• Sebé-Pedrós, A. et al. The dynamic regulatory genome of capsaspora and the origin of animal multicellularity. Cell 165, 1224–1237 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Berná, L. & Alvarez-Valin, F. Evolutionary genomics of fast evolving tunicates. Genome Biol. Evol. 6, 1724–1738 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Harmston, N. et al. Topologically associating domains are ancient features that coincide with Metazoan clusters of extreme noncoding conservation. Nat. Commun. 8, 441 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kapusta, A., Suh, A. & Feschotte, C. Dynamics of genome size evolution in birds and mammals. Proc. Natl Acad. Sci. USA 114, E1460–E1469 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Moriyama, Y. & Koshiba-Takeuchi, K. Significance of whole-genome duplications on the emergence of evolutionary novelties. Briefings Funct. Genomics 17, 329–338 (2018).

    Article 

    Google Scholar
     

  • Martín-Durán, J. M. et al. Conservative route to genome compaction in a miniature annelid. Nat. Ecol. Evol. 5, 231–242 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Marlétaz, F. et al. Amphioxus functional genomics and the origins of vertebrate gene regulation. Nature 564, 64–70 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zimmermann, B. et al. Topological structures and syntenic conservation in sea anemone genomes. Nat. Commun. 14, 8270 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schwaiger, M. et al. Evolutionary conservation of the eumetazoan gene regulatory landscape. Genome Res. 24, 639–650 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • modENCODE Consortium et al. Identification of functional elements and regulatory circuits by Drosophila modENCODE. Science 330, 1787–1797 (2010).

    Article 

    Google Scholar
     

  • Martín-Zamora, F. M. et al. Annelid functional genomics reveal the origins of bilaterian life cycles. Nature 615, 105–110 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pérez-Posada, A. et al. Hemichordate cis-regulatory genomics and the gene expression dynamics of deuterostomes. Nat. Ecol. Evol. https://doi.org/10.1038/s41559-024-02562-x (2024).

  • Irimia, M. et al. Extensive conservation of ancient microsynteny across metazoans due to cis-regulatory constraints. Genome Res. 22, 2356–2367 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Acemel, R. D. & Lupiáñez, D. G. Evolution of 3D chromatin organization at different scales. Curr. Opin. Genet. Dev. 78, 102019 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Irimia, M. & Maeso, I. in Old Questions and Young Approaches to Animal Evolution (eds Martín-Durán, J. M. & Vellutini, B. C.) 175–207 (Springer International Publishing, 2019).

  • Simakov, O. et al. Insights into bilaterian evolution from three spiralian genomes. Nature 493, 526–531 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Wong, E. S. et al. Deep conservation of the enhancer regulatory code in animals. Science 370, eaax8137 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Kim, I. V. et al. Chromatin loops are an ancestral hallmark of the animal regulatory genome. Nature https://doi.org/10.1038/s41586-025-08960-w (2025).

  • Rao, S. S. P. et al. A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell 159, 1665–1680 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • de Wit, E. et al. CTCF binding polarity determines chromatin looping. Mol. Cell 60, 676–684 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Kaaij, L. J. T., Mohn, F., van der Weide, R. H., de Wit, E. & Bühler, M. The ChAHP complex counteracts chromatin looping at CTCF sites that emerged from SINE expansions in mouse. Cell 178, 1437–1451.e14 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Franke, M. et al. CTCF knockout in zebrafish induces alterations in regulatory landscapes and developmental gene expression. Nat. Commun. 12, 5415 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cavalheiro, G. R. et al. CTCF, BEAF-32, and CP190 are not required for the establishment of TADs in early Drosophila embryos but have locus-specific roles. Sci. Adv. https://doi.org/10.1126/sciadv.ade1085 (2023).

