• Roberts, A. G., Younge, N. & Greenberg, R. G. Neonatal Necrotizing Enterocolitis: An Update on Pathophysiology, Treatment, and Prevention. Paediatr. Drugs 26, 259–275 (2024).


    Google Scholar
     

  • Alsaied, A., Islam, N. & Thalib, L. Global incidence of Necrotizing Enterocolitis: a systematic review and Meta-analysis. BMC Pediatr. 20, 344 (2020).


    Google Scholar
     

  • Meister, A. L., Doheny, K. K. & Travagli, R. A. Necrotizing enterocolitis: It’s not all in the gut. Exp. Biol. Med (Maywood) 245, 85–95 (2020).


    Google Scholar
     

  • Stey, A. et al. Outcomes and costs of surgical treatments of necrotizing enterocolitis. Pediatrics 135, e1190–e1197 (2015).


    Google Scholar
     

  • Mara, M. A., Good, M. & Weitkamp, J. H. Innate and adaptive immunity in necrotizing enterocolitis. Semin Fetal Neonatal Med 23, 394–399 (2018).


    Google Scholar
     

  • Duess, J. W. et al. Necrotizing enterocolitis, gut microbes, and sepsis. Gut Microbes 15, 2221470 (2023).


    Google Scholar
     

  • Krautkramer, K. A., Fan, J. & Bäckhed, F. Gut microbial metabolites as multi-kingdom intermediates. Nat. Rev. Microbiol 19, 77–94 (2021).


    Google Scholar
     

  • Chen, Z. et al. Bacteroides fragilis alleviates necrotizing enterocolitis through restoring bile acid metabolism balance using bile salt hydrolase and inhibiting FXR-NLRP3 signaling pathway. Gut Microbes 16, 2379566 (2024).


    Google Scholar
     

  • Pan, L. L. et al. Infant feces-derived Lactobacillus gasseri FWJL-4 mitigates experimental necrotizing enterocolitis via acetate production. Gut Microbes 16, 2430541 (2024).


    Google Scholar
     

  • Omenetti, S. & Pizarro, T. T. The Treg/Th17 Axis: A Dynamic Balance Regulated by the Gut Microbiome. Front Immunol. 6, 639 (2015).


    Google Scholar
     

  • Chang, Y. et al. Phytochemicals as regulators of Th17/Treg balance in inflammatory bowel diseases. Biomed. Pharmacother. 141, 111931 (2021).


    Google Scholar
     

  • Ma, F. et al. Melatonin ameliorates necrotizing enterocolitis by preventing Th17/Treg imbalance through activation of the AMPK/SIRT1 pathway. Theranostics 10, 7730–7746 (2020).


    Google Scholar
     

  • Yarci, E. et al. Inhibition of Interleukin-6 signaling: A novel therapeutic approach to necrotizing enterocolitis. Int Immunopharmacol. 101, 108358 (2021).


    Google Scholar
     

  • Ma, Z. et al. Fecal microbiota transplantation improves chicken growth performance by balancing jejunal Th17/Treg cells. Microbiome 11, 137 (2023).


    Google Scholar
     

  • Dang, D. et al. Integrative analysis links ferroptosis to necrotizing enterocolitis and reveals the role of ACSL4 in immune disorders. iScience 25, 105406 (2022).


    Google Scholar
     

  • Ho, T., Sarkar, A., Szalacha, L. & Groer, M. W. Intestinal Microbiome in Preterm Infants Influenced by Enteral Iron Dosing. J. Pediatr. Gastroenterol. Nutr. 72, e132–e138 (2021).


    Google Scholar
     

  • Zhang, X., Ma, Y., Lv, G. & Wang, H. Ferroptosis as a therapeutic target for inflammation-related intestinal diseases. Front Pharm. 14, 1095366 (2023).


    Google Scholar
     

  • Gao, C. et al. N-Acetylcysteine Alleviates Necrotizing Enterocolitis by Depressing SESN2 Expression to Inhibit Ferroptosis in Intestinal Epithelial Cells. Inflammation 48, 464–482 (2025).


