Lee, J. R. et al. Climate change drives expansion of Antarctic ice-free habitat. Nature 547, 49–54 (2017).
Kerr, M. R. et al. Widespread ecological novelty across the terrestrial biosphere. Nat. Ecol. Evol. 9, 589–598 (2025).
Pertierra, L. R. et al. Advances and shortfalls in knowledge of Antarctic terrestrial and freshwater biodiversity. Science 387, 609–615 (2025).
Ji, M. et al. Atmospheric trace gases support primary production in Antarctic desert surface soil. Nature 552, 400–403 (2017).
Ortiz, M. et al. Multiple energy sources and metabolic strategies sustain microbial diversity in Antarctic desert soils. Proc. Natl Acad. Sci. USA 118, e2025322118 (2021).
Mikucki, J. A. et al. Field-based planetary protection operations for melt probes: validation of clean access into the Blood Falls, Antarctica, englacial ecosystem. Astrobiology 23, 1165–1178 (2023).
Terauds, A. et al. Conservation biogeography of the Antarctic. Divers. Distrib. 18, 726–741 (2012).
Dehling, D. M. & Chown, S. L. Global increase in the endemism of birds from north to south. Nat. Commun. 16, 6251 (2025).
Turner, J. et al. The dominant role of extreme precipitation events in Antarctic snowfall variability. Geophys. Res. Lett. 46, 3502–3511 (2019).
Wille, J. D. et al. The extraordinary March 2022 East Antarctica ‘Heat’ wave. Part I: observations and meteorological drivers. J. Clim. 37, 757–778 (2024).
Neme, J., England, M. H. & Hogg, A. M. Projected changes of surface winds over the Antarctic continental margin. Geophys. Res. Lett. 49, e2022GL098820.
Robinson, S. A., Revell, L. E., Mackenzie, R. & Ossola, R. Extended ozone depletion and reduced snow and ice cover — consequences for Antarctic biota. Glob. Change Biol. 30, e17283 (2024).
Cannone, N., Malfasi, F., Favero-Longo, S. E., Convey, P. & Guglielmin, M. Acceleration of climate warming and plant dynamics in Antarctica. Curr. Biol. 32, 1599–1606.e2 (2022).
Roland, T. P. et al. Sustained greening of the Antarctic Peninsula observed from satellites. Nat. Geosci. 17, 1121–1126 (2024).
Câmara, P. E. A. S. et al. Fairy ring disease affects epiphytic algal assemblages associated with the moss Sanionia uncinata (Hedw.) Loeske (Bryophyta) on King George Island, Antarctica. Extremophiles 25, 501–512 (2021).
Robinson, S. A. et al. Rapid change in East Antarctic terrestrial vegetation in response to regional drying. Nat. Clim. Change 8, 879–884 (2018).
Colesie, C. et al. Is Antarctica greening? Glob. Change Biol. 31, e70294 (2025).
Folgar-Cameán, Y. & Barták, M. Evaluation of photosynthetic processes in Antarctic mosses and lichens exposed to controlled rate cooling: species-specific responses. Czech Polar Rep. 9, 114–124 (2019).
Prather, H. M. et al. Species-specific effects of passive warming in an Antarctic moss system. R. Soc. Open Sci. 6, 190744 (2019).
Vellend, M. Conceptual synthesis in community ecology. Q. Rev. Biol. 85, 183–206 (2010).
Thompson, P. L. et al. A process-based metacommunity framework linking local and regional scale community ecology. Ecol. Lett. 23, 1314–1329 (2020).
Grainger, T. N. et al. An empiricist’s guide to using ecological theory. Am. Nat. 199, 1–20 (2022).
Chown, S. L. et al. Antarctic Climate Change and the Environment: A Decadal Synopsis and Recommendations for Action (SCAR, 2022).
Chown, S. L. et al. Antarctica and the strategic plan for biodiversity. PLoS Biol. 15, e2001656 (2017).
