• Niklas, S. Freight transport for development toolkit: rural freight. World Bank https://documents.worldbank.org/en/publication/documents-reports/documentdetail/140791468315544452/Freight-transport-for-development-toolkit-rural-freight (2009).

  • Mouratidis, K. Urban planning and quality of life: a review of pathways linking the built environment to subjective well-being. Cities 115, 103229 (2021).


    Google Scholar
     

  • Li, H., Liu, Y. & Peng, K. Characterizing the relationship between road infrastructure and local economy using structural equation modeling. Transp. Policy 61, 17–25 (2018).


    Google Scholar
     

  • Bles, T. et al. Climate change risk assessments and adaptation for roads — results of the ROADAPT project. Transp. Res. Procedia 14, 58–67 (2016).


    Google Scholar
     

  • McEvoy, D., Ahmed, I. & Mullett, J. The impact of the 2009 heat wave on Melbourne’s critical infrastructure. Local Environ. 17, 783–796 (2012).


    Google Scholar
     

  • Liu, M. Evaluating thermal regime of cold region roads for climate change adaptation (University of Waterloo, 2020).

  • Oyediji, R., Lu, D. & Tighe, S. L. Impact of flooding and inundation on concrete pavement performance. Int. J. Pavement Eng. 22, 1363–1375 (2021).


    Google Scholar
     

  • Knott, J. F., Elshaer, M., Daniel, J. S., Jacobs, J. M. & Kirshen, P. Assessing the effects of rising groundwater from sea level rise on the service life of pavements in coastal road infrastructure. Transp. Res. Rec. 2639, 1–10 (2017).


    Google Scholar
     

  • Stoner, A. M. K., Daniel, J. S., Jacobs, J. M., Hayhoe, K. & Scott-Fleming, I. Quantifying the impact of climate change on flexible pavement performance and lifetime in the United States. Transp. Res. Rec. 2673, 110–122 (2019).


    Google Scholar
     

  • Guo, S., Dai, Q. & Hiller, J. Investigation on the freeze–thaw damage to the jointed plain concrete pavement under different climate conditions. Front. Struct. Civ. Eng. 12, 227–238 (2018).


    Google Scholar
     

  • Bosio, E., Arlet, J., Comas, A. A. N. & Leger, N. A. Road Costs Knowledge System (ROCKS) — update (The World Bank, 2018).

  • Nieto, N., Chamorro, A., Echaveguren, T., Sáez, E. & González, A. Development of fragility curves for road embankments exposed to perpendicular debris flows. Geomat. Nat. Hazards Risk 12, 1560–1583 (2021).


    Google Scholar
     

  • Chatiza, K. Cyclone Idai in Zimbabwe: an analysis of policy implications for post-disaster institutional development to strengthen disaster risk management (Oxfam, 2019); https://doi.org/10.21201/2019.5273.

  • Burch, A. D. S., Medina, E. & Selig, K. A tale of two hurricanes finds more that differs than is the same. The New York Times https://www.nytimes.com/2024/10/13/us/hurricane-milton-helene-florida-north-carolina.html (2024).

  • American Association of State Highway and Transportation Officials. Helene-hit state DOTs get FHWA relief funding. AASHTO Journal https://aashtojournal.transportation.org/helene-hit-state-dots-get-fhwa-relief-funding/ (2024).

  • Biden–Harris administration sends North Carolina $100 million in emergency relief funding for roads and bridges damaged by Hurricane Helene. US Department of Transportation https://www.transportation.gov/briefing-room/biden-harris-administration-sends-north-carolina-100-million-emergency-relief-funding (2024).

  • Howe, S. Helene by the numbers: what they tell us about the devastation, cost of recovery. The Asheville Citizen Times https://www.citizen-times.com/story/news/local/2024/10/13/helenes-impact-on-north-carolina-by-the-numbers/75663328007/ (2024).

  • Fant, C. et al. Mere nuisance or growing threat? The physical and economic impact of high tide flooding on US road networks. J. Infrastruct. Syst. 27, 04021044 (2021).


    Google Scholar
     

  • Collop, A. C. & Roque, R. Report on the prediction of surface-initiated longitudinal wheel path cracking in asphalt pavements. Road Mater. Pavement Des. 5, 409–434 (2004).


    Google Scholar
     

  • Apeagyei, A. K., Dave, E. V. & Buttlar, W. G. Effect of cooling rate on thermal cracking of asphalt concrete pavements. Asph. Paving Technol. Proc. 77, 709 (2008).

    CAS 

    Google Scholar
     

  • Johanneck, L. & Khazanovich, L. Comprehensive evaluation of effect of climate in mechanistic–empirical pavement design guide predictions. Transp. Res. Rec. 2170, 45–55 (2010).


    Google Scholar
     

  • Tighe, S. L., Cowe Falls, L., Haas, R., & MacLeod, D. Climate impacts and adaptations on roads in Northern Canada. In Transportation Research Board 85th Annual Meeting (Transportation Research Board Washington, D.C., 2006).

  • Biel, T. D. & Lee, H. Performance study of portland cement concrete pavement joint sealants. J. Transp. Eng. 123, 398–404 (1997).


    Google Scholar
     

  • Mills, B. N., Tighe, S. L., Andrey, J., Smith, J. T. & Huen, K. Climate change implications for flexible pavement design and performance in Southern Canada. J. Transp. Eng. 135, 773–782 (2009).


    Google Scholar
     

  • Knott, J. F., Jacobs, J. M., Sias, J. E., Kirshen, P. & Dave, E. V. A framework for introducing climate-change adaptation in pavement management. Sustainability 11, 4382 (2019).


    Google Scholar
     

  • Meagher, W., Daniel, J. S., Jacobs, J. & Linder, E. Method for evaluating implications of climate change for design and performance of flexible pavements. Transp. Res. Rec. 2305, 111–120 (2012).


    Google Scholar
     

  • Guest, G., Zhang, J., Maadani, O. & Shirkhani, H. Incorporating the impacts of climate change into infrastructure life cycle assessments: a case study of pavement service life performance. J. Ind. Ecol. 24, 356–368 (2020).

    CAS 

    Google Scholar
     

  • Gudipudi, P. P., Underwood, B. S. & Zalghout, A. Impact of climate change on pavement structural performance in the United States. Transp. Res. D 57, 172–184 (2017).


    Google Scholar
     

  • Fifer Bizjak, K. et al. The impact of climate change on the European road network. Proc. Inst. Civ. Eng. Transp. 167, 281–295 (2014).


    Google Scholar
     

  • Qiao, Y., Guo, Y., Stoner, A. M. K. & Santos, J. Impacts of future climate change on flexible road pavement economics: a life cycle costs analysis of 24 case studies across the United States. Sustain. Cities Soc. 80, 103773 (2022).


    Google Scholar
     

  • Matini, N., Gulzar, S., Underwood, S. & Castorena, C. Evaluation of structural performance of pavements under extreme events: flooding and heatwave case studies. Transp. Res. Rec. 2676, 233–248 (2022).