    Google Scholar
     

  • Dang, D. et al. Heme induces intestinal epithelial cell ferroptosis via mitochondrial dysfunction in transfusion-associated necrotizing enterocolitis. Faseb J. 36, e22649 (2022).


    Google Scholar
     

  • Zhang, Z. et al. Elabela alleviates ferroptosis, myocardial remodeling, fibrosis and heart dysfunction in hypertensive mice by modulating the IL-6/STAT3/GPX4 signaling. Free Radic. Biol. Med 181, 130–142 (2022).


    Google Scholar
     

  • Zhang, H. et al. Quercetin alleviates LPS/iE-DAP-induced liver injury by suppressing ferroptosis via regulating ferritinophagy and intracellular iron efflux. Redox Biol. 81, 103557 (2025).


    Google Scholar
     

  • Chen, H. et al. Butyrate ameliorated ferroptosis in ulcerative colitis through modulating Nrf2/GPX4 signal pathway and improving intestinal barrier. Biochim Biophys. Acta Mol. Basis Dis. 1870, 166984 (2024).


    Google Scholar
     

  • Zheng, Z. J. et al. Sleep Deprivation Induces Gut Damage via Ferroptosis. J. Pineal Res 76, e12987 (2024).


    Google Scholar
     

  • Wei, X. & Feng, X. DS0384 Alleviates Necrotizing Enterocolitis: Secretes N-carbamyl glutamic Acid and Participates in Lipid Metabolism and Lipid Peroxidation Processes. J. Microbiol Biotechnol. 35, e2410040 (2025).


    Google Scholar
     

  • Xiao, S. et al. Vitamin A and Retinoic Acid Exhibit Protective Effects on Necrotizing Enterocolitis by Regulating Intestinal Flora and Enhancing the Intestinal Epithelial Barrier. Arch. Med Res 49, 1–9 (2018).


    Google Scholar
     

  • Horas, H. N. S. et al. Adrenic acid as an inflammation enhancer in non-alcoholic fatty liver disease. Arch. Biochem Biophys. 623-624, 64–75 (2017).


    Google Scholar
     

  • Zhao, J. et al. Adrenic acid induces oxidative stress in hepatocytes. Biochem Biophys. Res Commun. 532, 620–625 (2020).


    Google Scholar
     

  • Chen, X., Li, J., Kang, R., Klionsky, D. J. & Tang, D. Ferroptosis: machinery and regulation. Autophagy 17, 2054–2081 (2021).


    Google Scholar
     

  • Tao, W. et al. Advances in molecular mechanisms and therapeutic strategies for central nervous system diseases based on gut microbiota imbalance. J. Adv. Res 69, 261–278 (2025).


    Google Scholar
     

  • Aziz, M., Prince, J. M. & Wang, P. Gut microbiome and necrotizing enterocolitis: Understanding the connection to find a cure. Cell Host Microbe 30, 612–616 (2022).


    Google Scholar
     

  • Zhang, X., Han, Y., Huang, W., Jin, M. & Gao, Z. The influence of the gut microbiota on the bioavailability of oral drugs. Acta Pharm. Sin. B 11, 1789–1812 (2021).


    Google Scholar
     

  • Tian, B. et al. Epigenetic Insights Into Necrotizing Enterocolitis: Unraveling Methylation-Regulated Biomarkers. Inflammation 48, 236–253 (2025).


    Google Scholar
     

  • Liu, J. et al. Fecal microbiota transplantation by enema reduces intestinal injury in experimental necrotizing enterocolitis. J. Pediatr. Surg. 55, 1094–1098 (2020).


    Google Scholar
     

  • Liu, X. C. et al. Gut microbiota and short-chain fatty acids may be new biomarkers for predicting neonatal necrotizing enterocolitis: A pilot study. Front Microbiol 13, 969656 (2022).


    Google Scholar
     

  • Clemente Plaza, N., Reig García-Galbis, M. & Martínez-Espinosa, R. M. Effects of the Usage of l-Cysteine (l-Cys) on Human Health. Molecules 23, https://doi.org/10.3390/molecules23030575 (2018).