Terauds, A. et al. The biodiversity of ice-free Antarctica database. Ecology 106, e70000 (2025).
Tóth, A. B. et al. A dataset of Antarctic ecosystems in ice-free lands: classification, descriptions, and maps. Sci. Data 12, 133 (2025).
Singh, C. P. et al. Mapping lichen abundance in ice-free areas of Larsemann Hills, East Antarctica using remote sensing and lichen spectra. Polar Sci. 38, 100976 (2023).
Patterson, C. R., Helmstedt, K. J., Terauds, A. & Shaw, J. D. A multidimensional assessment of Antarctic terrestrial biological data. Divers. Distrib. 31, e13909 (2025).
Anderson, R. O., Chown, S. L. & Leihy, R. I. Continent-wide analysis of moss diversity in Antarctica. Ecography 2025, e07353 (2025).
Walshaw, C. V. et al. A satellite-derived baseline of photosynthetic life across Antarctica. Nat. Geosci. 17, 755–762 (2024).
Thomson, A. I. et al. Surface darkening by abundant and diverse algae on an Antarctic ice cap. Nat. Commun. 16, 2647 (2025).
Varliero, G. et al. Biogeographic survey of soil bacterial communities across Antarctica. Microbiome 12, 9 (2024).
Lambrechts, S., Willems, A. & Tahon, G. Uncovering the uncultivated majority in Antarctic soils: toward a synergistic approach. Front. Microbiol. 10, 242 (2019).
Albanese, D. et al. Pre-Cambrian roots of novel Antarctic cryptoendolithic bacterial lineages. Microbiome 9, 63 (2021).
Nowak, A. et al. Antarctic Blue Ice Areas are hydrologically active, nutrient rich and contain microbially diverse cryoconite holes. Commun. Earth Environ. 5, 345 (2024).
Fraser, C. I., Terauds, A., Smellie, J., Convey, P. & Chown, S. L. Geothermal activity helps life survive glacial cycles. Proc. Natl Acad. Sci. USA 111, 5634–5639 (2014).
Chown, S. L. et al. The changing form of Antarctic biodiversity. Nature 522, 431–438 (2015).
Lee, J. R. et al. Islands in the ice: potential impacts of habitat transformation on Antarctic biodiversity. Glob. Change Biol. 28, 5865–5880 (2022).
Bottos, E. M. et al. Abiotic factors influence patterns of bacterial diversity and community composition in the Dry Valleys of Antarctica. FEMS Microbiol. Ecol. 96, fiaa042 (2020).
Siegert, M. J. et al. Antarctic extreme events. Front. Environ. Sci. 11, 1229283 (2023).
Bracegirdle, T. J. et al. Antarctic extreme seasons under 20th and 21st century climate change. npj Clim. Atmos. Sci. 7, 276 (2024).
Xu, M., Pithan, F. & Yang, Q. Antarctic warm extremes across seasons and their response to advection. J. Geophys. Res. D Atmos. 129, e2024JD040884.
Saunderson, D., Mackintosh, A. N., McCormack, F. S., Jones, R. S. & Van Dalum, C. T. How does the Southern Annular Mode control surface melt in East Antarctica? Geophys. Res. Lett. 51, e2023GL105475 (2024).
Brooks, S. T., Jabour, J., Van Den Hoff, J. & Bergstrom, D. M. Our footprint on Antarctica competes with nature for rare ice-free land. Nat. Sustain. 2, 185–190 (2019).
Coetzee, B. W. T. & Chown, S. L. A meta-analysis of human disturbance impacts on Antarctic wildlife. Biol. Rev. 91, 578–596 (2016).
Flynn, C. M., Hart, T., Clucas, G. V. & Lynch, H. J. Penguins in the anthropause: COVID-19 closures drive gentoo penguin movement among breeding colonies. Biol. Conserv. 286, 110318 (2023).