    Google Scholar
     

  • Underwood, B. S., Guido, Z., Gudipudi, P. & Feinberg, Y. Increased costs to US pavement infrastructure from future temperature rise. Nat. Clim. Change 7, 704–707 (2017).


    Google Scholar
     

  • Rao, S., Abdualla, H., Lee, H. & Darter, M. Evaluation of concrete pavement buckling in Wisconsin (Applied Research Associates, 2022); https://wisconsindot.gov/documents2/research/0092-20-02-final-report.pdf.

  • Barzegar, M. & Wen, H. Modeling roadway temperatures for wildfire evacuation and assessment of pavement damage. J. Infrastruct. Preserv. Resil. 4, 18 (2023).


    Google Scholar
     

  • Ram, P., Lopez, S., Stempihar, J., Smith, K. & Golalipour, A. Impact of wildfires on pavement systems. Transp. Res. Rec. https://doi.org/10.1177/03611981251328976 (2025).


    Google Scholar
     

  • Sylvestre, O., Bilodeau, J.-P. & Doré, G. Effect of frost heave on long-term roughness deterioration of flexible pavement structures. Int. J. Pavement Eng. 20, 704–713 (2019).


    Google Scholar
     

  • Fradette, N., Doré, G., Pierre, P. & Hébert, S. Evolution of pavement winter roughness. Transp. Res. Rec. 1913, 137–147 (2005).


    Google Scholar
     

  • Knapp, K., Kroeger, D. & Giese, K. Mobility and safety impacts of winter storm events in a freeway environment. Center for Transportation Research and Education, Iowa State University https://publications.iowa.gov/11693/1/winstorm.pdf (2000).

  • Tighe, S. L., Smith, J., Mills, B. & Andrey, J. Evaluating climate change impact on low-volume roads in Southern Canada. Transp. Res. Rec. 2053, 9–16 (2008).


    Google Scholar
     

  • Saleh, N. F. et al. Effects of aging on asphalt mixture and pavement performance. Constr. Build. Mater. 258, 120309 (2020).


    Google Scholar
     

  • Aursand, P. O., Evensen, R. & Lerfald, B. O. Climate changes in Norway: factors affecting pavement performance. In Proc. International Conferences on the Bearing Capacity of Roads, Railways and Airfields (eds Hoff, I., Mork, H. & Garba Saba, R.) 537–544 (2013).

  • Liu, T., Yang, S., Jiang, X., Liao, B. & Castillo-Camarena, E. A. Adaptation measures for asphalt pavements to climate change in China. J. Clean. Prod. 415, 137861 (2023).

    CAS 

    Google Scholar
     

  • Daniel, J. S. et al. Climate change: potential impacts on frost–thaw conditions and seasonal load restriction timing for low-volume roadways. Road Mater. Pavement Des. 19, 1126–1146 (2018).


    Google Scholar
     

  • Apeagyei, A. K., Grenfell, J. R. A. & Airey, G. D. Moisture-induced strength degradation of aggregate–asphalt mastic bonds. Road Mater. Pavement Des. 15, 239–262 (2014).

    CAS 

    Google Scholar
     

  • Caro, S., Masad, E., Bhasin, A. & Little, D. N. Moisture susceptibility of asphalt mixtures, part 1: mechanisms. Int. J. Pavement Eng. 9, 81–98 (2008).

    CAS 

    Google Scholar
     

  • Copeland, A. R. Influence of moisture on bond strength of asphalt–aggregate systems (Vanderbilt University, 2007).

  • Gundla, A., Offei, E., Wang, G., Holzschuher, C. & Choubane, B. Implementation of a decision support criteria for flood inundated roadways. In Transportation Research Board 99th Annual Meeting (Transportation Research Board Washington, D.C., 2020).

  • Tamrakar, P. & Nazarian, S. Moisture effects on moduli of pavement bases. Int. J. Pavement Eng. 22, 1410–1422 (2021).


    Google Scholar
     

  • Smith, J. T., Tighe, S. L., Andrey, J. & Mills, B. Temperature and precipitation sensitivity analysis on pavement performance. In Transportation Research Circular: 4th National Conf. on Surface Transportation Weather and 7th Int. Symp. on Snow Removal and Ice Control Technology 558–571 (Transportation Research Board, 2008).

  • Salour, F. & Erlingsson, S. The influence of groundwater level on the structural behaviour of a pavement structure using FWD. In Proc. International Conferences on the Bearing Capacity of Roads, Railways and Airfields (eds Hoff, I., Mork, H. & Garba Saba, R.) 485–494 (2013).

  • Mousavi, S., Ghayoomi, M. & Dave, E. V. A system dynamics framework for mechanistic analysis of flexible pavement systems under moisture variations. Transp. Geotech. 30, 100619 (2021).


    Google Scholar
     

  • Avilés-Rojas, N., Suárez, F., Chamorro, A. & González, A. Flood impact on structural response of asphalt pavement: a finite element modeling approach. Structures 57, 105259 (2023).


    Google Scholar
     

  • Abdollahi, S. F., Kutay, M. E. & Lanotte, M. UPDAPS-Flood: a mechanistic-empirical flexible pavement analysis tool to evaluate the effect of flooding events on flexible pavement performance. Int. J. Pavement Eng. 25, 2387743 (2024).


    Google Scholar
     

  • Sultana, M. et al. Rutting and roughness of flood-affected pavements: literature review and deterioration models. J. Infrastruct. Syst. 24, 04018006 (2018).


    Google Scholar
     

  • Khan, M. U., Mesbah, M., Ferreira, L. & Williams, D. J. Developing a new road deterioration model incorporating flooding. Proc. Inst. Civ. Eng. Transp. 167, 322–333 (2014).


    Google Scholar
     

  • Lu, D., Tighe, S. L. & Xie, W.-C. Impact of flood hazards on pavement performance. Int. J. Pavement Eng. 21, 746–752 (2020).


    Google Scholar
     

  • Mohd Hasan, M. R., Hiller, J. E. & You, Z. Effects of mean annual temperature and mean annual precipitation on the performance of flexible pavement using ME design. Int. J. Pavement Eng. 17, 647–658 (2016).

    CAS 

    Google Scholar
     

  • Qiao, Y. et al. Simulating floodwater movement in pavements for developing post-flooding time–depth–damage functions. Constr. Build. Mater. 396, 132408 (2023).


    Google Scholar
     

  • Asbahan, R. E. & Vandenbossche, J. M. Effects of temperature and moisture gradients on slab deformation for jointed plain concrete pavements. J. Transp. Eng. 137, 563–570 (2011).


    Google Scholar
     

  • Mateos, A. et al. Evaluation of the moisture dependence of concrete coefficient of thermal expansion and its impacts on thermal deformations and stresses of concrete pavements. Transp. Res. Rec. 2674, 545–555 (2020).


    Google Scholar
     

  • Gransberg, D. D. & James, D. M. B. Chip seal best practices (Transportation Research Board, National Research Council, 2005).

  • Blauhut, V., Stephan, R. & Stahl, K. Impacts of drought on European inland transportation — insights from the European drought impact inventory 2.0. In EGU-13632 (2023); https://doi.org/10.5194/egusphere-egu23-13632.