  • He, Y. et al. SP2509 functions as a novel ferroptosis inhibitor by reducing intracellular iron level in vascular smooth muscle cells. Free Radic. Biol. Med 219, 49–63 (2024).


    Google Scholar
     

  • Xi, C. et al. Simvastatin-Mediated Nrf2 Activation Induces Fetal Hemoglobin and Antioxidant Enzyme Expression to Ameliorate the Phenotype of Sickle Cell Disease. Antioxidants (Basel) 13, https://doi.org/10.3390/antiox13030337 (2024).

  • Okamoto, H. et al. Perioperative Administration of Cystine and Theanine Suppresses Inflammation and Facilitates Early Rehabilitation and Recovery after Esophagectomy: A Randomized, Double-Blind, Controlled Clinical Trial. Nutrients 14, https://doi.org/10.3390/nu14112319 (2022).

  • Hasegawa, T., Mizugaki, A., Inoue, Y., Kato, H. & Murakami, H. Cystine reduces tight junction permeability and intestinal inflammation induced by oxidative stress in Caco-2 cells. Amino Acids 53, 1021–1032 (2021).


    Google Scholar
     

  • Zaccherini, G. et al. Assessing the role of amino acids in systemic inflammation and organ failure in patients with ACLF. J. Hepatol. 74, 1117–1131 (2021).


    Google Scholar
     

  • Long, D., Mao, C., Huang, Y., Xu, Y. & Zhu, Y. Ferroptosis in ulcerative colitis: Potential mechanisms and promising therapeutic targets. Biomed. Pharmacother. 175, 116722 (2024).


    Google Scholar
     

  • Chen, Y. et al. Human breast milk-derived phospholipid DOPE ameliorates intestinal injury associated with NEC by inhibiting ferroptosis. Food Funct. 15, 10811–10822 (2024).


    Google Scholar
     

  • Egan, C. E. et al. Toll-like receptor 4-mediated lymphocyte influx induces neonatal necrotizing enterocolitis. J. Clin. Invest 126, 495–508 (2016).


    Google Scholar
     

  • Zhu, C. et al. Roseburia intestinalis inhibits interleukin‑17 excretion and promotes regulatory T cells differentiation in colitis. Mol. Med Rep. 17, 7567-7574 https://doi.org/10.3892/mmr.2018.8833 (2018).


    Google Scholar
     

  • Guo, Y. et al. Biological characteristics of IL-6 and related intestinal diseases. Int J. Biol. Sci. 17, 204–219 (2021).


    Google Scholar
     

  • Ma, F. et al. Interleukin-6-mediated CCR9(+) interleukin-17-producing regulatory T cells polarization increases the severity of necrotizing enterocolitis. EBioMedicine 44, 71–85 (2019).


    Google Scholar
     

  • Tanaka, K. A., Kurihara, S., Shibakusa, T., Chiba, Y. & Mikami, T. Cystine improves survival rates in a LPS-induced sepsis mouse model. Clin. Nutr. 34, 1159–1165 (2015).


    Google Scholar
     

  • Schaefer, J. S. & Klein, J. R. Roquin-a multifunctional regulator of immune homeostasis. Genes Immun. 17, 79–84 (2016).


    Google Scholar
     

  • Wang, J. et al. Deciphering the role of the MALT1-RC3H1 axis in regulating GPX4 protein stability. Proc. Natl. Acad. Sci. USA 122, e2419625121 (2025).


    Google Scholar
     

  • Wu, Y. K., Liu, C. D., Liu, C., Wu, J. & Xie, Z. G. Machine learning and weighted gene co-expression network analysis identify a three-gene signature to diagnose rheumatoid arthritis. Front Immunol. 15, 1387311 (2024).


    Google Scholar
     

  • Hunter, C. E. et al. Hydrogen Sulfide Improves Outcomes in a Murine Model of Necrotizing Enterocolitis via the Cys440 Residue on Endothelial Nitric Oxide Synthase. J. Pediatr. Surg. 58, 2391–2398 (2023).