Bokhorst, S., Convey, P. & Aerts, R. Nitrogen inputs by marine vertebrates drive abundance and richness in Antarctic terrestrial ecosystems. Curr. Biol. 29, 1721–1727.e3 (2019).
Leihy, R. I. et al. Antarctica’s wilderness fails to capture continent’s biodiversity. Nature 583, 567–571 (2020).
Clark, P. U., Shakun, J. D., Rosenthal, Y., Köhler, P. & Bartlein, P. J. Global and regional temperature change over the past 4.5 million years. Science 383, 884–890 (2024).
Bargagli, R. & Rota, E. Environmental contamination and climate change in Antarctic ecosystems: an updated overview. Environ. Sci. Adv. 3, 543–560 (2024).
Suaria, G. et al. Floating macro- and microplastics around the Southern Ocean: results from the Antarctic Circumnavigation Expedition. Environ. Int. 136, 105494 (2020).
Aves, A. R. et al. First evidence of microplastics in Antarctic snow. Cryosphere 16, 2127–2145 (2022).
Santamans, A. C. et al. Soil features in rookeries of Antarctic penguins reveal sea to land biotransport of chemical pollutants. PLoS ONE 12, e0181901 (2017).
Potapowicz, J., Szumińska, D., Szopińska, M. & Polkowska, Ż The influence of global climate change on the environmental fate of anthropogenic pollution released from the permafrost. Sci. Total Environ. 651, 1534–1548 (2019).
McCarthy, A. H., Peck, L. S. & Aldridge, D. C. Ship traffic connects Antarctica’s fragile coasts to worldwide ecosystems. Proc. Natl Acad. Sci. USA 119, e2110303118 (2022).
Pertierra, L. R., Escribano-Álvarez, P. & Olalla-Tárraga, M. Á Cold tolerance is similar but heat tolerance is higher in the alien insect Trichocera maculipennis than in the native Parochlus steinenii in Antarctica. Polar Biol. 44, 1203–1208 (2021).
Chown, S. L. et al. Invasive species impacts on sub-Antarctic Collembola support the Antarctic climate-diversity-invasion hypothesis. Soil Biol. Biochem. 166, 108579 (2022).
Leihy, R. I., Peake, L., Clarke, D. A., Chown, S. L. & McGeoch, M. A. Introduced and invasive alien species of Antarctica and the Southern Ocean Islands. Sci. Data 10, 200 (2023).
Hughes, K. A. et al. Invasive non-native species likely to threaten biodiversity and ecosystems in the Antarctic Peninsula region. Glob. Change Biol. 26, 2702–2716 (2020).
Duffy, G. A. et al. Barriers to globally invasive species are weakening across the Antarctic. Divers. Distrib. 23, 982–996 (2017).
Pertierra, L. R. et al. Global thermal niche models of two European grasses show high invasion risks in Antarctica. Glob. Change Biol. 23, 2863–2873 (2017).
Onley, I. R. et al. Assessing ongoing risks and managing detections of non-native invertebrates in the Antarctic region. NeoBiota 95, 133–147 (2024).
Hughes, K. A., Pertierra, L. R., Molina-Montenegro, M. A. & Convey, P. Biological invasions in terrestrial Antarctica: what is the current status and can we respond? Biodivers. Conserv. 24, 1031–1055 (2015).
Kerry, K. R. & Riddle, M. J. Health of Antarctic Wildlife: A Challenge for Science and Policy (Springer, 2009).
Kuiken, T. et al. Emergence, spread, and impact of high-pathogenicity avian influenza H5 in wild birds and mammals of South America and Antarctica. Conserv. Biol. 39, e70052 (2025).
Leihy, R. I. et al. Antarctic biosecurity policy effectively manages the rates of alien introductions. Earth’s Future 13, e2024EF005405 (2025).
Convey, P. et al. The spatial structure of Antarctic biodiversity. Ecol. Monogr. 84, 203–244 (2014).
Contador, T. et al. Assessing distribution shifts and ecophysiological characteristics of the only Antarctic winged midge under climate change scenarios. Sci. Rep. 10, 9087 (2020).
