• Health Effects Institute. State of Global Air Report 2024 www.stateofglobalair.org/resources/report/state-global-air-report-2024 (2024).

  • World Health Organization. WHO Global Air Quality Guidelines: Particulate Matter (PM2.5 and PM10), Ozone, Nitrogen Dioxide, Sulfur Dioxide and Carbon Monoxide www.who.int/publications/i/item/9789240034228 (2021).

  • Campbell-Lendrum, D., Neville, T., Schweizer, C. & Neira, M. Climate change and health: three grand challenges. Nat. Med. 29, 1631–1638 (2023).

    CAS 
    PubMed 

    Google Scholar
     

  • Landrigan, P. J. et al. The Lancet Commission on pollution and health. Lancet 391, 462–512 (2018).

    PubMed 

    Google Scholar
     

  • Shen, G. et al. Emission of oxygenated polycyclic aromatic hydrocarbons from indoor solid fuel combustion. Environ. Sci. Technol. 45, 3459–3465 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, Z. et al. A population-based cohort study of respiratory disease and long-term exposure to iron and copper in fine particulate air pollution and their combined impact on reactive oxygen species generation in human lungs. Environ. Sci. Technol. 55, 3807–3818 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • de Bont, J. et al. Ambient air pollution and cardiovascular diseases: an umbrella review of systematic reviews and meta‐analyses. J. Intern. Med. 291, 779–800 (2022).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sîrbu, C. A. et al. Air pollution and its devastating effects on the central nervous system. Healthcare 10, 1170 (2022).

  • Ural, B. B. & Farber, D. L. Effect of air pollution on the human immune system. Nat. Med. 28, 2482–2483 (2022).


    Google Scholar
     

  • Ural, B. B. et al. Inhaled particulate accumulation with age impairs immune function and architecture in human lung lymph nodes. Nat. Med. 28, 2622–2632 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Markozannes, G. et al. Outdoor air quality and human health: an overview of reviews of observational studies. Environ. Pollut. 306, 119309 (2022).

    CAS 
    PubMed 

    Google Scholar
     

  • Eze, I. C. et al. Association between ambient air pollution and diabetes mellitus in Europe and North America: systematic review and meta-analysis. Environ. Health Perspect. 123, 381–389 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pedersen, M. et al. Ambient air pollution and low birthweight: a European cohort study (ESCAPE). Lancet Respir. Med. 1, 695–704 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • Pedersen, M. et al. Ambient air pollution and pregnancy-induced hypertensive disorders: a systematic review and meta-analysis. Hypertension 64, 494–500 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • Dadvand, P. et al. Ambient air pollution and preeclampsia: a spatiotemporal analysis. Environ. Health Perspect. 121, 1365–1371 (2013).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stieb, D. M., Chen, L., Eshoul, M. & Judek, S. Ambient air pollution, birth weight and preterm birth: a systematic review and meta-analysis. Environ. Res. 117, 100–111 (2012).

    CAS 
    PubMed 

    Google Scholar
     

  • Wu, J. et al. Association between local traffic-generated air pollution and preeclampsia and preterm delivery in the South Coast Air Basin of California. Environ. Health Perspect. 117, 1773–1779 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shah, P. S., Balkhair, T. & Knowledge Synthesis Group on Determinants of Preterm/LBW births. Air pollution and birth outcomes: a systematic review. Environ. Int. 37, 498–516 (2011).

    CAS 
    PubMed 

    Google Scholar
     

  • Christiani, D. C. Ambient air pollution and lung cancer: nature and nurture. Am. J. Respir. Crit. Care Med. 204, 752–753 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lanphear, B., Navas-Acien, A. & Bellinger, D. C. Lead poisoning. N. Engl. J. Med. 391, 1621–1631 (2024).

    CAS 
    PubMed 

    Google Scholar
     

  • Hansel, N. N. et al. Randomized clinical trial of air cleaners to improve indoor air quality and chronic obstructive pulmonary disease health: results of the CLEAN AIR Study. Am. J. Respir. Crit. Care Med. 205, 421–430 (2022).

    CAS 
    PubMed 

    Google Scholar
     

  • Lei, J. et al. Respiratory benefits of multisetting air purification in children: a cluster randomized crossover trial. JAMA Pediatr. 179, 122–128 (2025).