    Google Scholar
     

  • Drucker, N. A., Jensen, A. R., Ferkowicz, M. & Markel, T. A. Hydrogen sulfide provides intestinal protection during a murine model of experimental necrotizing enterocolitis. J. Pediatr. Surg. 53, 1692–1698 (2018).


    Google Scholar
     

  • Pickard, J. M. et al. Rapid fucosylation of intestinal epithelium sustains host-commensal symbiosis in sickness. Nature 514, 638–641 (2014).


    Google Scholar
     

  • Tran, L. et al. Necrotizing enterocolitis and cytomegalovirus infection in a premature infant. Pediatrics 131, e318–e322 (2013).


    Google Scholar
     

  • Prado, C. et al. The protective effects of fecal microbiota transplantation in an experimental model of necrotizing enterocolitis. J. Pediatr. Surg. 54, 1578–1583 (2019).


    Google Scholar
     

  • Goto, Y. et al. Innate lymphoid cells regulate intestinal epithelial cell glycosylation. Science 345, 1254009 (2014).


    Google Scholar
     

  • Bauché, D. et al. IL-23 and IL-2 activation of STAT5 is required for optimal IL-22 production in ILC3s during colitis. Sci Immunol 5, https://doi.org/10.1126/sciimmunol.aav1080 (2020).

  • Seo, G. Y. et al. LIGHT-HVEM Signaling in Innate Lymphoid Cell Subsets Protects Against Enteric Bacterial Infection. Cell Host Microbe 24, 249–260.e244 (2018).


    Google Scholar
     

  • Kurihara, S., Shibahara, S., Arisaka, H. & Akiyama, Y. Enhancement of antigen-specific immunoglobulin G production in mice by co-administration of L-cystine and L-theanine. J. Vet. Med Sci. 69, 1263–1270 (2007).


    Google Scholar
     

  • Lin, L. et al. The STAT3 inhibitor NSC 74859 is effective in hepatocellular cancers with disrupted TGF-beta signaling. Oncogene 28, 961–972 (2009).


    Google Scholar
     

  • Bian, Y. et al. Protective Effect of Kaempferol on LPS-Induced Inflammation and Barrier Dysfunction in a Coculture Model of Intestinal Epithelial Cells and Intestinal Microvascular Endothelial Cells. J. Agric Food Chem. 68, 160–167 (2020).


    Google Scholar
     

  • Dai, W. & Chen, Q. M. Fresh Medium or L-Cystine as an Effective Nrf2 Inducer for Cytoprotection in Cell Culture. Cells 12, https://doi.org/10.3390/cells12020291 (2023).

  • Zhang, Y., Du, W., Chen, Z. & Xiang, C. Upregulation of PD-L1 by SPP1 mediates macrophage polarization and facilitates immune escape in lung adenocarcinoma. Exp. Cell Res 359, 449–457 (2017).


    Google Scholar
     

  • Wei, Y. Y. et al. Interleukin-6 neutralizing antibody attenuates the hypersecretion of airway mucus via inducing the nuclear translocation of Nrf2 in chronic obstructive pulmonary disease. Biomed. Pharmacother. 152, 113244 (2022).


    Google Scholar
     

  • Nishiwaki, N. et al. Overcoming cancer-associated fibroblast-induced immunosuppression by anti-interleukin-6 receptor antibody. Cancer Immunol. Immunother. 72, 2029–2044 (2023).


    Google Scholar
     

  • Betts, B. C. et al. CD4+ T cell STAT3 phosphorylation precedes acute GVHD, and subsequent Th17 tissue invasion correlates with GVHD severity and therapeutic response. J. Leukoc. Biol. 97, 807–819 (2015).


    Google Scholar
     

  • Zhang, X. et al. β-glucan protects against necrotizing enterocolitis in mice by inhibiting intestinal inflammation, improving the gut barrier, and modulating gut microbiota. J. Transl. Med 21, 14 (2023).


    Google Scholar
     

  • Qiu, L. et al. Morin alleviates DSS-induced ulcerative colitis in mice via inhibition of inflammation and modulation of intestinal microbiota. Int Immunopharmacol. 140, 112846 (2024).


    Google Scholar