  • Kaushal, A. et al. CTCF loss has limited effects on global genome architecture in Drosophila despite critical regulatory functions. Nat. Commun. 12, 1011 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Maeso, I. & Tena, J. J. Favorable genomic environments for cis-regulatory evolution: a novel theoretical framework. Semin. Cell Dev. Biol. 57, 2–10 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Nord, A. S. et al. Rapid and pervasive changes in genome-wide enhancer usage during mammalian development. Cell 155, 1521–1531 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Paris, M. et al. Extensive divergence of transcription factor binding in Drosophila embryos with highly conserved gene expression. PLoS Genet. 9, e1003748 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vierstra, J. et al. Mouse regulatory DNA landscapes reveal global principles of cis-regulatory evolution. Science 346, 1007–1012 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Villar, D., Flicek, P. & Odom, D. T. Evolution of transcription factor binding in metazoans—mechanisms and functional implications. Nat. Rev. Genet. 15, 221–233 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Villar, D. et al. Enhancer evolution across 20 mammalian species. Cell 160, 554–566 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Glazov, E. A., Pheasant, M., McGraw, E. A., Bejerano, G. & Mattick, J. S. Ultraconserved elements in insect genomes: a highly conserved intronic sequence implicated in the control of homothorax mRNA splicing. Genome Res. 15, 800–808 (2005).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • He, Q. et al. High conservation of transcription factor binding and evidence for combinatorial regulation across six Drosophila species. Nat. Genet. 43, 414–420 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Tan, G., Polychronopoulos, D. & Lenhard, B. CNEr: a toolkit for exploring extreme noncoding conservation. PLoS Comput. Biol. https://doi.org/10.1371/journal.pcbi.1006940 (2019).

  • Vavouri, T., Walter, K., Gilks, W. R., Lehner, B. & Elgar, G. Parallel evolution of conserved non-coding elements that target a common set of developmental regulatory genes from worms to humans. Genome Biol. 8, R15 (2007).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Royo, J. L. et al. Transphyletic conservation of developmental regulatory state in animal evolution. Proc. Natl Acad. Sci. USA 108, 14186–14191 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Clarke, S. L. et al. Human developmental enhancers conserved between deuterostomes and protostomes. PLoS Genet. 8, e1002852 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Frith, M. C. & Ni, S. DNA conserved in diverse animals since the Precambrian controls genes for embryonic development. Mol. Biol. Evol. https://doi.org/10.1093/molbev/msad275 (2023).

  • Harmston, N., Baresic, A. & Lenhard, B. The mystery of extreme non-coding conservation. Philos. Trans. R. Soc. London, Ser. B 368, 20130021 (2013).

    Article 
    PubMed Central 

    Google Scholar
     

  • Pennacchio, L. A., Bickmore, W., Dean, A., Nobrega, M. A. & Bejerano, G. Enhancers: five essential questions. Nat. Rev. Genet. 14, 288–295 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Woolfe, A. et al. Highly conserved non-coding sequences are associated with vertebrate development. PLoS Biol. 3, e7 (2005).

    Article 
    PubMed 

    Google Scholar
     

  • Pennacchio, L. A. et al. In vivo enhancer analysis of human conserved non-coding sequences. Nature 444, 499–502 (2006).

    Article 
    PubMed 

    Google Scholar
     

  • Wang, J., Lee, A. P., Kodzius, R., Brenner, S. & Venkatesh, B. Large number of ultraconserved elements were already present in the jawed vertebrate ancestor. Mol. Biol. Evol. 26, 487–490 (2009).

    Article 
    PubMed 

    Google Scholar
     

  • Lee, A. P., Kerk, S. Y., Tan, Y. Y., Brenner, S. & Venkatesh, B. Ancient vertebrate conserved noncoding elements have been evolving rapidly in teleost fishes. Mol. Biol. Evol. 28, 1205–1215 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Thompson, A. W. et al. The bowfin genome illuminates the developmental evolution of ray-finned fishes. Nat. Genet. 53, 1373–1384 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Najle, S. R. et al. Stepwise emergence of the neuronal gene expression program in early animal evolution. Cell 186, 4676–4693.e29 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sea Urchin Genome Sequencing Consortium et al. The genome of the sea urchin Strongylocentrotus purpuratus. Science 314, 941–952 (2006).

    Article 
    PubMed Central 

    Google Scholar
     

  • Simakov, O. et al. Hemichordate genomes and deuterostome origins. Nature 527, 459–465 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lewin, T. D., Liao, I. J.-Y. & Luo, Y.-J. Conservation of bilaterian genome structure is the exception, not the rule. Genome Biol. 26, 247 (2025).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gildor, T., Hinman, V. & Ben-Tabou-De-Leon, S. Regulatory heterochronies and loose temporal scaling between sea star and sea urchin regulatory circuits. Int. J. Dev. Biol. 61, 347–356 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Annunziata, R., Andrikou, C., Perillo, M., Cuomo, C. & Arnone, M. I. Development and evolution of gut structures: from molecules to function. Cell Tissue Res 377, 445–458 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Voronov, D. et al. Integrative multi-omics increase resolution of the sea urchin posterior gut gene regulatory network at single-cell level. Development https://doi.org/10.1242/dev.202278 (2024).