    PubMed 

    Google Scholar
     

  • Xu, R. et al. Global population exposure to landscape fire air pollution from 2000 to 2019. Nature 621, 521–529 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • United Nations Department of Economic and Social Affairs. 2018 Revision of World Urbanization Prospects www.un.org/en/desa/2018-revision-world-urbanization-prospects (2018).

  • Khanh, D. N., Varquez, A. C. G. & Kanda, M. Impact of urbanization on exposure to extreme warming in megacities. Heliyon 9, e15511 (2023).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • United States Environmental Protection Agency. Summary of the Clean Air Act www.epa.gov/laws-regulations/summary-clean-air-act (2025).

  • Ministry of Ecology and Environment, the People’s Republic of China. The State Council Rolls Out a Three-Year Action Plan for Clean Air english.mee.gov.cn/News_service/news_release/201807/t20180713_446624.shtml (2018).

  • European Commission. Air Quality environment.ec.europa.eu/topics/air/air-quality_en (2024).

  • Commission for Air Quality Management in National Capital Region and Adjoining Areas. GRAP Schedule caqm.nic.in/index1.aspx?lsid=4217&lev=2&lid=4216&langid=1 (2024).

  • Dominici, F. et al. Assessing adverse health effects of long-term exposure to low levels of ambient air pollution: phase 1. Res. Rep. 2019, 1–51 (2019).


    Google Scholar
     

  • United States Environmental Protection Agency. National Ambient Air Quality Standards (NAAQS) for PM www.epa.gov/pm-pollution/national-ambient-air-quality-standards-naaqs-pm (2024).

  • American Lung Association. Clean Air Timeline www.lung.org/policy-advocacy/healthy-air-campaign/healthy-air-resources/clean-air-timeline (2024).

  • United States Environmental Protection Agency. EPA Finalizes Stronger Standards For Harmful Soot Pollution, Significantly Increasing Health and Clean Air Protections for Families, Workers, and Communities www.epa.gov/newsreleases/epa-finalizes-stronger-standards-harmful-soot-pollution-significantly-increasing (2024).

  • United States Environmental Protection Agency. NAAQS Table www.epa.gov/criteria-air-pollutants/naaqs-table (2024).

  • Geldsetzer, P. et al. Disparities in air pollution attributable mortality in the US population by race/ethnicity and sociodemographic factors. Nat. Med. 30, 2821–2829 (2024).

    CAS 
    PubMed 

    Google Scholar
     

  • Henneman, L. et al. Mortality risk from United States coal electricity generation. Science 382, 941–946 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • United States Environmental Protection Agency. Biden–Harris Administration Finalizes Suite of Standards to Reduce Pollution from Fossil Fuel-Fired Power Plants www.epa.gov/newsreleases/biden-harris-administration-finalizes-suite-standards-reduce-pollution-fossil-fuel (2024).

  • World Resources Institute. STATEMENT: U.S. EPA Issues Strong Pollution Standards for New and Existing Power Plants www.wri.org/news/statement-us-epa-issues-strong-pollution-standards-new-and-existing-power-plants (2024).

  • Sanders, T., Liu, Y., Buchner, V. & Tchounwou, P. B. Neurotoxic effects and biomarkers of lead exposure: a review. Rev. Environ. Health 24, 15–45 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Collin, M. S. et al. Bioaccumulation of lead (Pb) and its effects on human: a review. J. Hazard. Mater. Adv. 7, 100094 (2022).

    CAS 

    Google Scholar
     

  • Ruckart, P. Z. et al. Update of the blood lead reference value — United States, 2021. MMWR Morb. Mortal. Wkly Rep. 70, 1509–1512 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ericson, B. et al. Blood lead levels in low-income and middle-income countries: a systematic review. Lancet Planet. Health 5, e145–e153 (2021).

    PubMed 

    Google Scholar
     

  • Lanphear, B. P. et al. Low-level environmental lead exposure and children’s intellectual function: an international pooled analysis. Environ. Health Perspect. 113, 894–899 (2005).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hsieh, N.-H. et al. Anemia risk in relation to lead exposure in lead-related manufacturing. BMC Public Health 17, 389 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bridbord, K. & Hanson, D. A personal perspective on the initial federal health-based regulation to remove lead from gasoline. Environ. Health Perspect. 117, 1195–1201 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • United Nations Environment Programme. A New Partnership For a Lead-Free Future www.unep.org/fr/node/38115 (2024).

