• Baibich, M. N. et al. Giant magnetoresistance of (001) Fe/(001) Cr magnetic superlattices. Phys. Rev. Lett. 61, 2472–2475 (1988).

    Article 
    PubMed 

    Google Scholar
     

  • Binasch, G., Grünberg, P., Saurenbach, F. & Zinn, W. Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange. Phys. Rev. B 39, 4828–4830 (1989).

    Article 

    Google Scholar
     

  • Seyler, K. L. et al. Ligand-field helical luminescence in a 2D ferromagnetic insulator. Nat. Phys. 14, 277–281 (2018).

    Article 

    Google Scholar
     

  • Zhang, Z. et al. Direct photoluminescence probing of ferromagnetism in monolayer two-dimensional CrBr3. Nano Lett. 19, 3138–3142 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Kang, S. et al. Coherent many-body exciton in van der Waals antiferromagnet NiPS3. Nature 583, 785–789 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Wilson, N. P. et al. Interlayer electronic coupling on demand in a 2D magnetic semiconductor. Nat. Mater. 20, 1675–1680 (2021).

    Article 

    Google Scholar
     

  • Birowska, M., Junior, P. E. F., Fabian, J. & Kunstmann, J. Large exciton binding energies in MnPS3 as a case study of a van der Waals layered magnet. Phys. Rev. B 103, L121108 (2021).

    Article 

    Google Scholar
     

  • Kim, S. et al. Photoluminescence path bifurcations by spin flip in two-dimensional CrPS4. ACS Nano 16, 16385–16393 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Barman, A. et al. The 2021 magnonics roadmap. J. Phys. Condens. Matter 33, 413001 (2021).

    Article 

    Google Scholar
     

  • Lebrun, R. et al. Tunable long-distance spin transport in a crystalline antiferromagnetic iron oxide. Nature 561, 222–225 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tu, S. et al. Record thermopower found in an IrMn-based spintronic stack. Nat. Commun. 11, 2023 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee, K. et al. Superluminal-like magnon propagation in antiferromagnetic NiO at nanoscale distances. Nat. Nanotechnol. 16, 1337–1341 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Hortensius, J. et al. Coherent spin-wave transport in an antiferromagnet. Nat. Phys. 17, 1001–1006 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wei, X.-Y. et al. Giant magnon spin conductivity in ultrathin yttrium iron garnet films. Nat. Mater. 21, 1352–1356 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Bae, Y. J. et al. Exciton-coupled coherent magnons in a 2D semiconductor. Nature 609, 282–286 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Diederich, G. M. et al. Tunable interaction between excitons and hybridized magnons in a layered semiconductor. Nat. Nanotechnol. 18, 23–28 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Dirnberger, F. et al. Magneto-optics in a van der Waals magnet tuned by self-hybridized polaritons. Nature 620, 533–537 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Sun, Y. et al. Dipolar spin-wave packet transport in a van der Waals antiferromagnet. Nat. Phys. 20, 794–800 (2024).

  • Unuchek, D. et al. Room-temperature electrical control of exciton flux in a van der Waals heterostructure. Nature 560, 340–344 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Dong, Y. et al. Fizeau drag in graphene plasmonics. Nature 594, 513–516 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Tulyagankhodjaev, J. A. et al. Room-temperature wavelike exciton transport in a van der Waals superatomic semiconductor. Science 382, 438–442 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Göser, O., Paul, W. & Kahle, H. Magnetic properties of CrSBr. J. Magn. Magn. Mater. 92, 129–136 (1990).

    Article 

    Google Scholar
     

  • Telford, E. J. et al. Layered antiferromagnetism induces large negative magnetoresistance in the van der Waals semiconductor CrSBr. Adv. Mater. 32, 2003240 (2020).

    Article 

    Google Scholar
     

  • Long, F. et al. Intrinsic magnetic properties of the layered antiferromagnet CrSBr. Appl. Phys. Lett. 123, 222401 (2023).

  • Canetta, A. et al. Impact of spin-entropy on the thermoelectric properties of a 2D magnet. Nano Lett. 24, 6513–6520 (2024).

    Article 
    PubMed 

    Google Scholar
     

  • Klein, J. et al. The bulk van der Waals layered magnet CrSBr is a quasi-1D material. ACS Nano 17, 5316–5328 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Tabataba-Vakili, F. et al. Doping-control of excitons and magnetism in few-layer CrSBr. Nat. Commun. 15, 4735 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Meineke, C. et al. Ultrafast exciton dynamics in the atomically thin van der Waals magnet CrSBr. Nano Lett. 24, 4101–4107 (2024).