  • Welch, J. et al. Unveiling the hidden threat: drought-induced inelastic subsidence in expansive soils. Geophys. Res. Lett. 51, e2023GL107549 (2024).


    Google Scholar
     

  • Elswick, F. The challenges droughts are causing for California’s roads. Midwest Industrial Supply https://blog.midwestind.com/challenges-droughts-causing-californias-roads/ (2014).

  • Dawson, A. in Climate Change, Energy, Sustainability and Pavements (eds Gopalakrishnan, K., Steyn, W. J. & Harvey, J.) 127–157 (Springer, 2014).

  • Blaauw, S. A., Maina, J. W., Mturi, G. A. J. & Visser, A. T. Flexible pavement performance and life cycle assessment incorporating climate change impacts. Transp. Res. D 104, 103203 (2022).


    Google Scholar
     

  • Luo, R. & Prozzi, J. A. Development of longitudinal cracks on pavement over shrinking expansive subgrade. Road Mater. Pavement Des. 11, 807–832 (2010).


    Google Scholar
     

  • George, K. P. Shrinkage cracking of soil–cement base: theoretical and model studies. Highw. Res. Rec. 351, 115–133 (1971).


    Google Scholar
     

  • Li, X., Wen, H. & Muhunthan, B. Modeling the drying shrinkage cracking of untreated soils and cementitiously stabilized soils. Transp. Res. Rec. 2511, 90–101 (2015).


    Google Scholar
     

  • Harrison, A. M., Heaton, M. & Entwisle, D. C. Increasing road network resilience to the impacts of ground movement due to climate change: a case study from Lincolnshire, UK. Q. J. Eng. Geol. Hydrogeol. 56, qjegh2023–002 (2023).


    Google Scholar
     

  • Geertzen, A. J. J. Determining drought-induced subsidence in urban areas (Delft University of Technology, 2021).

  • Pritchard, O. G. & Hallett, D. S. H. Road subsidence in Lincolnshire: soils and road condition (ITRC, 2013); https://www.itrc.org.uk/wp-content/PDFs/Lincs-soil-road-condition-report.pdf.

  • Underwood, B. S. et al. Improving resilience of transportation infrastructure to hurricane damage (NC State University, 2023); https://connect.ncdot.gov/projects/research/RNAProjDocs/RP2021-08_Final%20Report.pdf.

  • Sahoo, U. C., Dash, S. R. & Sahu, C. S. Climate-resilient road design in coastal areas subjected to cyclones and associated floods. Infrastruct. Asset Manag. 8, 209–218 (2021).


    Google Scholar
     

  • Kulkarni, A. R. & Shafei, B. Impact of extreme events on transportation infrastructure in iowa: a Bayesian network approach. Transp. Res. Rec. 2672, 45–57 (2018).


    Google Scholar
     

  • Cahoon, J. E., Baker, D. & Carson, J. Factors for rating condition of culverts for repair or replacement needs. Transp. Res. Rec. 1814, 197–202 (2002).


    Google Scholar
     

  • Vallès-Vallès, D. & Torres-Machi, C. Deterioration of flexible pavements induced by flooding: case study using stochastic Monte Carlo simulations in discrete-time Markov chains. J. Infrastruct. Syst. 29, 05022009 (2023).


    Google Scholar
     

  • Elseifi, M. A., Mousa, M. R. & Gaspard, K. Impact of the great flood of 2016 on the asphaltic concrete road infrastructure in Louisiana. Transp. Res. Rec. 2676, 463–474 (2022).


    Google Scholar
     

  • Karanam, G. D. Determination of pavement condition surveying frequency using probabilistic modeling with Bayesian spatiotemporal inference techniques (North Carolina State University, 2023).

  • Kim, K., Ha, S. & Kim, H. Using real options for urban infrastructure adaptation under climate change. J. Clean. Prod. 143, 40–50 (2017).


    Google Scholar
     

  • Jiménez-Ramos, G., Echaveguren, T., Vargas-Baecheler, J. & Chamorro, A. Traffic interruption risk induced by cut-slope failure: the rainfall effect. Transp. Geotech. 41, 100993 (2023).


    Google Scholar
     

  • Asset management, extreme weather and proxy indicators pilot project (Arizona Department of Transportation, 2020); https://azdot.gov/sites/default/files/media/2020/03/ADOT-Asset-Management-Infrastructure-Resilience-Study-Report%20Final-2020.pdf.

  • Muench, S., Van Dam, T., Ram, P., & Smith, K. Pavement resilience: state of the practice (US Department of Transportation, 2023); https://www.fhwa.dot.gov/pavement/pub_details.cfm?id=1154.

  • Jacobs, J. M., Cattaneo, L. R., Sweet, W. & Mansfield, T. Recent and future outlooks for nuisance flooding impacts on roadways on the U.S. East Coast. Transp. Res. Rec. 2672, 1–10 (2018).


    Google Scholar
     

  • Knott, J. F., Jacobs, J. M., Daniel, J. S. & Kirshen, P. Modeling groundwater rise caused by sea-level rise in coastal New Hampshire. J. Coast. Res. 35, 143–157 (2019).


    Google Scholar
     

  • Knott, J. F., Jacobs, J. M., Daniel, J. S. & Kirshen, P. Modeling groundwater rise caused by sea-level rise in coastal New Hampshire. coas 35, 143–157 (2018).


    Google Scholar
     

  • Rojali, A., Gocmez, M. g., Ali, H. A. & Fuentes, H. R. Improvement and benefit of updated vulnerability maps of pavement infrastructure affected by sea-level rise: a case in South Florida. In 18th Annual Meeting of the Asia Oceania Geosciences Society (eds Liong, S.-Y. & Satoh, M.) (World Scientific, 2022); https://doi.org/10.1142/9789811260100_0047.

  • Saltan, M., Karadağ, Ö. & Kaçaroğlu, G. Investigation of the adhesion properties and strength of hot mix asphalt exposed to sea water. J. Sci. Rep. A 51, 283–296 (2022).


    Google Scholar
     

  • Setiadji, B. H., Utomo, S. & Nahyo Effect of chemical compounds in tidal water on asphalt pavement mixture. Int. J. Pavement Res. Technol. 10, 122–130 (2017).


    Google Scholar
     

  • Mangi, S. A., Makhija, A., Raza, M. S., Khahro, S. H. & Jhatial, A. A. A comprehensive review on effects of seawater on engineering properties of concrete. Silicon 13, 4519–4526 (2021).

    CAS 

    Google Scholar
     

  • Roshani, A., Mirfenderesk, H., Rajapakse, J. & Gallage, C. Groundwater table response to sea level rise and its impact on pavement structure. In Proc. 9th Annual International Conference of the International Institute for Infrastructure Renewal and Reconstruction (eds Barnes, P. H. & Goonetilleke, A.) 531–539 (Queensland University of Technology, 2015).

  • Chen, X. & Wang, H. Impact of sea level rise on asphalt pavement responses considering seasonal groundwater and moisture gradient in subgrade. Transp. Geotech. 40, 100992 (2023).