  • Angrand, R. C., Collins, G., Landrigan, P. J. & Thomas, V. M. Relation of blood lead levels and lead in gasoline: an updated systematic review. Environ. Health 21, 138 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jiang, X., Li, G. & Fu, W. Government environmental governance, structural adjustment and air quality: a quasi-natural experiment based on the Three-year Action Plan to Win the Blue Sky Defense War. J. Environ. Manage. 277, 111470 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • International Energy Agency. Three-year Action Plan for Cleaner Air (also Called the Blue Sky War) www.iea.org/policies/8508-three-year-action-plan-for-cleaner-air-also-called-the-blue-sky-war (2021).

  • Force, E. C. T., Shi, X. & Duan, G. Recommendations of controlling and preventing acute health risks of fine particulate matter pollution—China, 2021. China CDC Wkly 4, 329–341 (2022).


    Google Scholar
     

  • Liu, C. et al. A severe fog–haze episode in Beijing–Tianjin–Hebei region: characteristics, sources and impacts of boundary layer structure. Atmos. Pollut. Res. 10, 1190–1202 (2019).

    CAS 

    Google Scholar
     

  • Zhai, S. et al. Fine particulate matter (PM2.5) trends in China, 2013–2018: separating contributions from anthropogenic emissions and meteorology. Atmos. Chem. Phys. 19, 11031–11041 (2019).

    CAS 

    Google Scholar
     

  • Cheng, J. et al. Dominant role of emission reduction in PM2.5 air quality improvement in Beijing during 2013–2017: a model-based decomposition analysis. Atmos. Chem. Phys. 19, 6125–6146 (2019).

    CAS 

    Google Scholar
     

  • Liu, L. & Ogunc, A. Beijing Blue: impact of the 2008 Olympic Games and 2014 APEC Summit on Air Quality. Atl. Econ. J. 51, 83–100 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rich, D. Q. et al. Association between changes in air pollution levels during the Beijing Olympics and biomarkers of inflammation and thrombosis in healthy young adults. JAMA 307, 2068–2078 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lin, W. et al. Association between changes in exposure to air pollution and biomarkers of oxidative stress in children before and during the Beijing Olympics. Am. J. Epidemiol. 181, 575–583 (2015).

    PubMed 

    Google Scholar
     

  • Qi, W. et al. Short-term air pollution and greenness exposures on oxidative stress in urban and peri-urban residents in Beijing: a part of AIRLESS study. Sci. Total Environ. 951, 175148 (2024).

    CAS 
    PubMed 

    Google Scholar
     

  • Dai, H., Ji, J. S., Wang, S. & Zhao, B. Impact of climate change shocks on health risks attributed to urban residential PM2.5 in China. Sci. Bull. 70, 1230–1234 (2024).

  • Liu, N. et al. The burden of disease attributable to indoor air pollutants in China from 2000 to 2017. Lancet Planet. Health 7, e900–e911 (2023).

    PubMed 

    Google Scholar
     

  • Zhang, A., Liu, Y., Ji, J. S. & Zhao, B. Air purifier intervention to remove indoor PM2.5 in urban China: a cost-effectiveness and health inequality impact study. Environ. Sci. Technol. 57, 4492–4503 (2023).

    CAS 
    PubMed 

    Google Scholar
     

  • Hu, Y., Ji, J. S. & Zhao, B. Deaths attributable to indoor PM2.5 in urban China when outdoor air meets 2021 WHO air quality guidelines. Environ. Sci. Technol. 56, 15882–15891 (2022).

    CAS 
    PubMed 

    Google Scholar
     

  • Liu, H. et al. Hospital admissions attributable to reduced air pollution due to clean-air policies in China. Nat. Med. 31, 1688–1697 (2025).

  • Gulia, S., Goyal, S. K. & Kumar, R. Air pollution episode analysis and qualitative evaluation of proposed control measures in Delhi City. In Urban Air Quality Monitoring, Modelling and Human Exposure Assessment (eds Shiva Nagendra, S. M. et al.) 225–237 (Springer, 2021).

  • Jaganathan, S. et al. Estimating the effect of annual PM2.5 exposure on mortality in India: a difference-in-differences approach. Lancet Planet. Health 8, e987–e996 (2024).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Greenstone, M., Ganguly, T., Hasenkopf, C., Sharma, N. & Gautam, H. Annual Update Air Quality Life Index aqli.epic.uchicago.edu/reports/?lang=zh-hans&l=zh-hans (2020).