  • Marlétaz, F. et al. Analysis of the P. lividus sea urchin genome highlights contrasting trends of genomic and regulatory evolution in deuterostomes. Cell Genomics 3, 100295 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Eno, C. C., Böttger, S. A. & Walker, C. W. Methods for karyotyping and for localization of developmentally relevant genes on the chromosomes of the purple sea urchin, Strongylocentrotus purpuratus. Biol. Bull. https://doi.org/10.1086/BBLv217n3p306 (2009).

  • Saotome, K. & Komatsu, M. Chromosomes of Japanese starfishes. Zool. Sci. 19, 1095–1103 (2002).

    Article 

    Google Scholar
     

  • Byrne, M. Life history diversity and evolution in the Asterinidae. Integr. Comp. Biol. 46, 243–254 (2006).

    Article 
    PubMed 

    Google Scholar
     

  • Colombera, D. & Tagliaferri, F. The male chromosomes of five species of echinoderms together with some technical hints. Caryologia 39, 347–352 (2014).

    Article 

    Google Scholar
     

  • Thibaud-Nissen, F. et al. P8008 The NCBI eukaryotic genome annotation pipeline. J. Anim. Sci. 94, 184 (2016).

    Article 

    Google Scholar
     

  • Dixon, J. R. et al. Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature 485, 376–380 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nora, E. P. et al. Spatial partitioning of the regulatory landscape of the X-inactivation centre. Nature 485, 381–385 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sexton, T. et al. Three-dimensional folding and functional organization principles of the Drosophila genome. Cell 148, 458–472 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Schmidbaur, H. et al. Emergence of novel cephalopod gene regulation and expression through large-scale genome reorganization. Nat. Commun. 13, 2172 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huang, Z. et al. Three amphioxus reference genomes reveal gene and chromosome evolution of chordates. Proc. Natl Acad. Sci. USA 120, e2201504120 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Marlétaz, F. et al. The little skate genome and the evolutionary emergence of wing-like fins. Nature 616, 495–503 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kaaij, L. J. T., van der Weide, R. H., Ketting, R. F. & de Wit, E. Systemic loss and gain of chromatin architecture throughout zebrafish development. Cell Rep. 24, 1–10.e4 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vargas-Chávez, C. et al. An episodic burst of massive genomic rearrangements and the origin of non-marine annelids. Nat. Ecol. Evol. 9, 1263–1279 (2025).

    Article 
    PubMed 

    Google Scholar
     

  • Wang, Y. et al. Chromosome-level genome assembly of the northern Pacific seastar Asterias amurensis. Sci. Data https://doi.org/10.1038/s41597-023-02688-w (2023).

  • Watanabe, K. et al. The crucial role of CTCF in mitotic progression during early development of sea urchin. Dev. Growth Differ. 65, 395–407 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Pallarès-Albanell, J. et al. Gene regulatory dynamics during the development of a paleopteran insect, the mayfly Cloeon dipterum. Development https://doi.org/10.1242/dev.203017 (2024).

  • de-Leon, S. B.-T. & Davidson, E. H. Information processing at the foxa node of the sea urchin endomesoderm specification network. Proc. Natl Acad. Sci. USA 107, 10103–10108 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nam, J., Dong, P., Tarpine, R., Istrail, S. & Davidson, E. H. Functional cis-regulatory genomics for systems biology. Proc. Natl Acad. Sci. USA 107, 3930–3935 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Oliveri, P., Walton, K. D., Davidson, E. H. & McClay, D. R. Repression of mesodermal fate by foxa, a key endoderm regulator of the sea urchin embryo. Development 133, 4173–4181 (2006).

    Article 
    PubMed 

    Google Scholar
     

  • Hinman, V. F. & Davidson, E. H. Evolutionary plasticity of developmental gene regulatory network architecture. Proc. Natl Acad. Sci. USA 104, 19404–19409 (2007).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dylus, D. V. et al. Large-scale gene expression study in the ophiuroid Amphiura filiformis provides insights into evolution of gene regulatory networks. Evodevo 7, 2 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hore, T. A., Deakin, J. E. & Ja, M. G. The evolution of epigenetic regulators CTCF and BORIS/CTCFL in amniotes. PLoS Genet. https://doi.org/10.1371/journal.pgen.1000169 (2008).