Potts, L. J. et al. Environmental factors influencing fine-scale distribution of Antarctica’s only endemic insect. Oecologia 194, 529–539 (2020).
Devlin, J. J. et al. Simulated winter warming negatively impacts survival of Antarctica’s only endemic insect. Funct. Ecol. 36, 1949–1960 (2022).
Wasley, J., Robinson, S. A., Lovelock, C. E. & Popp, M. Climate change manipulations show Antarctic flora is more strongly affected by elevated nutrients than water. Glob. Change Biol. 12, 1800–1812 (2006).
Zhang, E. et al. Effects of increasing soil moisture on Antarctic desert microbial ecosystems. Conserv. Biol. 38, e14268 (2024).
Dragone, N. B. et al. Elevational constraints on the composition and genomic attributes of microbial communities in Antarctic soils. mSystems 7, e01330-21 (2022).
Dragone, N. B. et al. Exploring the boundaries of microbial habitability in soil. J. Geophys. Res. G Biogeosci, 126, e2020JG006052 (2021).
Colesie, C. et al. The longest baseline record of vegetation dynamics in Antarctica reveals acute sensitivity to water availability. Earth’s Future 10, e2022EF002823.
Amesbury, M. J. et al. Widespread biological response to rapid warming on the Antarctic Peninsula. Curr. Biol. 27, 1616–1622.e2 (2017).
Purcell, A. M. et al. Rapid growth rate responses of terrestrial bacteria to field warming on the Antarctic Peninsula. ISME J. 17, 2290–2302 (2023).
De Jonge, I. K., Convey, P., Klarenberg, I. J., Cornelissen, J. H. C. & Bokhorst, S. Flexible or fortified? How lichens balance defence strategies across climatic harshness gradients. N. Phytol. 246, 406–415 (2025).
Gray, A. et al. Remote sensing reveals Antarctic green snow algae as important terrestrial carbon sink. Nat. Commun. 11, 2527 (2020).
Ray, A. E. et al. Atmospheric chemosynthesis is phylogenetically and geographically widespread and contributes significantly to carbon fixation throughout cold deserts. ISME J. 16, 2547–2560 (2022).
Snyder, M. D. et al. Soil biota sensitivity to hydroclimate variability in a polar desert ecosystem. Arct. Antarct. Alp. Res. https://doi.org/10.1080/15230430.2025.2485283 (2025).
Newsham, K. K. et al. Experimental warming increases fungal alpha diversity in an oligotrophic maritime Antarctic soil. Front. Microbiol. 13, 1050372 (2022).
Hopkins, D. W. et al. Carbon, nitrogen and temperature controls on microbial activity in soils from an Antarctic dry valley. Soil Biol. Biochem. 38, 3130–3140 (2006).
Newsham, K. K. et al. Bacterial community composition and diversity respond to nutrient amendment but not warming in a maritime Antarctic soil. Microb. Ecol. 78, 974–984 (2019).
Chown, S. L. & Convey, P. Spatial and temporal variability across life’s hierarchies in the terrestrial Antarctic. Phil. Trans. R. Soc. B Biol. Sci. 362, 2307–2331 (2007).
Matos, P. et al. Microscale is key to model current and future maritime Antarctic vegetation. Sci. Total Environ. 946, 174171 (2024).
Renault, D. et al. The rising threat of climate change for arthropods from Earth’s cold regions: taxonomic rather than native status drives species sensitivity. Glob. Change Biol. 28, 5914–5927 (2022).
Cuba-Diaz, M., Fuentes-Lillo, E., Navarrete-Campos, D. & Chwedorzewska, K. J. Effects of climate change conditions on the individual response and biotic interactions of the native and non-native plants of Antarctica. Polar Biol. 46, 849–863 (2023).
Knox, M. A. et al. Decoupled responses of soil bacteria and their invertebrate consumer to warming, but not freeze–thaw cycles, in the Antarctic dry valleys. Ecol. Lett. 20, 1242–1249 (2017).