    Google Scholar
     

  • Rojali, A., Fuentes, H. R., Chang, C. M. & Ali, H. Network-scale analysis of sea-level rise impact on flexible pavements. Water 15, 4163 (2023).


    Google Scholar
     

  • Chen, X. & Wang, H. Impact of sea level rise-induced hazards on airfield pavement performance: a simulation study. Transp. Res. Rec. https://doi.org/10.1177/03611981241265850 (2024).

  • Batouli, M. & Mostafavi, A. Multiagent simulation for complex adaptive modeling of road infrastructure resilience to sea‐level rise. Comput. Civ. Infrastruct. Eng. 33, 393–410 (2018).


    Google Scholar
     

  • Knott, J. F., Daniel, J. S., Jacobs, J. M. & Kirshen, P. Adaptation planning to mitigate coastal-road pavement damage from groundwater rise caused by sea-level rise. Transp. Res. Rec. 2672, 11–22 (2018).


    Google Scholar
     

  • Regionally unified sea level rise projection. Southeast Florida Regional Climate Compact https://southeastfloridaclimatecompact.org/initiative/regionally-unified-sea-level-rise-projection/ (2024).

  • Darestani, Y. M., Webb, B., Padgett, J. E., Pennison, G. & Fereshtehnejad, E. Fragility analysis of coastal roadways and performance assessment of coastal transportation systems subjected to storm hazards. J. Perform. Constr. Facil. 35, 04021088 (2021).


    Google Scholar
     

  • Velasquez-Montoya, L., Sciaudone, E. J., Smyre, E. & Overton, M. F. Vulnerability indicators for coastal roadways based on barrier island morphology and shoreline change predictions. Nat. Hazards Rev. 22, 04021003 (2021).


    Google Scholar
     

  • Qiao, Y., Flintsch, G. W., Dawson, A. R. & Parry, T. Examining effects of climatic factors on flexible pavement performance and service life. Transp. Res. Rec. 2349, 100–107 (2013).


    Google Scholar
     

  • Dawson, A. Water in Road Structures: Movement, Drainage and Effects (Springer, 2008).

  • Islam, R. M., Arafat, S. & Wasiuddin, N. M. Quantification of reduction in hydraulic conductivity and skid resistance caused by fog seal in low-volume roads. Transp. Res. Rec. 2657, 99–108 (2017).


    Google Scholar
     

  • Chu, L., Fwa, T. F. & Ong, G. P. Evaluating hydroplaning potential of rutted highway pavements. J. East. Asia Soc. Transp. Stud. 11, 1613–1622 (2015).


    Google Scholar
     

  • Mamlouk, M., Vinayakamurthy, M., Underwood, B. S. & Kaloush, K. E. Effects of the international roughness index and rut depth on crash rates. Transp. Res. Rec. 2672, 418–429 (2018).


    Google Scholar
     

  • Ishikawa, T., Lin, T., Kawabata, S., Kameyama, S. & Tokoro, T. Effect evaluation of freeze–thaw on resilient modulus of unsaturated granular base course material in pavement. Transp. Geotech. 21, 100284 (2019).


    Google Scholar
     

  • Janoo, V. C. & Berg, R. L. Thaw weakening of pavement structures in seasonal frost areas. Transp. Res. Rec. 1286, 217–233 (1990).


    Google Scholar
     

  • Glendinning, S., Loveridge, F., Starr-Keddle, R. E., Bransby, M. F. & Hughes, P. N. Role of vegetation in sustainability of infrastructure slopes. Proc. Inst. Civ. Eng. Eng. Sustain. 162, 101–110 (2009).


    Google Scholar
     

  • Wieder, W. L. & Shoop, S. A. State of the knowledge of vegetation impact on soil strength and trafficability. J. Terramech. 78, 1–14 (2018).


    Google Scholar
     

  • British Geological Survey. OR/20/032 coastal impacts of rising groundwater levels scoping study: an executive summary (BGS, 2020); https://www.bgs.ac.uk/download/or-20-032-coastal-impacts-of-rising-groundwater-levels-scoping-study-an-executive-summary/.

  • Webb, B. M. et al. Nature-based solutions for coastal highway resilience: an implementation guide (US Department of Transportation, 2019); https://rosap.ntl.bts.gov/view/dot/43591/dot_43591_DS1.pdf.

  • Kodippily, S., Yeaman, J., Henning, T. & Tighe, S. Effects of extreme climatic conditions on pavement response. Road Mater. Pavement Des. 21, 1413–1425 (2020).


    Google Scholar
     

  • Tsumita, N., Jaensirisak, S., Kikuchi, H. & Fukuda, A. Analysis of travel behaviors during floods in Ubon Ratchathani city, Thailand. IOP Conf. Ser. Earth Environ. Sci. 832, 012034 (2021).


    Google Scholar
     

  • Voumard, J., Derron, M.-H. & Jaboyedoff, M. Natural hazard events affecting transportation networks in Switzerland from 2012 to 2016. Nat. Hazards Earth Syst. Sci. 18, 2093–2109 (2018).


    Google Scholar
     

  • Pregnolato, M. et al. Assessing flooding impact to riverine bridges: an integrated analysis. Nat. Hazards Earth Syst. Sci. 22, 1559–1576 (2022).


    Google Scholar
     

  • Climate summary of South Africa (South African Weather Service, 2024); https://hdl.handle.net/10520/ejc-cssa_v35_n1_a2.

  • Su, X., Zhi, D., Song, D., Tian, L. & Yang, Y. Exploring weather-related factors affecting the delay caused by traffic incidents: mitigating the negative effect of traffic incidents. Sci. Total Environ. 877, 162938 (2023).

    CAS 

    Google Scholar
     

  • Giang, W. C. W., Donmez, B., Ahghari, M. & MacDonald, R. D. The impact of precipitation on land interfacility transport times. Prehosp. Disaster Med. 29, 593–599 (2014).


    Google Scholar
     

  • Venner, M. & Zamurs, J. Increased maintenance costs of extreme weather events: preparing for climate change adaptation. Transp. Res. Rec. 2292, 20–28 (2012).


    Google Scholar
     

  • Bowers, B. & Gu, F. Asphalt pavement: a critically important aspect of infrastructure resiliency (National Center for Asphalt Technology, 2021); https://eng.auburn.edu/research/centers/ncat/files/technical-reports/rep21-02.pdf.

  • Rozenberg, J., Briceno-Garmendia, C., Lu, X., Bonzanigo, L. & Moroz, H. Improving the resilience of Peru’s road network to climate events (The World Bank, 2017).

  • Detelinova, I., Thomas, T. S., Tian, J., Hammond, W. & Arndt, C. From climate risk to resilience: unpacking the economic impacts of climate change in Mozambique (The African Climate Foundation, 2023); https://doi.org/10.2499/p15738coll2.136961.

  • Glenn, C., Beam, A. & Rodriguez, O. R. City of Chico to receive millions in compensation for roads damaged during response to Camp Fire — CBS Sacramento. CBS News https://www.cbsnews.com/sacramento/news/city-of-chico-to-receive-millions-in-compensation-for-roads-damaged-during-response-to-camp-fire/ (23 November 2023).