  • Kadota, M., Yamaguchi, K., Hara, Y. & Kuraku, S. Early vertebrate origin of CTCFL, a CTCF paralog, revealed by proximity-guided shark genome scaffolding. Sci. Rep. 10, 14629 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mongiardino Koch, N. et al. Phylogenomic analyses of echinoid diversification prompt a re-evaluation of their fossil record. eLife https://doi.org/10.7554/eLife.72460 (2022).

  • Linchangco, G. V. Jr et al. The phylogeny of extant starfish (Asteroidea: Echinodermata) including Xyloplax, based on comparative transcriptomics. Mol. Phylogenet. Evol. 115, 161–170 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Villier, L. et al. Superstesaster promissor gen. et sp. nov., a new starfish (Echinodermata, Asteroidea) from the Early Triassic of Utah, USA, filling a major gap in the phylogeny of asteroids. J. Syst. Palaeontol. 16, 395–415 (2018).

    Article 

    Google Scholar
     

  • Deline, B. et al. Evolution and development at the origin of a phylum. Curr. Biol. 30, 1672–1679.e3 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Telford, M. J., Budd, G. E. & Philippe, H. Phylogenomic insights into animal evolution. Curr. Biol. 25, R876–R887 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Cunningham, J. A., Liu, A. G., Bengtson, S. & Donoghue, P. C. J. The origin of animals: can molecular clocks and the fossil record be reconciled?. Bioessays 39, 1–12 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Odom, D. T. et al. Tissue-specific transcriptional regulation has diverged significantly between human and mouse. Nat. Genet. 39, 730–732 (2007).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schmidt, D. et al. Five-vertebrate ChIP-seq reveals the evolutionary dynamics of transcription factor binding. Science 328, 1036–1040 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ksepka, D. T. et al. The fossil calibration database—a new resource for divergence dating. Syst. Biol. 64, 853–859 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Sebé-Pedrós, A. & Ruiz-Trillo, I. Evolution and classification of the T-box transcription factor family. Curr. Top. Dev. Biol. 122, 1–26 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Ben-Tabou de-Leon, S., Su, Y.-H., Lin, K.-T., Li, E. & Davidson, E. H. Gene regulatory control in the sea urchin aboral ectoderm: spatial initiation, signaling inputs, and cell fate lockdown. Dev. Biol. 374, 245–254 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Gross, J. M., Peterson, R. E., Wu, S.-Y. & McClay, D. R. LvTbx2/3: a T-box family transcription factor involved in formation of the oral/aboral axis of the sea urchin embryo. Development 130, 1989–1999 (2003).

    Article 
    PubMed 

    Google Scholar
     

  • Valencia, J. E., Feuda, R., Mellott, D. O., Burke, R. D. & Peter, I. S. Ciliary photoreceptors in sea urchin larvae indicate pan-deuterostome cell type conservation. BMC Biol. 19, 257 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fresques, T. M. & Wessel, G. M. Nodal induces sequential restriction of germ cell factors during primordial germ cell specification. Development https://doi.org/10.1242/dev.155663 (2018).

  • Paganos, P., Voronov, D., Musser, J. M., Arendt, D. & Arnone, M. I. Single-cell RNA sequencing of the Strongylocentrotus purpuratus larva reveals the blueprint of major cell types and nervous system of a non-chordate deuterostome. eLife https://doi.org/10.7554/eLife.70416 (2021).

  • Meyer, A., Ku, C., Hatleberg, W. L., Telmer, C. A. & Hinman, V. New hypotheses of cell type diversity and novelty from orthology-driven comparative single cell and nuclei transcriptomics in echinoderms. eLife https://doi.org/10.7554/eLife.80090 (2023).