Andriuzzi, W. S., Adams, B. J., Barrett, J. E., Virginia, R. A. & Wall, D. H. Observed trends of soil fauna in the Antarctic Dry valleys: early signs of shifts predicted under climate change. Ecology 99, 312–321 (2018).
Yergeau, E. & Kowalchuk, G. A. Responses of Antarctic soil microbial communities and associated functions to temperature and freeze–thaw cycle frequency. Environ. Microbiol. 10, 2223–2235 (2008).
Laudicina, V. A. et al. Responses to increases in temperature of heterotrophic micro-organisms in soils from the maritime Antarctic. Polar Biol. 38, 1153–1160 (2015).
de Souza Carvalho, J. V. et al. Impact of expected global warming on C mineralization in maritime Antarctic soils: results of laboratory experiments. Antarct. Sci. 22, 485–493 (2010).
Aislabie, J. M., Balks, M. R., Foght, J. M. & Waterhouse, E. J. Hydrocarbon spills on Antarctic soils: effects and management. Environ. Sci. Technol. 38, 1265–1274 (2004).
Baird, H. P., Janion-Scheepers, C., Stevens, M. I., Leihy, R. I. & Chown, S. L. The ecological biogeography of indigenous and introduced Antarctic springtails. J. Biogeogr. 46, 1959–1973 (2019).
Tytgat, B. et al. Polar lake microbiomes have distinct evolutionary histories. Sci. Adv. 9, eade7130 (2023).
Saługa, M., Ochyra, R. & Ronikier, M. Phylogeographical breaks and limited connectivity among multiple refugia in a pan-Antarctic moss species. J. Biogeogr. 49, 1991–2004 (2022).
Ross, G. M., Rymer, P. D., Cook, J. M. & Nielsen, U. N. Phylogeography of Antarctic soil invertebrate fauna reveals ancient origins, repeated colonization and recent evolution. Antarct. Sci. 37, 13–30 (2025).
Sokol, E. R., Herbold, C. W., Lee, C. K., Cary, S. C. & Barrett, J. E. Local and regional influences over soil microbial metacommunities in the Transantarctic Mountains. Ecosphere 4, 136 (2013).
Diaz, M. A. et al. Aeolian material transport and its role in landscape connectivity in the McMurdo Dry Valleys, Antarctica. J. Geophys. Res. F Earth Surf. 123, 3323–3337 (2018).
Lagostina, E. et al. Effects of dispersal strategy and migration history on genetic diversity and population structure of Antarctic lichens. J. Biogeogr. 48, 1635–1653 (2021).
Colesie, C., Walshaw, C. V., Sancho, L. G., Davey, M. P. & Gray, A. Antarctica’s vegetation in a changing climate. WIREs Clim. Change 14, e810 (2022).
Hawes, T. C., Worland, M. R., Convey, P. & Bale, J. S. Aerial dispersal of springtails on the Antarctic Peninsula: implications for local distribution and demography. Antarct. Sci. 19, 3–10 (2007).
Bottos, E. M., Scarrow, J. W., Archer, S. D. J., McDonald, I. R. & Cary, S. C. Antarctic Terrestrial Microbiology: Physical and Biological Properties of Antarctic Soils (Springer, 2014).
Vega, G. C., Convey, P., Hughes, K. A. & Olalla-Tárraga, M. Á Humans and wind, shaping Antarctic soil arthropod biodiversity. Insect Conserv. Divers. 13, 63–76 (2020).
Morelli, T. L. et al. Does habitat or climate change drive species range shifts? Ecography 2025, e07560 (2025).
Wong, S. Y., Machado-de-Lima, N. M., Wilkins, D., Zhang, E. & Ferrari, B. C. Fine-scale landscape heterogeneity drives microbial community structure at Robinson ridge, East Antarctica. Sci. Total Environ. 958, 177964 (2025).
Hrbáček, F. et al. Active layer and permafrost thermal regimes in the ice-free areas of Antarctica. Earth-Sci. Rev. 242, 104458 (2023).
Kopp, M. et al. South polar skuas from a single breeding population overwinter in different oceans though show similar migration patterns. Mar. Ecol. Prog. Ser. 435, 263–267 (2011).
Printzen, C., Domaschke, S., Fernández-Mendoza, F. & Pérez-Ortega, S. Biogeography and ecology of Cetraria aculeata, a widely distributed lichen with a bipolar distribution. MycoKeys 6, 33–53 (2013).
Jorquera, J. et al. Genomic introgression and adaptation of southern seabird species facilitate recent polar colonization. Mol. Biol. Evol. 42, msaf053 (2025).
Yin, H. et al. Basking in the sun: how mosses photosynthesise and survive in Antarctica. Photosynth. Res. 158, 151–169 (2023).
Ramírez, C. F. et al. Ecophysiology of Antarctic vascular plants: an update on the extreme environment resistance mechanisms and their importance in facing climate change. Plants 13, 449 (2024).
Teets, N. M. & Denlinger, D. L. Surviving in a frozen desert: environmental stress physiology of terrestrial Antarctic arthropods. J. Exp. Biol. 217, 84–93 (2014).
Bahrndorff, S., Lauritzen, J. M. S., Sørensen, M. H., Noer, N. K. & Kristensen, T. N. Responses of terrestrial polar arthropods to high and increasing temperatures. J. Exp. Biol. 224, jeb230797 (2021).
Bahrndorff, S., Convey, P., Chown, S. L. & Sørensen, J. G. Polar ectotherms more vulnerable to warming than expected. Trends Ecol. Evol. 40, 619–621 (2025).
Escribano-Álvarez, P., Martinez, P. A., Janion-Scheepers, C., Pertierra, L. R. & Olalla-Tárraga, M. Á Colonizing polar environments: thermal niche evolution in Collembola. Ecography 2024, e06884 (2024).
Spacht, D. E. et al. Fine-scale variation in microhabitat conditions influences physiology and metabolism in an Antarctic insect. Oecologia 197, 373–385 (2021).
Beltrán-Sanz, N., Raggio, J., Pintado, A., Dal Grande, F. & García Sancho, L. Physiological plasticity as a strategy to cope with harsh climatic conditions: ecophysiological meta-analysis of the cosmopolitan moss Ceratodon purpureus in the Southern Hemisphere. Plants 12, 499 (2023).
Colesie, C., Büdel, B., Hurry, V. & Green, T. G. A. Can Antarctic lichens acclimatize to changes in temperature? Glob. Change Biol. 24, 1123–1135 (2018).
Wouw, M. V. D., Dijk, P. V. & Huiskes, A. H. L. Regional genetic diversity patterns in Antarctic hairgrass (Deschampsia antarctica Desv.). J. Biogeogr. 35, 365–376 (2008).
Casanova-Katny, M. A. & Cavieres, L. A. Antarctic moss carpets facilitate growth of Deschampsia antarctica but not its survival. Polar Biol. 35, 1869–1878 (2012).
Buelow, H. N. et al. Microbial community responses to increased water and organic matter in the arid soils of the McMurdo Dry Valleys, Antarctica. Front. Microbiol. 7, 1040 (2016).
Nicolas, A. M. et al. A subset of viruses thrives following microbial resuscitation during rewetting of a seasonally dry California grassland soil. Nat. Commun. 14, 5835 (2023).
Collins, G. E. & Hogg, I. D. Temperature-related activity of Gomphiocephalus hodgsoni (Collembola) mitochondrial DNA (COI) haplotypes in Taylor Valley, Antarctica. Polar Biol. 39, 379–389 (2016).
Amaral, C. et al. Abrupt greening observed since 2020 at Admiralty Bay, King George Island, Antarctica. Polar Biol. 48, 40 (2025).
Bokhorst, S., Convey, P., Casanova-Katny, A. & Aerts, R. Warming impacts potential germination of non-native plants on the Antarctic Peninsula. Commun. Biol. 4, 403 (2021).
McGeoch, M. A., Clarke, D. A., Mungi, N. A. & Ordonez, A. A nature-positive future with biological invasions: theory, decision support and research needs. Phil. Trans. R. Soc. B Biol. Sci. 379, 20230014 (2024).
Hogg, I. D. et al. Biotic interactions in Antarctic terrestrial ecosystems: are they a factor? Soil Biol. Biochem. 38, 3035–3040 (2006).
Cavieres, L. A. et al. The importance of facilitative interactions on the performance of Colobanthus quitensis in an Antarctic tundra. J. Veg. Sci. 29, 236–244 (2018).
Rocha, B. et al. Incorporating biotic interactions to better model current and future vegetation of the maritime Antarctic. Curr. Biol. 34, 4884–4893.e4 (2024).
Znój, A., Gawor, J., Gromadka, R., Chwedorzewska, K. J. & Grzesiak, J. Root-associated bacteria community characteristics of Antarctic plants: Deschampsia antarctica and Colobanthus quitensis — a comparison. Microb. Ecol. 84, 808–820 (2022).
Naz, B. et al. Dominant plant species play an important role in regulating bacterial antagonism in terrestrial Antarctica. Front. Microbiol. 14, 1130321 (2023).
Hill, P. W. et al. Angiosperm symbioses with non-mycorrhizal fungal partners enhance N acquisition from ancient organic matter in a warming maritime Antarctic. Ecol. Lett. 22, 2111–2119 (2019).
Acuña-Rodríguez, I. S. et al. Fungal endophyte symbionts enhance plant adaptation in Antarctic habitats. Physiol. Plant. 176, e14589 (2024).
Bokhorst, S., Huiskes, A., Convey, P., Van Bodegom, P. M. & Aerts, R. Climate change effects on soil arthropod communities from the Falkland Islands and the Maritime Antarctic. Soil Biol. Biochem. 40, 1547–1556 (2008).
Ball, B. A., Convey, P., Feeser, K. L., Nielsen, U. N. & Van Horn, D. J. Environmental harshness mediates the relationship between aboveground and belowground communities in Antarctica. Soil Biol. Biochem. 164, 108493 (2022).
Krna, M. A., Day, T. A. & Ruhland, C. T. Effects of neighboring plants on the growth and reproduction of Deschampsia antarctica in Antarctic tundra. Polar Biol. 32, 1487–1494 (2009).
Shaw, E. A. & Wall, D. H. Biotic interactions in experimental Antarctic soil microcosms vary with abiotic stress. Soil Syst. 3, 57 (2019).
Kenarova, A. et al. Physiological diversity of bacterial communities from different soil locations on Livingston Island, South Shetland archipelago, Antarctica. Polar Biol. 36, 223–233 (2013).
Almela, P., Velázquez, D., Rico, E., Justel, A. & Quesada, A. Marine vertebrates impact the bacterial community composition and food webs of Antarctic microbial mats. Front. Microbiol. 13, 841175 (2022).
Molina-Montenegro, M. A., Bergstrom, D. M., Chwedorzewska, K. J., Convey, P. & Chown, S. L. Increasing impacts by Antarctica’s most widespread invasive plant species as result of direct competition with native vascular plants. NeoBiota 51, 19–40 (2019).
Cavieres, L. A., Sanhueza, A. K., Torres-Mellado, G. & Casanova-Katny, A. Competition between native Antarctic vascular plants and invasive Poa annua changes with temperature and soil nitrogen availability. Biol. Invasions 20, 1597–1610 (2017).
Bartlett, J. C., Convey, P., Newsham, K. K. & Hayward, S. A. L. Ecological consequences of a single introduced species to the Antarctic: terrestrial impacts of the invasive midge Eretmoptera murphyi on Signy Island. Soil Biol. Biochem. 180, 108965 (2023).
da Silva, T. H. et al. Does maritime Antarctic permafrost harbor environmental fungi with pathogenic potential? Fungal Biol. 126, 488–497 (2022).