  • Praharaj, S., Chen, T. D., Zahura, F. T., Behl, M. & Goodall, J. L. Estimating impacts of recurring flooding on roadway networks: a Norfolk, Virginia case study. Nat. Hazards 107, 2363–2387 (2021).


    Google Scholar
     

  • Knott, J. F., Sias, J. E., Dave, E. V. & Jacobs, J. M. Seasonal and long-term changes to pavement life caused by rising temperatures from climate change. Transp. Res. Rec. 2673, 267–278 (2019).


    Google Scholar
     

  • Sadeghi, P. & Goli, A. Investigating the impact of pavement condition and weather characteristics on road accidents (review paper). Int. J. Crashworthiness https://doi.org/10.1080/13588265.2024.2348269 (2024).

  • Dehghani, M. S., Flintsch, G. W. & McNeil, S. Roadway network as a degrading system: vulnerability and system level performance. Transp. Lett. 5, 105–114 (2013).


    Google Scholar
     

  • Arrighi, C., Pregnolato, M. & Castelli, F. Indirect flood impacts and cascade risk across interdependent linear infrastructures. Nat. Hazards Earth Syst. Sci. 21, 1955–1969 (2021).


    Google Scholar
     

  • Zhu, J. et al. An empirical approach for developing functions for the vulnerability of roads to tropical cyclones. Transp. Res. D 102, 103136 (2022).


    Google Scholar
     

  • Arrighi, C., Pregnolato, M., Dawson, R. J. & Castelli, F. Preparedness against mobility disruption by floods. Sci. Total Environ. 654, 1010–1022 (2019).

    CAS 

    Google Scholar
     

  • Khan, M. U., Mesbah, M., Ferreira, L. & Williams, D. J. Assessment of flood risk to performance of highway pavements. Proc. Inst. Civ. Eng. Transp. 170, 363–372 (2017).


    Google Scholar
     

  • Chinowsky, P. S., Price, J. C. & Neumann, J. E. Assessment of climate change adaptation costs for the U.S. road network. Glob. Environ. Change 23, 764–773 (2013).


    Google Scholar
     

  • Mallick, R. B., Radzicki, M. J., Daniel, J. S. & Jacobs, J. M. Use of system dynamics to understand long-term impact of climate change on pavement performance and maintenance cost. Transp. Res. Rec. 2455, 1–9 (2014).


    Google Scholar
     

  • Schweikert, A., Chinowsky, P., Espinet, X. & Tarbert, M. Climate change and infrastructure impacts: comparing the impact on roads in ten countries through 2100. Procedia Eng. 78, 306–316 (2014).


    Google Scholar
     

  • Espinet, X., Schweikert, A. & Chinowsky, P. Robust prioritization framework for transport infrastructure adaptation investments under uncertainty of climate change. ASCE ASME J. Risk Uncertain. Eng. Syst. A 3, E4015001 (2017).


    Google Scholar
     

  • Schweikert, A. et al. Road infrastructure and climate change: impacts and adaptations for South Africa. J. Infrastruct. Syst. 21, 04014046 (2015).


    Google Scholar
     

  • Chinowsky, P. S., Schweikert, A. E., Strzepek, N. L. & Strzepek, K. Infrastructure and climate change: a study of impacts and adaptations in Malawi, Mozambique, and Zambia. Clim. Change 130, 49–62 (2015).


    Google Scholar
     

  • American Society of Civil Engineers and EBP. Bridging the gap. Economic impacts of national infrastructure investment, 2024–2043 (American Society of Civil Engineers, 2024).

  • Robbins, M. M. & Tran, N. H. A synthesis report: value of pavement smoothness and ride quality to roadway users and the impact of pavement roughness on vehicle operating costs (National Center for Asphalt Technology, 2016); https://eng.auburn.edu/research/centers/ncat/files/technical-reports/rep16-03.pdf.

  • Zaabar, I. & Chatti, K. Estimating vehicle operating costs caused by pavement surface conditions. Transp. Res. Rec. 2455, 63–76 (2014).


    Google Scholar
     

  • Okte, E., Al-Qadi, I. L. & Ozer, H. Effects of pavement condition on LCCA user costs. Transp. Res. Rec. 2673, 339–350 (2019).


    Google Scholar
     

  • Wang, T., Harvey, J., Lea, J. & Kim, C. Impact of pavement roughness on vehicle free-flow speed. J. Transp. Eng. 140, 04014039 (2014).


    Google Scholar
     

  • Grau-Torrent, D., Edward Back, W. & McElvy, R. J. Impact of nighttime paving operations on asphalt roughness behavior. University of Alabama https://rosap.ntl.bts.gov/view/dot/26142/dot_26142_DS1.pdf (2013).

  • Arditi, D., Lee, D.-E. & Polat, G. Fatal accidents in nighttime vs. daytime highway construction work zones. J. Saf. Res. 38, 399–405 (2007).


    Google Scholar
     

  • Global land transport infrastructure requirements (International Energy Agency, 2013); https://www.iea.org/reports/global-land-transport-infrastructure-requirements.

  • Ferris, N. How $4trn of global road projects threaten net-zero pledges. Energy Monitor https://www.energymonitor.ai/sectors/transport/exclusive-how-4trn-of-global-road-projects-threaten-net-zero-pledges/ (2023).

  • Yao, L., Leng, Z., Ni, F., Lu, G. & Jiang, J. Adaptive maintenance strategies to mitigate climate change impacts on asphalt pavements. Transp. Res. D 126, 104026 (2024).


    Google Scholar
     

  • Savonis, M. J., Burkett, V. & Potter, J. R. Impacts of climate change and variability on transportation systems and infrastructure: Gulf Coast study, phase I. US Climate Change Science Program https://rosap.ntl.bts.gov/view/dot/17351/dot_17351_DS1.pdf (2008).

  • Cordero, F., LaMondia, J. J. & Bowers, B. F. Performance measure-based framework for evaluating transportation infrastructure resilience. Transp. Res. Rec. 2678, 601–616 (2024).


    Google Scholar
     

  • Kwakkel, J. H. Is real options analysis fit for purpose in supporting climate adaptation planning and decision-making? WIREs Clim. Change 11, e638 (2020).


    Google Scholar
     

  • Little, L. R. & Lin, B. B. A decision analysis approach to climate adaptation: a structured method to consider multiple options. Mitig. Adapt. Strateg. Glob. Change 22, 15–28 (2017).


    Google Scholar
     

  • Ray, P. A., Brown, C. M. Confronting climate uncertainty in water resources planning and project design: the decision tree framework (The World Bank, 2015); https://documents.worldbank.org/en/publication/documents-reports/documentdetail/516801467986326382/Confronting-climate-uncertainty-in-water-resources-planning-and-project-design-the-decision-tree-framework.

  • Taner, M. Ü., Ray, P. & Brown, C. Robustness-based evaluation of hydropower infrastructure design under climate change. Clim. Risk Manag. 18, 34–50 (2017).