  • Nora, E. P. et al. Targeted degradation of CTCF decouples local insulation of chromosome domains from genomic compartmentalization. Cell 169, 930–944.e22 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rao, S. S. P. et al. Cohesin loss eliminates all loop domains. Cell 171, 305–320.e24 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Niu, L. et al. Three-dimensional folding dynamics of the Xenopus tropicalis genome. Nat. Genet. 53, 1075–1087 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cui, M., Vielmas, E., Davidson, E. H. & Peter, I. S. Sequential response to multiple developmental network circuits encoded in an intronic cis-regulatory module of sea urchin hox11/13b. Cell Rep. 19, 364–374 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Damle, S. & Davidson, E. H. Precise cis-regulatory control of spatial and temporal expression of the alx-1 gene in the skeletogenic lineage of S. purpuratus. Dev. Biol. 357, 505–517 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee, P. Y., Nam, J. & Davidson, E. H. Exclusive developmental functions of gatae cis-regulatory modules in the Strongylocentrorus purpuratus embryo. Dev. Biol. 307, 434–445 (2007).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Livi, C. B. & Davidson, E. H. Regulation of spblimp1/krox1a, an alternatively transcribed isoform expressed in midgut and hindgut of the sea urchin gastrula. Gene Expr. Patterns 7, 1–7 (2007).

    Article 
    PubMed 

    Google Scholar
     

  • Yuh, C.-H. et al. Patchy interspecific sequence similarities efficiently identify positive cis-regulatory elements in the sea urchin. Dev. Biol. 246, 148–161 (2002).

    Article 
    PubMed 

    Google Scholar
     

  • Irie, N. & Kuratani, S. Comparative transcriptome analysis reveals vertebrate phylotypic period during organogenesis. Nat. Commun. 2, 248 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Hu, H. et al. Constrained vertebrate evolution by pleiotropic genes. Nat. Ecol. Evol. 1, 1722–1730 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Duboule, D. Temporal colinearity and the phylotypic progression: a basis for the stability of a vertebrate Bauplan and the evolution of morÿphologies through heterochrony. Development 1994, 135–142 (1994).

    Article 

    Google Scholar
     

  • Bogdanovic, O. et al. Dynamics of enhancer chromatin signatures mark the transition from pluripotency to cell specification during embryogenesis. Genome Res. 22, 2043–2053 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Buono, L. et al. Conservation of cis-regulatory syntax underlying deuterostome gastrulation. Cells https://doi.org/10.3390/cells13131121 (2024).

  • Skvortsova, K. et al. Active DNA demethylation of developmental cis-regulatory regions predates vertebrate origins. Sci. Adv. https://doi.org/10.1126/sciadv.abn2258 (2022).

  • Gonzalez, P., Hauck, Q. C. & Baxevanis, A. D. Conserved noncoding elements evolve around the same genes throughout metazoan evolution. Genome Biol. Evol. 16, evae052 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Koren, S. et al. Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome Res. 27, 722–736 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Simão, F. A., Waterhouse, R. M., Ioannidis, P., Kriventseva, E. V. & Zdobnov, E. M. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31, 3210–3212 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754–1760 (2009).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Robinson, J. T. et al. Juicebox.js provides a cloud-based visualization system for Hi-C data. Cell Syst. 6, 256–258.e1 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Knight, P. A. & Ruiz, D. A fast algorithm for matrix balancing. IMA J. Numer. Anal. 33, 1029–1047 (2012).

    Article 

    Google Scholar
     

  • Kruse, K., Hug, C. B. & Vaquerizas, J. M. FAN-C: a feature-rich framework for the analysis and visualisation of chromosome conformation capture data. Genome Biol. 21, 303 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Crane, E. et al. Condensin-driven remodelling of X chromosome topology during dosage compensation. Nature 523, 240–244 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dudchenko, O. et al. De novo assembly of the Aedes aegypti genome using Hi-C yields chromosome-length scaffolds. Science 356, 92–95 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Durand, N. C. et al. Juicebox provides a visualization system for Hi-C contact maps with unlimited zoom. Cell Syst. 3, 99–101 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).

    Article 
    PubMed 

    Google Scholar
     

  • Katoh, K., Rozewicki, J. & Yamada, K. D. MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Briefings Bioinf. 20, 1160–1166 (2017).

    Article 

    Google Scholar
     

  • Larsson, A. AliView: a fast and lightweight alignment viewer and editor for large datasets. Bioinformatics 30, 3276–3278 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nguyen, L.-T., Schmidt, H. A., von Haeseler, A. & Minh, B. Q. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32, 268–274 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hoang, D. T., Chernomor, O., von Haeseler, A., Minh, B. Q. & Vinh, L. S. UFBoot2: improving the ultrafast bootstrap approximation. Mol. Biol. Evol. 35, 518–522 (2017).