  • Lin, K. et al. Strong exciton-phonon coupling as a fingerprint of magnetic ordering in van der Waals layered CrSBr. ACS Nano 18, 2898–2905 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shao, Y. et al. Magnetically confined surface and bulk excitons in a layered antiferromagnet. Nat. Mater. 24, 391–398 (2025).

    Article 
    PubMed 

    Google Scholar
     

  • Kulig, M. et al. Exciton diffusion and halo effects in monolayer semiconductors. Phys. Rev. Lett. 120, 207401 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Ginsberg, N. S. & Tisdale, W. A. Spatially resolved photogenerated exciton and charge transport in emerging semiconductors. Annu. Rev. Phys. Chem. 71, 1–30 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Bianchi, M. et al. Paramagnetic electronic structure of CrSBr: comparison between ab initio GW theory and angle-resolved photoemission spectroscopy. Phys. Rev. B 107, 235107 (2023).

    Article 

    Google Scholar
     

  • Bianchi, M. et al. Charge transfer induced Lifshitz transition and magnetic symmetry breaking in ultrathin CrSBr crystals. Phys. Rev. B 108, 195410 (2023).

    Article 

    Google Scholar
     

  • Wu, F. et al. Quasi-1D electronic transport in a 2D magnetic semiconductor. Adv. Mater. 34, 2109759 (2022).

    Article 

    Google Scholar
     

  • Vögele, X., Schuh, D., Wegscheider, W., Kotthaus, J. & Holleitner, A. Density enhanced diffusion of dipolar excitons within a one-dimensional channel. Phys. Rev. Lett. 103, 126402 (2009).

    Article 
    PubMed 

    Google Scholar
     

  • Kumar, N. et al. Exciton-exciton annihilation in MoSe2 monolayers. Phys. Rev. B 89, 125427 (2014).

    Article 

    Google Scholar
     

  • Kirilyuk, A., Kimel, A. V. & Rasing, T. Ultrafast optical manipulation of magnetic order. Rev. Mod. Phys. 82, 2731 (2010).

    Article 

    Google Scholar
     

  • Au, Y. et al. Direct excitation of propagating spin waves by focused ultrashort optical pulses. Phys. Rev. Lett. 110, 097201 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • An, K. et al. Magnons and phonons optically driven out of local equilibrium in a magnetic insulator. Phys. Rev. Lett. 117, 107202 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Perea-Causín, R. et al. Exciton propagation and halo formation in two-dimensional materials. Nano Lett. 19, 7317–7323 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Bulatov, A. E. & Tikhodeev, S. G. Phonon-driven carrier transport caused by short excitation pulses in semiconductors. Phys. Rev. B 46, 15058–15062 (1992).

    Article 

    Google Scholar
     

  • Glazov, M. M. Phonon wind and drag of excitons in monolayer semiconductors. Phys. Rev. B 100, 045426 (2019).

    Article 

    Google Scholar
     

  • Blatt, F., Flood, D., Rowe, V., Schroeder, P. & Cox, J. Magnon-drag thermopower in iron. Phys. Rev. Lett. 18, 395 (1967).

    Article 

    Google Scholar
     

  • Qiu, Z. et al. Spin-current probe for phase transition in an insulator. Nat. Commun. 7, 12670 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, J. et al. Spin Seebeck effect from antiferromagnetic magnons and critical spin fluctuations in epitaxial FeF2 films. Phys. Rev. Lett. 122, 217204 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Zheng, Y. et al. Paramagnon drag in high thermoelectric figure of merit Li-doped MnTe. Sci. Adv. 5, eaat9461 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ziegler, J. D. et al. Fast and anomalous exciton diffusion in two-dimensional hybrid perovskites. Nano Lett. 20, 6674–6681 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Beret, D. et al. Nonlinear diffusion of negatively charged excitons in monolayer WSe2. Phys. Rev. B 107, 045420 (2023).

    Article 

    Google Scholar
     

  • Chen, Y.-J. et al. Group velocity engineering of confined ultrafast magnons. Phys. Rev. Lett. 119, 267201 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Ye, C. et al. Layer-dependent interlayer antiferromagnetic spin reorientation in air-stable semiconductor CrSBr. ACS Nano 16, 11876–11883 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Liu, H. & Shen, K. Spin wave dynamics excited by a focused laser pulse in antiferromagnet CrSBr. Phys. Rev. B 110, 024424 (2024).

    Article 

    Google Scholar
     

  • Bae, Y. J. et al. Transient magnetoelastic coupling in CrSBr. Phys. Rev. B 109, 104401 (2024).

    Article 

    Google Scholar
     

  • Dirnberger, F. Exciton transport driven by spin excitations in an sntiferromagnet. Zenodo https://doi.org/10.5281/zenodo.17542127 (2025).