  • Pathak, G., Nichter, M., Hardon, A. & Moyer, E. The open burning of plastic wastes is an urgent global health issue. Ann. Glob. Health 90, 3 (2024).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Velis, C. A. & Cook, E. Mismanagement of plastic waste through open burning with emphasis on the Global South: a systematic review of risks to occupational and public health. Environ. Sci. Technol. 55, 7186–7207 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Kaushal, L. A. Field crop residue burning induced particulate pollution in NW India — policy challenges & way forward. IOP Conf. Ser. Earth Environ. Sci. 1009, 012006 (2022).


    Google Scholar
     

  • Dipoppa, G. & Gulzar, S. Bureaucrat incentives reduce crop burning and child mortality in South Asia. Nature 634, 1125–1131 (2024).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bikkina, S. et al. Air quality in megacity Delhi affected by countryside biomass burning. Nat. Sustain. 2, 200–205 (2019).


    Google Scholar
     

  • Liu, T. et al. Crop residue burning practices across north India inferred from household survey data: bridging gaps in satellite observations. Atmos. Environ. X 8, 100091 (2020).

    CAS 

    Google Scholar
     

  • Lan, R., Eastham, S. D., Liu, T., Norford, L. K. & Barrett, S. R. H. Air quality impacts of crop residue burning in India and mitigation alternatives. Nat. Commun. 13, 6537 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hamilton, I. et al. The public health implications of the Paris Agreement: a modelling study. Lancet Planet. Health 5, e74–e83 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • de Bont, J. et al. Synergistic associations of ambient air pollution and heat on daily mortality in India. Environ. Int. 199, 109426 (2025).

    PubMed 

    Google Scholar
     

  • Analitis, A. et al. Synergistic effects of ambient temperature and air pollution on health in Europe: results from the PHASE Project. Int. J. Environ. Res. Public Health 15, 1856 (2018).

  • Stafoggia, M. et al. Joint effect of heat and air pollution on mortality in 620 cities of 36 countries. Environ. Int. 181, 108258 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • United Nations Economic Commission for Europe. Convention on Long-Range Transboundary Air Pollution: 40 Years of Air Quality Improvements in Europe and North America www.ccacoalition.org/news/40-years-cooperation-and-counting-unece-air-convention (2020).

  • European Environment Agency. Europe’s Air Quality Status 2024 www.eea.europa.eu/publications/europes-air-quality-status-2024 (2024).

  • World Health Organization. All for Health. Health for All: Investment Case 2025–2028 www.who.int/publications/i/item/9789240095403 (2024).

  • Bell, M. L., Davis, D. L. & Fletcher, T. in Urban Ecology: an International Perspective on the Interaction Between Humans and Nature (eds Marzluff, J. M. et al.) 263–268 (Springer, 2008).

  • Stone, R. Counting the cost of London’s killer smog. Science 298, 2106–2107 (2002).

  • Berridge, V. & Taylor, S. (eds) Centre for History in Public Health 15 (London School of Hygiene and Tropical Medicine, 2005).

  • Polivka, B. J. The Great London Smog of 1952. Am. J. Nurs. 118, 57–61 (2018).

    PubMed 

    Google Scholar
     

  • Bharadwaj, P., Zivin, J. G., Mullins, J. T. & Neidell, M. Early-life exposure to the Great Smog of 1952 and the development of asthma. Am. J. Respir. Crit. Care Med. 194, 1475–1482 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kelly, F. J. & Zhu, T. Transport solutions for cleaner air. Science 352, 934–936 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • Kelly, F. J. & Kelly, J. London air quality: a real world experiment in progress. Biomarkers 14, 5–11 (2009).

    CAS 
    PubMed 

    Google Scholar
     

  • Mahase, E. London’s ULEZ is a good example for the world’s mayors, says WHO leader. BMJ 383, 2251 (2023).

  • Smith, R. London mayor plans to take more action to reduce air pollution. BMJ 376, o678 (2022).

  • Allam, Z., Nieuwenhuijsen, M. & Allam, Z. Paris’s parking policy for healthier cities. Lancet Planet. Health 8, e343–e344 (2024).

    PubMed 

    Google Scholar
     

  • Anenberg, S. C. et al. Impacts and mitigation of excess diesel-related NOx emissions in 11 major vehicle markets. Nature 545, 467–471 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • Smith, R. Doctors need to speak up in support of cleaner air in London and other cities. BMJ 381, 809 (2023).

  • Subramanian, M. New Delhi car ban yields trove of pollution data. Nature 530, 266–267 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • McElroy, S. & Vaidyanathan, A. Understanding air quality changes after implementation of mitigation measures during a pandemic: a scoping review of literature in the United States. Aerosol Air Qual. Res. 22, 220047 (2022).

    CAS 

    Google Scholar
     

  • Morales-Betancourt, R. et al. Commuter’s personal exposure to air pollutants after the implementation of a cable car for public transport: results of the natural experiment TrUST. Sci. Total Environ. 865, 160880 (2023).

    CAS 
    PubMed 

    Google Scholar
     

  • Texcalac-Sangrador, J. L. et al. Speed limits and their effect on air pollution in Mexico City: a quasi-experimental study. Sci. Total Environ. 924, 171506 (2024).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Davis, L. W. The effect of driving restrictions on air quality in Mexico City. J. Political Econ. 116, 38–81 (2008).


    Google Scholar
     

  • Gallego, F., Montero, J.-P. & Salas, C. The effect of transport policies on car use: evidence from Latin American cities. J. Public Econ. 107, 47–62 (2013).


    Google Scholar
     

  • Kumar, P., Gulia, S., Harrison, R. M. & Khare, M. The influence of odd–even car trial on fine and coarse particles in Delhi. Environ. Pollut. 225, 20–30 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • Lin, J. & Wang, Q. Are street tree inequalities growing or diminishing over time? The inequity remediation potential of the MillionTreesNYC initiative. J. Environ. Manage. 285, 112207 (2021).

    PubMed 

    Google Scholar
     

  • Zhou, W. et al. Urban tree canopy has greater cooling effects in socially vulnerable communities in the US. One Earth 4, 1764–1775 (2021).


    Google Scholar
     

  • Ahrends, A. et al. China’s fight to halt tree cover loss. Proc. Biol. Sci. 284, 20162559 (2017).

  • Xie, Y. et al. Credibility of the evidence on green space and human health: an overview of meta-analyses using evidence grading approaches. EBioMedicine 106, 105261 (2024).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, H. et al. Assessing the effects of ultraviolet radiation, residential greenness and air pollution on vitamin D levels: a longitudinal cohort study in China. Environ. Int. 169, 107523 (2022).

    CAS 
    PubMed 

    Google Scholar
     

  • Wan, S. et al. Greenspace and mortality in the U.K. Biobank: longitudinal cohort analysis of socio-economic, environmental, and biomarker pathways. SSM Popul. Health 19, 101194 (2022).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ji, J. S., Zhu, A., Lv, Y. & Shi, X. Interaction between residential greenness and air pollution mortality: analysis of the Chinese Longitudinal Healthy Longevity Survey. Lancet Planet. Health 4, e107–e115 (2020).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Poulsen, A. H. et al. Concomitant exposure to air pollution, green space, and noise and risk of stroke: a cohort study from Denmark. Lancet Reg. Health Eur. 31, 100655 (2023).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Venter, Z. S., Hassani, A., Stange, E., Schneider, P. & Castell, N. Reassessing the role of urban green space in air pollution control. Proc. Natl Acad. Sci. USA 121, e2306200121 (2024).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ma, M. et al. Development and assessment of a high-resolution biogenic emission inventory from urban green spaces in China. Environ. Sci. Technol. 56, 175–184 (2022).

    CAS 
    PubMed 

    Google Scholar
     

  • Jamei, E., Chau, H. W., Seyedmahmoudian, M., Mekhilef, S. S. & Sami, F. A. Green roof and energy — role of climate and design elements in hot and temperate climates. Heliyon 9, e15917 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jones, B. A. & Goodkind, A. L. Urban afforestation and infant health: evidence from MillionTreesNYC. J. Environ. Econ. Manag. 95, 26–44 (2019).


    Google Scholar
     

  • Liu, T. et al. Classification and sources of extremely severe sandstorms mixed with haze pollution in Beijing. Environ. Pollut. 322, 121154 (2023).

    CAS 
    PubMed 

    Google Scholar
     

  • Long, X. et al. Does afforestation deteriorate haze pollution in Beijing–Tianjin–Hebei (BTH), China? Atmos. Chem. Phys. 18, 10869–10879 (2018).