    Article 
    PubMed Central 

    Google Scholar
     

  • Heger, P., Marin, B., Bartkuhn, M., Schierenberg, E. & Wiehe, T. The chromatin insulator CTCF and the emergence of metazoan diversity. Proc. Natl Acad. Sci. USA 109, 17507–17512 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kalyaanamoorthy, S., Minh, B. Q., Wong, T. K. F., von Haeseler, A. & Jermiin, L. S. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat. Methods 14, 587–589 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Letunic, I. & Bork, P. Interactive tree of life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Res. 49, W293–W296 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Armstrong, J. et al. Progressive cactus is a multiple-genome aligner for the thousand-genome era. Nature 587, 246–251 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Arshinoff, B. I. et al. Echinobase: leveraging an extant model organism database to build a knowledgebase supporting research on the genomics and biology of echinoderms. Nucleic Acids Res. 50, D970–D979 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Buenrostro, J. D., Giresi, P. G., Zaba, L. C., Chang, H. Y. & Greenleaf, W. J. Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. Nat. Methods 10, 1213–1218 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Magri, M. S. et al. Assaying chromatin accessibility using ATAC-Seq in invertebrate chordate embryos. Front Cell Dev. Biol. 7, 372 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, H. et al. The sequence alignment/map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, Y. et al. Model-based analysis of ChIP-Seq (MACS). Genome Biol. 9, R137 (2008).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, Q., Brown, J. B., Huang, H. & Bickel, P. J. Measuring reproducibility of high-throughput experiments. Ann. Appl. Stat. 5, 1752–1779 (2011).

    Article 

    Google Scholar
     

  • Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Heinz, S. et al. Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol. Cell 38, 576–589 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ye, T. et al. seqMINER: an integrated ChIP-seq data interpretation platform. Nucleic Acids Res. 39, e35 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Ramírez, F. et al. deepTools2: a next generation web server for deep-sequencing data analysis. Nucleic Acids Res. 44, W160–W165 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hickey, G., Paten, B., Earl, D., Zerbino, D. & Haussler, D. HAL: a hierarchical format for storing and analyzing multiple genome alignments. Bioinformatics 29, 1341–1342 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Emms, D. M. & Kelly, S. OrthoFinder: phylogenetic orthology inference for comparative genomics. Genome Biol. 20, 238 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Buchfink, B., Xie, C. & Huson, D. H. Fast and sensitive protein alignment using DIAMOND. Nat. Methods https://doi.org/10.1038/nmeth.3176 (2015).

  • Martínez-Redondo, G. I. et al. FANTASIA leverages language models to decode the functional dark proteome across the animal tree of life. Commun. Biol. 8, 1227 (2025).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Alexa, A. & Rahnenfuhrer, J. topGO: Enrichment Analysis for Gene Ontology (Bioconductor, 2025); https://doi.org/10.18129/B9.bioc.topGO

  • Untergasser, A. et al. Primer3—new capabilities and interfaces. Nucleic Acids Res. 40, e115 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xiong, A.-S. et al. PCR-based accurate synthesis of long DNA sequences. Nat. Protoc. 1, 791–797 (2006).

    Article 
    PubMed 

    Google Scholar
     

  • Arnone, M. I., Dmochowski, I. J. & Gache, C. in Development of Sea Urchins, Ascidians, and Other Invertebrate Deuterostomes: Experimental Approaches (eds Ettensohn, C. A. et al.) 621–652 (Academic Press, 2004).

  • Perillo, M., Paganos, P., Spurrell, M., Arnone, M. I. & Wessel, G. M. Methodology for whole mount and fluorescent RNA in situ hybridization in echinoderms: single, double, and beyond. Methods Mol. Biol. 2219, 195–216 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Paganos, P. et al. FISH for all: a fast and efficient fluorescent hybridization (FISH) protocol for marine embryos and larvae. Front Physiol. 13, 878062 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Foley, S. Files for viewing multiple genome alignment of marine invertebrates from ‘Deep conservation of cis-regulatory elements and chromatin organization in echinoderms uncover ancestral regulatory features of animal genomes’. figshare https://doi.org/10.6084/m9.figshare.30506378 (2025).

  • Brasó-Vives, M. et al. Parallel evolution of amphioxus and vertebrate small-scale gene duplications. Genome Biol. 23, 1–24 (2022).

    Article 

    Google Scholar
     

  • Saudemont, A. et al. Ancestral regulatory circuits governing ectoderm patterning downstream of Nodal and BMP2/4 revealed by gene regulatory network analysis in an echinoderm. PLoS Genet. 6, e1001259 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar