys. J. 953, 140 (2023).

    Article 

    Google Scholar
     

  • Katz, H. et al. First insights into the ISM at z > 8 with JWST: possible physical implications of a high [O III] λ4363/[O III] λ5007. Mon. Not. R. Astron. Soc. 518, 592–604 (2023).

    Article 

    Google Scholar
     

  • Schimek, A. et al. Constraining the physical properties of gas in high-z galaxies with far-infrared and submillimetre line ratios. Astron. Astrophys. 687, L10 (2024).

    Article 

    Google Scholar
     

  • Tadaki, K.-i. et al. CNO emission of an unlensed submillimeter galaxy at z = 4.3. Astrophys. J. 876, 1 (2019).

    Article 

    Google Scholar
     

  • Vallini, L., Ferrara, A., Pallottini, A., Carniani, S. & Gallerani, S. Star formation law in the epoch of reionization from [C II] and C III] lines. Mon. Not. R. Astron. Soc. 495, L22–L26 (2020).

    Article 

    Google Scholar
     

  • Jones, T. et al. The mass–metallicity relation at z ≃ 8: direct-method metallicity constraints and near-future prospects. Astrophys. J. 903, 150 (2020).

    Article 

    Google Scholar
     

  • Aravena, M. et al. The ALMA Reionization Era Bright Emission Line Survey: the molecular gas content of galaxies at z = 7. Astron. Astrophys. 682, A24 (2024).

    Article 

    Google Scholar
     

  • Dessauges-Zavadsky, M. et al. The ALPINE-ALMA [C II] survey: molecular gas budget in the early Universe as traced by [C II]. Astron. Astrophys. 643, A5 (2020).

    Article 

    Google Scholar
     

  • Herrera-Camus, R. et al. Kiloparsec view of a typical star-forming galaxy when the Universe was ∼1 Gyr old. I. Properties of outflow, halo, and interstellar medium. Astron. Astrophys. 649, A31 (2021).

    Article 

    Google Scholar
     

  • Heintz, K. E. et al. Measuring the H I content of individual galaxies out to the epoch of reionization with [C II]. Astrophys. J. 922, 147 (2021).

    Article 

    Google Scholar
     

  • Wilson, S. A high-redshift calibration of the [O I]-to-H I conversion factor in star-forming galaxies. Astron. Astrophys. 685, A30 (2024).

    Article 

    Google Scholar
     

  • Heintz, K. E. et al. Strong damped Lyman-α absorption in young star-forming galaxies at redshifts 9 to 11. Science 384, 890–894 (2024).

    Article 

    Google Scholar
     

  • Carpenter, J. et al. in Physics and Chemistry of Star Formation: the Dynamical ISM Across Time and Spatial Scales (eds Ossenkopf-Okada, V. et al.) 304 (Universitäts- und Stadtbibliothek Köln, 2023).

  • Rizzo, F. et al. Dynamical properties of z ∼ 4.5 dusty star-forming galaxies and their connection with local early-type galaxies. Mon. Not. R. Astron. Soc. 507, 3952–3984 (2021).

    Article 

    Google Scholar
     

  • Neeleman, M. et al. A cold, massive, rotating disk galaxy 1.5 billion years after the Big Bang. Nature 581, 269–272 (2020).

    Article 

    Google Scholar
     

  • Danhaive, A. L. et al. The dawn of disks: unveiling the turbulent ionised gas kinematics of the galaxy population at z ∼ 4−6 with JWST/NIRCam grism spectroscopy. Mon. Not. R. Astron. Soc. 543, 3249–3302 (2025).

    Article 

    Google Scholar
     

  • Kohandel, M. et al. Dynamically cold disks in the early Universe: myth or reality?. Astron. Astrophys. 685, A72 (2024).

    Article 

    Google Scholar
     

  • Lee, L. et al. The ALMA-CRISTAL survey: resolved kinematic studies of main sequence star-forming galaxies at 4 z Astron. Astrophys. 701, 260 (2025).

    Article 

    Google Scholar
     

  • Ferreira, L. et al. The JWST Hubble Sequence: the rest-frame optical evolution of galaxy structure at 1.5 z Astrophys. J. 955, 94 (2023).

    Article 

    Google Scholar
     

  • Fujimoto, S. et al. Primordial rotating disk composed of at least 15 dense star-forming clumps at cosmic dawn. Nat. Astron. 9, 1553–1567 (2025).

    Article 

    Google Scholar
     

  • Rowland, L. E. et al. REBELS-25: discovery of a dynamically cold disc galaxy at z = 7.31. Mon. Not. R. Astron. Soc. 535, 2068–2091 (2024).

    Article 

    Google Scholar
     

  • Förster Schreiber, N. M. & Wuyts, S. Star-forming galaxies at cosmic noon. Annu. Rev. Astron. Astrophys. 58, 661–705 (2020).

    Article 

    Google Scholar
     

  • Übler, H. et al. GA-NIFS: NIRSpec reveals evidence for non-circular motions and AGN feedback in GN20. Mon. Not. R. Astron. Soc. 533, 4287–4301 (2024).

    Article 

    Google Scholar
     

  • Genzel, R. et al. Evidence for large-scale, rapid gas inflows in z ~ 2 star-forming disks. Astrophys. J. 957, 48 (2023).

    Article 

    Google Scholar
     

  • Fujimoto, S. et al. The ALPINE-ALMA [C II] survey: size of individual star-forming galaxies at z = 4–6 and their extended halo structure. Astrophys. J. 900, 1 (2020).

    Article 

    Google Scholar
     

  • Lambert, T. S. et al. An extended [C II] halo around a massive star-forming galaxy at z = 5.3. Mon. Not. R. Astron. Soc. 518, 3183–3191 (2024).

    Article 

    Google Scholar
     

  • Ikeda, R. et al. The ALMA-CRISTAL Survey: spatial extent of [C II] line emission in star-forming galaxies at z = 4–6. Astron. Astrophys. 693, A237 (2025).

    Article 

    Google Scholar
     

  • Pizzati, E. et al. [C II] haloes in ALPINE galaxies: smoking-gun of galactic outflows?. Astron. Astrophys. 673, A39 (2023).


    Google Scholar
     

  • Rey, M. et al. (2024). ARCHITECTS I: impact of subgrid physics on the simulated properties of the circumgalactic medium. Mon. Not. R. Astron. Soc. 543, 12–27 (2025).

    Article 

    Google Scholar
     

  • Solimano, M. et al. The ALMA-CRISTAL Survey: discovery of a 15 kpc-long gas plume in a z = 4.54 Lyman-α blob. Astron. Astrophys. 689, A145 (2024).

    Article 

    Google Scholar
     

  • Solimano, M. et al. A hidden active galactic nucleus powering bright [O III] nebulae in a protocluster at z = 4.5 revealed by JWST. Astron. Astrophys. 693, A70 (2025).

    Article 

    Google Scholar
     

  • Harikane, Y. et al. A JWST/NIRSpec first census of broad-line AGNs at z = 4–7: detection of 10 faint AGNs with MBH ~ 106–108 M☉ and their host galaxy properties. Astrophys. J. 959, 39 (2023).

    Article 

    Google Scholar
     

  • Maiolino, R. et al. JADES: the diverse population of infant black holes at 4 z Astron. Astrophys. 691, A145 (2024).

    Article 

    Google Scholar
     

  • Reines, A. E. & Volonteri, M. Relations between central black hole mass and total galaxy stellar mass in the local Universe. Astrophys. J. 813, 82 (2015).

    Article 

    Google Scholar
     

  • Li, J. et al. Tip of the iceberg: overmassive black holes at 4 z MBH–M★ relation. Astrophys. J. 981, 19 (2025).

    Article 

    Google Scholar
     

  • Volonteri, M. et al. What if young z > 9 JWST galaxies hosted massive black holes?. Mon. Not. R. Astron. Soc. 521, 241 (2023).

    Article 

    Google Scholar
     

  • Lauer, T. R. et al. The masses of nuclear black holes in luminous elliptical galaxies and implications for the space density of the most massive black holes. Astrophys. J. 662, 808–834 (2007).

    Article 

    Google Scholar
     

  • Dayal, P. et al. Exploring a primordial solution for early black holes detected with JWST. Astron. Astrophys. 690, A182 (2024).

    Article 

    Google Scholar
     

  • Natarajan, P. et al. First light of supermassive black holes: evidence for a heavy-seed origin. Astrophys. J. 960, L1 (2024).

    Article 

    Google Scholar
     

  • Labbé, I. et al. A population of red candidate massive galaxies 600 Myr after the Big Bang. Nature 616, 266–269 (2023).

    Article 

    Google Scholar
     

  • Matthee, J. et al. Little red dots: an abundant population of faint active galactic nuclei at z ∼ 5 revealed by the EIGER and FRESCO JWST surveys. Astrophys. J. 963, 129 (2024).