    Google Scholar
     

  • Brown, C., Ghile, Y., Laverty, M. & Li, K. Decision scaling: linking bottom-up vulnerability analysis with climate projections in the water sector. Water Resour. Res. https://doi.org/10.1029/2011WR011212 (2012).

  • Lea, J., Harvey, J., Saboori, A. & Butt, A. A. eLCAP: a web application for environmental life cycle assessment for pavements. Institute of Transportation Studies, University of California, Davis https://doi.org/10.7922/G2ST7N5G (2022).

  • Ram, P., Hoerner, T., Meijer, J., Harvey, J. & Butt, A. Pavements — federal highway administration. Federal Highway Administration https://www.fhwa.dot.gov/pavement/lcatool/ (2021).

  • Swedish Transport Administration. Klimatkalkylering: calculating energy use and greenhouse gas emissions of transport infrastructure — English summary. Trafikverket https://bransch.trafikverket.se/contentassets/eb8e472550374d7b91a4032918687069/klimatkalky_report_v_5_0_and_6.0_english.pdf (2016).

  • Harvey, J. T. et al. Life cycle assessment and life cycle cost analysis for six strategies for GHG reduction in caltrans operations. University of California Pavement Research Center, UC Davis https://doi.org/10.7922/G22R3PZG (2020).

  • CalEnviroScreen. OEHHA https://oehha.ca.gov/calenviroscreen (2014).

  • Okte, E., Boakye, J. & Behrend, M. A quantitative methodology for measuring the social sustainability of pavement deterioration. Sci. Rep. 14, 2112 (2024).

    CAS 

    Google Scholar
     

  • Ostovar, M. Environmental and social life cycle assessment (LCA) in transport infrastructure (UC Davis, 2023).

  • Zheng, X., Easa, S. M., Ji, T. & Jiang, Z. Modeling life-cycle social assessment in sustainable pavement management at project level. Int. J. Life Cycle Assess. 25, 1106–1118 (2020).


    Google Scholar
     

  • Blaauw, S. A., Maina, J. W. & Grobler, L. J. Social life cycle inventory for pavements — a case study of South Africa. Transp. Eng. 4, 100060 (2021).


    Google Scholar
     

  • Stern, N. H. The Economics of Climate Change: The Stern Review (Cambridge Univ. Press, 2007).

  • Reeder, T. & Ranger, N. How Do You Adapt in an Uncertain World?: Lessons from the Thames Estuary 2100 Project (2011).

  • Cities infrastructure delivery management system toolkit edition 2. Annexure D climate resilience (National Treasury South Africa, 2023); https://www.treasury.gov.za/documents/national%20budget/2022/review/Annexure%20D.pdf.

  • Adger, W. N. Vulnerability. Glob. Environ. Change 16, 268–281 (2006).


    Google Scholar
     

  • Hoang, D. A., Pedroso, F. F. F., Wang, B., Dos Anjos Ribeiro Cordeiro, M. J. & Charles, K. C. Resilient transport in small island developing states: from a call for action to action. World Bank https://documents.worldbank.org/en/publication/documents-reports/documentdetail/099840104262222525/P1641570ed55c3096098670e0fd1a73eb3a (2020).

  • Rolt, J. et al. A guide to the structural design of surfaced roads in tropical and sub-tropical regions: integrating climate resilience into road networks. Road Note https://trid.trb.org/View/2143893 (2022).

  • Paige-Green, P., Verhaeghe, B. & Head, M. Climate adaptation: risk management and resilience optimisation for vulnerable road access in Africa, engineering adaptation guidelines. ReCAP https://assets.publishing.service.gov.uk/media/5f9d7c9ae90e070413b14ee6/CSIR-PGC-StHelens-ClimateAdaptation-EngineeringAdaptationGuideline-AfCAP-GEN2014C-190926-compressed.pdf (Council for Scientific and Industrial Research, Paige-Green Consulting Ltd & St Helens Consulting Ltd, 2019).

  • Cambodia rural roads improvement project: results from climate change adaptation. Nordic Development Fund https://www.ndf.int/media/project-files/cambodia-rural-roads-improvement-project-results-from-climate-change-adaptation.pdf (2016).

  • USAID climate-resilient water infrastructure — guidelines and lessons from the USAID Be Secure Project. AECOM https://www.climatelinks.org/sites/default/files/asset/document/2017_USAID_Climate-Resilient%20Water%20Infrastructure%20-%20Guidelines%20and%20Lessons%20from%20the%20USAID%20Be%20Secure%20Project.pdf (2017).

  • Barbi, P. S. R., Tavassoti, P. & Tighe, S. Enhanced pavement design and analysis framework to improve the resiliency of flexible airfield pavements. Transp. Res. Rec. 2677, 118–136 (2023).


    Google Scholar
     

  • King, D. & Taylor, P. Concrete overlay strategies for improving pavement resilience. Transp. Res. Rec. 2677, 259–269 (2023).


    Google Scholar
     

  • Dealing with the effects of climate change on road pavements. PIARC https://www.piarc.org/en/order-library/16862-en-Dealing%20with%20the%20effects%20of%20climate%20change%20on%20road%20pavements.htm (2012).

  • Enríquez-de-Salamanca, Á. Environmental impacts of climate change adaptation of road pavements and mitigation options. Int. J. Pavement Eng. 20, 691–696 (2019).


    Google Scholar
     

  • Regmi, M. B. & Hanaoka, S. A survey on impacts of climate change on road transport infrastructure and adaptation strategies in Asia. Environ. Econ. Policy Stud. 13, 21–41 (2011).


    Google Scholar
     

  • Qiao, Y., Santos, J., Stoner, A. M. K. & Flinstch, G. Climate change impacts on asphalt road pavement construction and maintenance: an economic life cycle assessment of adaptation measures in the State of Virginia, United States. J. Ind. Ecol. 24, 342–355 (2020).


    Google Scholar
     

  • Wu, S., Wen, H., Chaney, S., Littleton, K. & Muench, S. Evaluation of long-term performance of stone matrix asphalt in Washington State. J. Perform. Constr. Facil. 31, 04016074 (2017).


    Google Scholar
     

  • Guo, R., Nian, T. & Zhou, F. Analysis of factors that influence anti-rutting performance of asphalt pavement. Constr. Build. Mater. 254, 119237 (2020).


    Google Scholar
     

  • Zhao, Z., Xu, L., Du, Z. & Xiao, F. Moisture resistance of stone matrix asphalt at lab simulated high temperature and continuous rainfall condition. Int. J. Pavement Eng. 24, 2096884 (2023).


    Google Scholar
     

  • Asi, I. M. Laboratory comparison study for the use of stone matrix asphalt in hot weather climates. Constr. Build. Mater. 20, 982–989 (2006).


    Google Scholar
     

  • Teltayev, B. B., Rossi, C. O., Izmailova, G. G. & Amirbayev, E. D. Effect of freeze–thaw cycles on mechanical characteristics of bitumens and stone mastic asphalts. Appl. Sci. 9, 458 (2019).

    CAS 

    Google Scholar
     

  • Aletba, S. R. O. et al. Thermal performance of cooling strategies for asphalt pavement: a state-of-the-art review. J. Traffic Transp. Eng. 8, 356–373 (2021).


    Google Scholar
     

  • Jiang, Y., Deng, C., Chen, Z. & Tian, Y. Evaluation of the cooling effect and anti-rutting performance of thermally resistant and heat-reflective pavement. Int. J. Pavement Eng. 21, 447–456 (2020).

    CAS 

    Google Scholar
     

  • Li, M., Dai, Q., Su, P. & You, Z. Buckling prediction based on joint opening and safe temperature estimation in jointed plain concrete pavements. Constr. Build. Mater. 444, 137630 (2024).


    Google Scholar
     

  • Yang, G. & Bradford, M. A. Thermal-induced upheaval buckling of concrete pavements incorporating the effects of temperature gradient. Eng. Struct. 164, 316–324 (2018).


    Google Scholar
     

  • Liu, J., Zhao, S., Li, L., Li, P. & Saboundjian, S. Low temperature cracking analysis of asphalt binders and mixtures. Cold Reg. Sci. Technol. 141, 78–85 (2017).


    Google Scholar
     

  • Iliuta, S., Andriescu, A., Hesp, S. A. M. & Tam, K. Improved approach to low temperature and fatigue fracture performance grading of asphalt cements. In Proc. Forty-Ninth Annual Conference of the Canadian Technical Asphalt Association (eds Rajabipour, F. & Mohammad, L.) (CTAA, 2004).

  • Belletti, B., Cerioni, R., Meda, A. & Plizzari, G. Design aspects on steel fiber-reinforced concrete pavements. J. Mater. Civ. Eng. 20, 599–607 (2008).

    CAS 

    Google Scholar
     

  • Hussain, I., Ali, B., Akhtar, T., Jameel, M. S. & Raza, S. S. Comparison of mechanical properties of concrete and design thickness of pavement with different types of fiber-reinforcements (steel, glass, and polypropylene). Case Stud. Constr. Mater. 13, e00429 (2020).


    Google Scholar
     

  • Flinstch, G., Meijer, J. & Smith, K. Improved asphalt sustainability through perpetual pavement design. Federal Highway Administration https://rosap.ntl.bts.gov/view/dot/50764/dot_50764_DS1.pdf (2020).

  • Mack, J., Dean, G. A. & Wathne, L. G. Improving pavement resiliency to flooding: a case for concrete pavement. In Airfield and Highway Pavements 2023: Innovation and Sustainability in Airfield and Highway Pavements Technology (eds Garg, N., Bhasin, A. & Vandenbossche, J. M.) 135–146 (American Society of Civil Engineers, 2023).

  • Lee, J. L., Balmaceda, P. & Hansen, B. in Pavement Performance Monitoring, Modeling, and Management (eds Steyn, W. J., Chen, X. & Nam, B. B.) (American Society of Civil Engineers, 2014); https://doi.org/10.1061/9780784478547.012.

  • Pooni, J., Giustozzi, F., Robert, D., Setunge, S. & O’Donnell, B. Durability of enzyme stabilized expansive soil in road pavements subjected to moisture degradation. Transp. Geotech. 21, 100255 (2019).


    Google Scholar
     

  • Tseng, E., Al-Qadi, I. L., Tutumluer, E., Qamhia, I. I. A. & Ozer, H. Flexible pavement resiliency and mitigation strategies following adverse environmental events. Transp. Res. Rec. 2677, 351–366 (2023).


    Google Scholar
     

  • Chen, Q., Zhang, Z. & Gaspard, K. Case study on the impact of flooding and inundation on pavement performance. Transp. Res. Rec. 2677, 157–168 (2023).


    Google Scholar
     

  • Chakravarty, H. & Sinha, S. Moisture damage of bituminous pavements and application of nanotechnology in its prevention. J. Mater. Civ. Eng. 32, 03120003 (2020).

    CAS 

    Google Scholar
     

  • Oldham, D., Mallick, R. & Fini, E. H. Reducing susceptibility to moisture damage in asphalt pavements using polyethylene terephthalate and sodium montmorillonite clay. Constr. Build. Mater. 269, 121302 (2021).

    CAS 

    Google Scholar
     

  • Yau Seng Mah, D., Chiat Ng, T. & Josep Putuhena, F. Integrating infiltration facility to urban road drainage. IJET 7, 31 (2018).


    Google Scholar
     

  • Pappas, J. Delaware’s pervious pavements mitigate roadway flooding. National Asphalt Pavement Association https://napanow.org/2023/12/11/delawares-pervious-pavements-mitigate-roadway-flooding/ (2023).

  • Zhu, H., Yu, M., Zhu, J., Lu, H. & Cao, R. Simulation study on effect of permeable pavement on reducing flood risk of urban runoff. Int. J. Transp. Sci. Technol. 8, 373–382 (2019).


    Google Scholar
     

  • Imran, H. M., Akib, S. & Karim, M. R. Permeable pavement and stormwater management systems: a review. Environ. Technol. 34, 2649–2656 (2013).

    CAS 

    Google Scholar
     

  • Sevara, J. A. et al. Financial protection against natural disasters: from products to comprehensive strategies — an operational framework for disaster risk financing and insurance. World Bank https://documents.worldbank.org/en/publication/documents-reports/documentdetail/523011468129274796/Financial-protection-against-natural-disasters-from-products-to-comprehensive-strategies-an-operational-framework-for-disaster-risk-financing-and-insurance (2015).

  • Matos Silva, M. & Costa, J. P. Flood adaptation measures applicable in the design of urban public spaces: proposal for a conceptual framework. Water 8, 284 (2016).


    Google Scholar
     

  • Amakye, S. Y. & Abbey, S. J. Understanding the performance of expansive subgrade materials treated with non-traditional stabilisers: a review. Clean. Eng. Technol. 4, 100159 (2021).


    Google Scholar
     

  • Cheng, Y. & Huang, X. Effect of mineral additives on the behavior of an expansive soil for use in highway subgrade soils. Appl. Sci. 9, 30 (2019).

    CAS 

    Google Scholar
     

  • Bridges, T. S. et al. Use of natural and nature-based features (NNBF) for coastal resilience (US Army Engineer Research and Development Center, Environmental Laboratory, 2015).

  • NOAA, FHWA federal agency partnership recognized with environmental excellence awards. NCCOS Coastal Science Website https://coastalscience.noaa.gov/news/a-federal-agency-partnership-between-noaa-and-fhwa-is-recognized-with-environmental-excellence-awards/ (2024).

  • Intergovernmental Panel on Climate Change. Managing the risks of extreme events and disasters to advance climate change adaptation (IPCC, 2012); https://www.ipcc.ch/report/managing-the-risks-of-extreme-events-and-disasters-to-advance-climate-change-adaptation/.

  • Admin, iENGINEERING. AASHTO journal — resiliency key to Hawaii DOT’s West Maui highway project. AASHTO Journal https://aashtojournal.transportation.org/resiliency-key-to-hawaii-dots-west-maui-highway-project/ (2021).

  • Critical infrastructure at risk: sea level rise planning guidance for California’s coastal zone. California Coastal Commission https://documents.coastal.ca.gov/assets/slr/SLR%20Guidance_Critical%20Infrastructure_12.6.2021.pdf (2021).