Rosa, L. H. et al. Opportunistic fungi found in fairy rings are present on different moss species in the Antarctic Peninsula. Polar Biol. 43, 587–596 (2020).
Gomes, E. C. Q. et al. Pathogenicity of psychrotolerant strains of Antarctic Pseudogmynoascus fungi reveals potential opportunistic profiles. Microbe 5, 100186 (2024).
Dickson, C. R. et al. Widespread dieback in a foundation species on a sub-Antarctic World Heritage Island: fine-scale patterns and likely drivers. Austral Ecol. 46, 52–64 (2021).
Banyard, A. C. et al. Detection and spread of high pathogenicity avian influenza virus H5N1 in the Antarctic region. Nat. Commun. 15, 7433 (2024).
Ohlopkova, O. V. et al. First detection of influenza A virus subtypes H1N1 and H3N8 in the Antarctic region: King George Island, 2023. Probl. Virol. 69, 377–389 (2024).
Fountain, A. G. et al. The impact of a large-scale climate event on antarctic ecosystem processes. BioScience 66, 848–863 (2016).
Benoit, J. B. et al. Reduced male fertility of an Antarctic mite following extreme heat stress could prompt localized population declines. Cell Stress Chaperones 28, 541–549 (2023).
Ropert-Coudert, Y. et al. Two recent massive breeding failures in an Adélie penguin colony call for the creation of a marine protected area in D’Urville Sea/Mertz. Front. Mar. Sci. 5, 264 (2018).
Descamps, S. et al. Extreme snowstorms lead to large-scale seabird breeding failures in Antarctica. Curr. Biol. 33, R176–R177 (2023).
Selbmann, L. et al. Effect of environmental parameters on biodiversity of the fungal component in lithic Antarctic communities. Extremophiles 21, 1069–1080 (2017).
Gooseff, M. N. et al. Decadal ecosystem response to an anomalous melt season in a polar desert in Antarctica. Nat. Ecol. Evol. 1, 1334–1338 (2017).
Barrett, J. E. et al. Persistent effects of a discrete warming event on a polar desert ecosystem. Glob. Change Biol. 14, 2249–2261 (2008).
Courtright, E. M., Wall, D. H. & Virginia, R. A. Determining habitat suitability for soil invertebrates in an extreme environment: the McMurdo Dry Valleys, Antarctica. Antartic Sci. 13, 9–17 (2001).
Barrett, J. E. et al. Response of a terrestrial polar ecosystem to the March 2022 Antarctic weather anomaly. Earth’s Future 12, e2023EF004306 (2024).
Convey, P. & Peck, L. S. Antarctic environmental change and biological responses. Sci. Adv. 5, eaaz0888 (2019).
Terauds, A. & Lee, J. R. Antarctic biogeography revisited: updating the Antarctic conservation biogeographic regions. Divers. Distrib. 22, 836–840 (2016).
Lee, J. R. et al. Threat management priorities for conserving Antarctic biodiversity. PLoS Biol. 20, e3001921 (2022).
Zaccara, S., Patiño, J., Convey, P., Vanetti, I. & Cannone, N. Multiple colonization and dispersal events hide the early origin and induce a lack of genetic structure of the moss Bryum argenteum in Antarctica. Ecol. Evol. 10, 8959–8975 (2020).
Bohuslavová, O. et al. Dispersal of lichens along a successional gradient after deglaciation of volcanic mesas on northern James Ross Island, Antarctic Peninsula. Polar Biol. 41, 2221–2232 (2018).
Parada-Pozo, G. et al. Vegetation drives the response of the active fraction of the rhizosphere microbial communities to soil warming in Antarctic vascular plants. FEMS Microbiol. Ecol. 98, fiac099 (2022).