    CAS 

    Google Scholar
     

  • Iungman, T. et al. Cooling cities through urban green infrastructure: a health impact assessment of European cities. Lancet 401, 577–589 (2023).

    PubMed 

    Google Scholar
     

  • Seddon, N. et al. Understanding the value and limits of nature-based solutions to climate change and other global challenges. Philos. Trans. R. Soc. Lond. B Biol. Sci. 375, 20190120 (2020).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • South, E. C., Hohl, B. C., Kondo, M. C., MacDonald, J. M. & Branas, C. C. Effect of greening vacant land on mental health of community-dwelling adults: a cluster randomized trial. JAMA Netw. Open 1, e180298 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Barton, J. & Pretty, J. What is the best dose of nature and green exercise for improving mental health? A multi-study analysis. Environ. Sci. Technol. 44, 3947–3955 (2010).

    CAS 
    PubMed 

    Google Scholar
     

  • Nieuwenhuijsen, M. J. Climate crisis, cities, and health. Lancet 404, 1693–1700 (2024).

    PubMed 

    Google Scholar
     

  • Yu, M. et al. Is urban greening an effective solution to enhance environmental comfort and improve air quality? Environ. Sci. Technol. 56, 5390–5397 (2022).

    CAS 
    PubMed 

    Google Scholar
     

  • Asian Infrastructure Investment Bank. Building Green Great Wall Against Sand Dust: Impact and Implementation of China’s Sanbei Reforestation Project www.aiib.org/en/news-events/media-center/blog/2023/Building-Green-Great-Wall-Against-Sand-Dust-Impact-and-Implementation-of-Chinas-Sanbei-Reforestation-Project.html (2023).

  • Xinhua News Agency. Windbreaks, Sand Fixing and Less Grazing — China Fights Uphill Battle Against Desertification https://english.news.cn/20241025/ee84a11b8ac044d3afcd864b3e158258/c.html (2024)

  • Wei, J. et al. Improved 1 km resolution PM2.5 estimates across China using enhanced space–time extremely randomized trees. Atmos. Chem. Phys. 20, 3273–3289 (2020).

    CAS 

    Google Scholar
     

  • Kelly, F. J. & Fussell, J. C. Air pollution and public health: emerging hazards and improved understanding of risk. Environ. Geochem. Health 37, 631–649 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Grineski, S. E., Clark-Reyna, S. E. & Collins, T. W. School-based exposure to hazardous air pollutants and grade point average: a multi-level study. Environ. Res. 147, 164–171 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rappold, A. G. et al. Forecast-based interventions can reduce the health and economic burden of wildfires. Environ. Sci. Technol. 48, 10571–10579 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • Campbell, S. L. et al. Using digital technology to protect health in prolonged poor air quality episodes: a case study of the AirRater app during the Australian 2019–20 fires. Fire 3, 40 (2020).


    Google Scholar
     

  • Abera, A. et al. Air quality in Africa: public health implications. Annu. Rev. Public Health 42, 193–210 (2021).

    PubMed 

    Google Scholar
     

  • Lai, P. S. et al. Household air pollution interventions to improve health in low- and middle-income countries: an official American Thoracic Society research statement. Am. J. Respir. Crit. Care Med. 209, 909–927 (2024).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Smith, K. R. & Pillarisetti, A. in Injury Prevention and Environmental Health 3rd edn (eds Mock, C. N. et al.) Ch. 7 (International Bank for Reconstruction and Development/World Bank, 2018).

  • Lai, P. S. et al. Household air pollution interventions to improve health in low-and middle-income countries: an official American Thoracic Society research statement. Am. J. Respir. Crit. Care Med. 209, 909–927 (2024).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee, K. K. et al. Adverse health effects associated with household air pollution: a systematic review, meta-analysis, and burden estimation study. Lancet Glob. Health 8, e1427–e1434 (2020).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shi, S., Zhao, B. & Zhang, J. Effect of residential air cleaning interventions on risk of cancer associated with indoor semi-volatile organic compounds: a comprehensive simulation study. Lancet Planet. Health 2, e532–e539 (2018).

    PubMed 

    Google Scholar
     

  • Hertelendy, A. J. et al. Seasons of smoke and fire: preparing health systems for improved performance before, during, and after wildfires. Lancet Planet. Health 8, e588–e602 (2024).

    PubMed 

    Google Scholar
     

  • Janjua, S., Powell, P., Atkinson, R., Stovold, E. & Fortescue, R. Individual‐level interventions to reduce personal exposure to outdoor air pollution and their effects on people with long‐term respiratory conditions. Cochrane Database Syst. Rev. 8, CD013441 (2021).

  • Laumbach, R. J. et al. Personal interventions for reducing exposure and risk for outdoor air pollution: an official American Thoracic Society workshop report. Ann. Am. Thorac. Soc. 18, 1435–1443 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Laumbach, R. J. & Cromar, K. R. Personal interventions to reduce exposure to outdoor air pollution. Annu. Rev. Public Health 43, 293–309 (2022).

    PubMed 

    Google Scholar
     

  • Bennitt, F. B. et al. Global, regional, and national burden of household air pollution, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021. Lancet 405, 1167–1181 (2025).


    Google Scholar
     

  • Checkley, W. et al. Effects of cooking with liquefied petroleum gas or biomass on stunting in infants. N. Engl. J. Med. 390, 44–54 (2024).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chillrud, S. N. et al. The effect of clean cooking interventions on mother and child personal exposure to air pollution: results from the Ghana Randomized Air Pollution and Health Study (GRAPHS). J. Expo. Sci. Environ. Epidemiol. 31, 683–698 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cepeda, M. et al. Levels of ambient air pollution according to mode of transport: a systematic review. Lancet Public Health 2, e23–e34 (2017).

    PubMed 

    Google Scholar
     

  • Lowe, M. et al. City planning policies to support health and sustainability: an international comparison of policy indicators for 25 cities. Lancet Glob. Health 10, e882–e894 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Giles-Corti, B. et al. What next? Expanding our view of city planning and global health, and implementing and monitoring evidence-informed policy. Lancet Glob. Health 10, e919–e926 (2022).

    CAS 
    PubMed 

    Google Scholar
     

  • Bonanni, L. J. & Newman, J. D. Personal strategies to reduce the cardiovascular impacts of environmental exposures. Circ. Res. 134, 1197–1217 (2024).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lu, F. T. et al. Real-world effectiveness of portable air cleaners in reducing home particulate matter concentrations. Aerosol Air Qual. Res. 24, 230202 (2024).

  • Morishita, M. et al. Effect of portable air filtration systems on personal exposure to fine particulate matter and blood pressure among residents in a low-income senior facility: a randomized clinical trial. JAMA Intern. Med. 178, 1350–1357 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Thottiyil Sultanmuhammed Abdul Khadar, B. et al. Air purifiers and acute respiratory infections in residential aged care: a randomized clinical trial. JAMA Netw. Open 7, e2443769 (2024).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, R. et al. Cardiopulmonary benefits of reducing indoor particles of outdoor origin: a randomized, double-blind crossover trial of air purifiers. J. Am. Coll. Cardiol. 65, 2279–2287 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Walzer, D. et al. Effects of home particulate air filtration on blood pressure. Hypertension 76, 44–50 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Xia, X. et al. Effectiveness of indoor air purification intervention in improving cardiovascular health: a systematic review and meta-analysis of randomized controlled trials. Sci. Total Environ. 789, 147882 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sparks, T. L. & Wagner, J. Composition of particulate matter during a wildfire smoke episode in an urban area. Aerosol Sci. Technol. 55, 734–747 (2021).

    CAS 

    Google Scholar
     

  • Konda, A. et al. Aerosol filtration efficiency of common fabrics used in respiratory cloth masks. ACS Nano 14, 6339–6347 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Shakya, K. M., Noyes, A., Kallin, R. & Peltier, R. E. Evaluating the efficacy of cloth facemasks in reducing particulate matter exposure. J. Expo. Sci. Environ. Epidemiol. 27, 352–357 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • Khayan, K., Anwar, T., Wardoyo, S. & Lakshmi Puspita, W. Active carbon respiratory masks as the adsorbent of toxic gases in ambient air. J. Toxicol. 2019, 5283971 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cherrie, J. W. et al. Effectiveness of face masks used to protect Beijing residents against particulate air pollution. Occup. Environ. Med. 75, 446–452 (2018).

    PubMed 

    Google Scholar
     

  • Burns, J. et al. Interventions to reduce ambient air pollution and their effects on health: an abridged Cochrane systematic review. Environ. Int. 135, 105400 (2020).

    CAS 
    PubMed 

    Google Scholar