  • Howard, I. L., Doyle, J. D., Hemsley, J. M. Jr, Baumgardner, G. L. & Cooley, L. A. Jr Emergency paving using hot-mixed asphalt incorporating warm mix technology. Int. J. Pavement Eng. 15, 202–214 (2014).


    Google Scholar
     

  • Howard, I. L. Full-scale emergency paving demonstration of hot-mixed and warm-compacted asphalt. J. Transp. Eng. B 144, 04017020 (2018).


    Google Scholar
     

  • Ajorlou, E., Mousavi, S., Ghayoomi, M. & Dave, E. V. Performance of flooded flexible pavements: a data-driven sensitivity analysis considering soil moisture fluctuations. Transp. Geotech. 45, 101202 (2024).


    Google Scholar
     

  • Ward, M. & Rowlands, R. Overland to Orford from Pittwater (Sorell) and Richmond to Spring Bay (Orford) in the nineteenth century. Pap. Proc. Tasman. Hist. Res. Assoc. 70, 30–55 (2023).


    Google Scholar
     

  • Karskens, G. The Blue Mountains crossings: new histories from the old legends. J. Aust. Colon. Hist. 16, 197–225 (2020).


    Google Scholar
     

  • Foster, V., Rana, A. & Gorgulu, N. Understanding public spending trends for infrastructure in developing countries (The World Bank, 2022); https://doi.org/10.1596/1813-9450-9903.

  • Highway and road expenditures. Urban Institute https://www.urban.org/policy-centers/cross-center-initiatives/state-and-local-finance-initiative/state-and-local-backgrounders/highway-and-road-expenditures (2021).

  • Turner & Townsend. Global construction cost performance. International Construction Market Survey https://publications.turnerandtownsend.com/international-construction-market-survey-2024/global-construction-cost-performance#block-ab6ad559-9158-419a-beef-f65c457c315e (2024).

  • Barton, B. & Schütte, P. Electric vehicle law and policy: a comparative analysis. J. Energy Nat. Resour. Law 35, 147–170 (2017).


    Google Scholar
     

  • Harvey, J. et al. Effects of increased weights of alternative fuel trucks on pavement and bridges (Institute of Transportation Studies, Univ. California, Davis, 2020); https://doi.org/10.7922/G27M066V.

  • Kaufman, K. Vehicle miles traveled taxes rollout across states. Tax Foundation https://taxfoundation.org/blog/state-vmt-vehicle-miles-traveled-taxes/ (2024).

  • Zhou, Q., Ramakrishnan, A., Fakhreddine, M., Okte, E. & Al-Qadi, I. L. Impacts of heavy-duty electric trucks on flexible pavements. Int. J. Pavement Eng. 25, 2361087 (2024).


    Google Scholar
     

  • Jayme, A. et al. Impact of heavy commercial electric vehicles on flexible pavements. US Department of Transportation https://rosap.ntl.bts.gov/view/dot/83465 (2025).

  • Balsari, S., Dresser, C. & Leaning, J. Climate change, migration, and civil strife. Curr. Environ. Health Rep. 7, 404–414 (2020).


    Google Scholar
     

  • Piguet, E., Pécoud, A. & De Guchteneire, P. Migration and climate change: an overview. Refugee Surv. Q. 30, 1–23 (2011).


    Google Scholar
     

  • Gössling, S., Neger, C., Steiger, R. & Bell, R. Weather, climate change, and transport: a review. Nat. Hazards 118, 1341–1360 (2023).


    Google Scholar
     

  • Allen, E., Costello, S. C. & Henning, T. Contribution of network redundancy to reducing criticality of road links. Transp. Res. Rec. 2678, 1574–1590 (2024).


    Google Scholar
     

  • Underwood, B. S., Guido, Z., Gudipudi, P. & Feinberg, Y. Increased costs to US pavement infrastructure from future temperature rise. Nat. Clim. Change https://doi.org/10.1038/nclimate3390 (2017).

  • Aldabet, S., Goldstein, E. B. & Lazarus, E. D. Thresholds in road network functioning on US Atlantic and Gulf Barrier Islands. Earth’s Future 10, e2021EF002581 (2022).


    Google Scholar
     

  • Filosa, G., Plovnick, A., Stahl, L., Miller, R. & Pickrell, D. H. Vulnerability assessment and adaptation framework 3rd edn. Report No: FHWA-HEP-18-020 https://rosap.ntl.bts.gov/view/dot/36188/dot_36188_DS1.pdf (2017).

  • Flannery, A., Pena, M. A. & Manns, J. Resilience in transportation planning, engineering, management, policy, and administration (Transportation Research Board, 2018); https://doi.org/10.17226/25166.

  • Increasing the pace of change in transportation infrastructure adaptation: findings of the 2023 ICNet Global Workshop and roadmap for tangible next steps (ICNet, 2024).

  • El Haloui, Y. et al. Adoption of asphalt binder performance grades for morocco considering climate change. Int. J. Civ. Eng. 21, 1061–1075 (2023).


    Google Scholar
     

  • Zhang, Q., Yang, S. & Chen, G. Regional variations of climate change impacts on asphalt pavement rutting distress. Transp. Res. D 126, 103968 (2024).


    Google Scholar
     

  • Anyala, M., Odoki, J. B. & Baker, C. J. Hierarchical asphalt pavement deterioration model for climate impact studies. Int. J. Pavement Eng. 15, 251–266 (2014).


    Google Scholar
     

  • Abttan, A. A., Zeiada, W., Merabtene, T., Gamal, A. & Mirou, S. Implication of future temperature changes on asphalt binder selection and simulated pavement performance in Sharjah. Innov. Infrastruct. Solut. 9, 88 (2024).


    Google Scholar
     

  • Bilodeau, J.-P., Drolet, F. P., Doré, G. & Sottile, M.-F. Effect of climate changes expected during winter on pavement performance. In 16th International Conference on Cold Regions Engineering (ed. Spencer Guthrie, W.) https://doi.org/10.1061/9780784479315.054 (American Society of Civil Engineers, 2015).

  • Marath, A., Swarna, S. T. & Mehta, Y. Resilient pavement materials to mitigate impact of climate change in New Jersey. J. Test. Eval. 51, 2186–2198 (2023).


    Google Scholar
     

  • Qiao, Y., Wang, Y., Zhang, S., Stoner, A. M. K. & Santos, J. Effects of 1.5 °C global warming on pavement climatic factors and performance. Transp. Res. D 136, 104393 (2024).


    Google Scholar
     

  • Twerefou, D., Chinowsky, P., Adjei-Mantey, K. & Strzepek, N. The economic impact of climate change on road infrastructure in Ghana. Sustainability 7, 11949–11966 (2015).

    CAS 

    Google Scholar
     

  • Espinet, X., Schweikert, A., van den Heever, N. & Chinowsky, P. Planning resilient roads for the future environment and climate change: quantifying the vulnerability of the primary transport infrastructure system in Mexico. Transp. Policy 50, 78–86 (2016).


    Google Scholar