• Zeng, N. et al. Carbon sequestration via wood harvest and storage: an assessment of its harvest potential. Clim. Change 118, 245–257 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Zeng, N. et al. 3775-year-old wood burial supports “wood vaulting” as a durable carbon removal method. Science 385, 1454 (2024).

    Article 
    CAS 

    Google Scholar
     

  • IPCC. Climate change 2023: Synthesis Report Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (eds Core Writing Team, Lee, H. & Romero, J.)(IPCC, 2023).

  • Smith, S. M. et al. The State of Carbon Dioxide Removal 2nd edn. https://doi.org/10.17605/OSF.IO/F85QJ (University of Manchester, 2024).

  • Zeng, N. & Hausmann, H. Wood Vault: remove atmospheric CO2 with trees, store wood for carbon sequestration for now and as biomass, bioenergy and carbon reserve for the future. Carbon Balance Manag. 17, 2 (2022).

    Article 
    CAS 

    Google Scholar
     

  • FAO. Food and Agricultural Organization of the United Nations. https://www.fao.org/faostat/en (FAO, 2025).

  • Peng, L., Searchinger, T. D., Zionts, J. & Waite, R. The carbon costs of global wood harvests. Nature 620, 110–115 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Covey, K. R. & Megonigal, J. P. Methane production and emissions in trees and forests. N. Phytol. 222, 35–51 (2019).

    Article 

    Google Scholar
     

  • Barba, J. et al. Methane emissions from tree stems: a new frontier in the global carbon cycle. N. Phytol. 222, 18–28 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Bonan, G. B. & Shugart, H. H. Environmental factors and ecological processes in boreal forests. Annu. Rev. Ecol. Syst. 20, 1–28 (1989).

    Article 

    Google Scholar
     

  • Esseen, P.-A., Ehnström, B., Ericson, L. & Sjöberg, K. Boreal Forests. Ecol. Bull. 46, 16–47 (1997).


    Google Scholar
     

  • McClelland, J. W., Déry, S. J., Peterson, B. J., Holmes, R. M. & Wood, E. F. A pan-arctic evaluation of changes in river discharge during the latter half of the 20th century. Geophys. Res. Lett. 33, L06715 (2006).

    Article 

    Google Scholar
     

  • Yu, Z. C. Northern peatland carbon stocks and dynamics: a review. Biogeosciences 9, 4071–4085 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Pan, Y. et al. A large and persistent carbon sink in the world’s forests. Science 333, 988–993 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Bradshaw, C. J. & Warkentin, I. G. Global estimates of boreal forest carbon stocks and flux. Glob. Planet. Change 128, 24–30 (2015).

    Article 

    Google Scholar
     

  • Hogan, J. A. et al. Anthromes and forest carbon responses to global change. Plants People Planet 7, 1027–1042 (2025).

    Article 

    Google Scholar
     

  • Holmes, R. M. et al. A. Seasonal and annual fluxes of nutrients and organic matter from large rivers to the Arctic Ocean and surrounding seas. Estuaries Coasts 35, 369–382 (2012).

    Article 
    CAS 

    Google Scholar
     

  • McClelland, J. W. et al. Particulate organic carbon and nitrogen export from major Arctic rivers. Glob. Biogeochem. Cycles 30, 629–643 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Hellmann, L. et al. Dendro-provenancing of Arctic driftwood. Quat. Sci. Rev. 162, 1–11 (2017).

    Article 

    Google Scholar
     

  • Stadie, C. et al. Large driftwood accumulations along arctic coastlines and rivers. Sci. Rep. 15, 32500 (2025).

    Article 

    Google Scholar
     

  • Büntgen, U., Kirdyanov, A. V., Hellmann, L., Nikolayev, A. & Tegel, W. Cruising an archive: on the palaeoclimatic value of the Lena Delta. Holocene 24, 627–630 (2014).

    Article 

    Google Scholar
     

  • Friggens, N. L. et al. Positive rhizosphere priming accelerates carbon release from permafrost soils. Nat. Commun. 16, 3576 (2025).

    Article 
    CAS 

    Google Scholar
     

  • Dial, R. J. et al. Arctic sea ice retreat fuels boreal forest advance. Science 383, 877–884 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Kolar, T. et al. Predicted sea-ice loss likely terminates Iceland’s driftwood supply by 2060 CE. Glob. Planet. Change 213, 103834 (2022).


    Google Scholar
     

  • Shiklomanov, A. et al. River freshwater flux to the Arctic Ocean. in Arctic Hydrology, Permafrost and Ecosystems (Springer, 2020).

  • Holmes, R. M., Shiklomanov, A. I., Tank, S. E., McClelland, J. W. & Tretiakov, M. River Discharge. in Arctic Report Card 2015. http://www.arctic.noaa.gov/Report-Card (2015).

  • Briffa, K. R. et al. Reduced sensitivity of recent tree-growth to temperature at high northern latitudes. Nature 391, 678–682 (1998).

    Article 
    CAS 

    Google Scholar
     

  • Büntgen, U., Kirdyanov, A. V., Krusic, P. J., Shishov, V. V. & Esper, J. Arctic aerosols and the ‘Divergence Problem’ in dendroclimatology. Dendrochronologia 67, 125837 (2021).

    Article 

    Google Scholar
     

  • Russell, M. B. et al. Quantifying carbon stores and decomposition in dead wood: a review. For. Ecol. Manag. 350, 107–128 (2015).

    Article 

    Google Scholar
     

  • Röllig, R. et al. Wood decay under anoxia by the brown-rot fungus Fomitopsis pinicola. Nat. Commun. 16, 7352 (2025).

    Article 

    Google Scholar
     

  • Arosio, T. et al. No long-term decay in α-cellulose of living and relict trees from the European Alps over the past 8000 years. Paleoceanogr. Paleoclimatol. 40, e2025PA005170 (2025).

    Article 

    Google Scholar
     

  • Reinig, F. et al. Precise date for the Laacher See eruption synchronizes the Younger Dryas. Nature 595, 66–69 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Hellmann, L. et al. Tracing the origin of Arctic driftwood. J. Geophys. Res.-B 118, 68–76 (2013). 2013.

    Article 

    Google Scholar
     

  • Borges, L. M. S., Merckelbach, L. M. & Cragg, S. M. Biogeography of wood-boring crustaceans (Isopoda: Limnoriidae) established in European coastal waters. PLoS ONE 9, e109593 (2014).

    Article 

    Google Scholar
     

  • Björdal, C. G. & Dayton, P. K. First evidence of microbial wood degradation in the coastal waters of the Antarctic. Sci. Rep. 10, 12774 (2020).

    Article 

    Google Scholar
     

  • Bastin, J.-F. et al. The global tree restoration potential. Science 365, 76–79 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Moyano, J. et al. Unintended consequences of planting native and non-native trees in treeless ecosystems to mitigate climate change. J. Ecol. 112, 2480–2491 (2024).

    Article 

    Google Scholar
     

  • Kristensen, J. Å. et al. Tree planting is no climate solution at northern high latitudes. Nat. Geosci. 17, 1087–1092 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Büntgen, U. et al. Limited capacity of tree growth to mitigate the global greenhouse effect under predicted warming. Nat. Commun. 10, 2171 (2019).

    Article 

    Google Scholar
     

  • Kirdyanov, A. V. et al. Long-term ecological consequences of forest fires in the continuous permafrost zone of Siberia. Environ. Res. Lett. 15, 034061 (2020).

    Article 

    Google Scholar
     

  • Chandanpurkar, H. A. et al. Unprecedented continental drying, shrinking freshwater availability, and increasing land contributions to sea level rise. Sci. Adv. 11, eadx0298 (2025).

    Article 

    Google Scholar
     

  • Scholten, R. C., Veraverbeke, S., Chen, Y. & Randerson, J. T. Spatial variability in Arctic–boreal fir regimes influenced by environmental and human factors. Nat. Geosci. 17, 866–873 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Loboda, T. V. et al. Arctic Boreal Annual Burned Area, Circumpolar Boreal Forest and Tundra, V2, 2002–2022 (Version 2). https://doi.org/10.3334/ORNLDAAC/2328 (2024).

  • Bernal, B., Murray, L. T. & Pearson, T. R. H. Global carbon dioxide removal rates from forest landscape restoration activities. Carbon Balance Manag. 13, 22 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Robinson, N. et al. Protect young secondary forests for optimum carbon removal. Nat. Clim. Change 15, 793–800 (2025).

    Article 

    Google Scholar
     

  • Sendrowski, A., Wohl, E., Hilton, R., Kramer, N. & Ascough, P. Wood-based carbon storage in the Mackenzie River Delta: the world’s largest mapped riverine wood deposit. Geophys. Res. Lett. 50, e2022GL100913 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Jiang, J., Shi, S. & Raftery, A. E. Mitigation efforts to reduce carbon dioxide emissions and meet the Paris Agreement have been offset by economic growth. Commun. Earth Environ. 6, 823 (2025).

    Article 

    Google Scholar
     

  • Rahman, H. M. T. & Pigford, A. Institutionalism in sustainable environmental management: an increasing relevance for institutional diversity. in Institutional Diversity and Environmental Sustainability (eds Rahman, H.M.T. & Pigford, A.) (CRC Press, 2025).

  • Rahman, H. M. T. & Natcher, D. Addressing gaps in integrative water-energy-food-forest (WEFF) nexus governance. Environ. Sci. Policy 172, 104195 (2025).

    Article 

    Google Scholar
     

  • Booth, A. L. & Skelton, N. W. There’s a conflict right there: Integrating indigenous community values into commercial forestry in the Tl’azt’en First Nation. Soc. Nat. Resour. 24, 368–383 (2011).

    Article 

    Google Scholar
     

  • Chu, S. et al. Degradation condition and microbial analysis of waterlogged archaeological wood from the second shipwreck site on the northwestern continental slope of the South China Sea. npj Herit. Sci. 13, 10 (2025).

    Article 

    Google Scholar
     

  • Titchner, H. A. & Rayner, N. A. The Met Office Hadley Centre sea ice and sea surface temperature data set, version 2: 1. Sea ice concentrations. J. Geophys. Res. Atmos. 119, 2864–2889 (2014).

    Article 

    Google Scholar
     

  • Harrris, I., Osborn, T. J., Jones, P. & Lister, D. Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Sci. Data 7, 109 (2020).

    Article 

    Google Scholar
     

  • Kempf, M. et al. Carbon dioxide removal: code and simulation. Zenodo. https://doi.org/10.5281/zenodo.17112515 (2025).

  • Blanco, V. et al. The effect of forest owner decision-making, climatic change and societal demands on land-use change and ecosystem service provision in Sweden. Ecosyst. Serv. 23, 174–208 (2017).

    Article 

    Google Scholar