    Article 

    Google Scholar
     

  • Setton, D. et al. A confirmed deficit of hot and cold dust emission in the most luminous little red dots. Astrophys. J. Lett. 991, L10 (2025).

    Article 

    Google Scholar
     

  • Inayoshi, K. & Maiolino, R. Extremely dense gas around little red dots and high-redshift active galactic nuclei: a nonstellar origin of the Balmer break and absorption features. Astrophys. J. Lett. 980, L27 (2025).

    Article 

    Google Scholar
     

  • Akins, H. B. et al. COSMOS-Web: the over-abundance and physical nature of ‘little red dots’—implications for early galaxy and SMBH assembly. Astrophys. J. 991, 1 (2025).

    Article 

    Google Scholar
     

  • Pérez-González, P. G. et al. What is the nature of little red dots and what is not, MIRI SMILES edition. Astrophys. J. 968, 4 (2024).

    Article 

    Google Scholar
     

  • Juodžbalis, I. et al. A direct black hole mass measurement in a Little Red Dot at the Epoch of Reionization. Preprint at https://arxiv.org/abs/2508.21748 (2025).

  • Lupi, A. et al. Size matters: are we witnessing super-Eddington accretion in high-redshift black holes from JWST?. Astron. Astrophys. 689, A128 (2024).

    Article 

    Google Scholar
     

  • Greene, J. E. & Ho, L. C. The mass function of active black holes in the local Universe. Astrophys. J. 667, 131 (2007).

    Article 

    Google Scholar
     

  • Buchner, J. et al. Genuine Retrieval of the AGN Host Stellar Population (GRAHSP). Astron. Astrophys. 692, A161 (2025).

    Article 

    Google Scholar
     

  • Übler, H. et al. GA-NIFS: JWST discovers an offset AGN 740 million years after the Big Bang. Mon. Not. R. Astron. Soc. 531, 355–365 (2024).

    Article 

    Google Scholar
     

  • Abuter, R. et al. A dynamical measure of the black hole mass in a quasar 11 billion years ago. Nature 627, 281–285 (2024).

    Article 

    Google Scholar
     

  • Greene, J. E., Strader, J. & Ho, L. C. Intermediate-mass black holes. Annu. Rev. Astron. Astrophys. 58, 257–312 (2020).

    Article 

    Google Scholar
     

  • Carniani, S. et al. JADES: the incidence rate and properties of galactic outflows in low-mass galaxies across z Astron. Astrophys. 685, A99 (2024).

    Article 

    Google Scholar
     

  • Fluetsch, A. et al. Cold molecular outflows in the local Universe and their feedback effect on galaxies. Mon. Not. R. Astron. Soc. 483, 4586–4614 (2019).


    Google Scholar
     

  • Spilker, J. S. et al. Ubiquitous molecular outflows in z > 4 massive, dusty galaxies. II. Momentum-driven winds powered by star formation in the early Universe. Astrophys. J. 905, 86 (2020).

    Article 

    Google Scholar
     

  • Ginolfi, M. et al. The ALPINE-ALMA [C II] survey: star-formation-driven outflows and circumgalactic enrichment in the early Universe. Astron. Astrophys. 633, A90 (2020).

    Article 

    Google Scholar
     

  • Birkin, J. et al. The ALMA-CRISTAL survey: weak evidence for star-formation driven outflows in z ∼ 5 main-sequence galaxies. Astrophys. J. 985, 243 (2025).

    Article 

    Google Scholar
     

  • Parlanti, E. et al. GA-NIFS: multi-phase analysis of a star-forming galaxy at z ∼ 5.5. Astron. Astrophys. 696, 6 (2025).

    Article 

    Google Scholar
     

  • Boquien, M. et al. Python Code Investigating GALaxy Emission (CIGALE). Astron. Astrophys. 622, A103 (2019).

    Article 

    Google Scholar
     

  • Faisst, A. et al. The ALPINE-CRISTAL-JWST Survey: JWST/IFU optical observations for 18 main-sequence galaxies at z = 4–6. Preprint at https://arxiv.org/abs/2510.16111 (2025).

  • Fujimoto, S. et al. The ALPINE-CRISTAL-JWST Survey: NIRSpec IFU data processing and spatially-resolved views of chemical enrichment in normal galaxies at z = 4–6. Preprint at https://arxiv.org/abs/2510.16116 (2025).