• Lee, J. R. et al. Climate change drives expansion of Antarctic ice-free habitat. Nature 547, 49–54 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Kerr, M. R. et al. Widespread ecological novelty across the terrestrial biosphere. Nat. Ecol. Evol. 9, 589–598 (2025).

    Article 

    Google Scholar
     

  • Pertierra, L. R. et al. Advances and shortfalls in knowledge of Antarctic terrestrial and freshwater biodiversity. Science 387, 609–615 (2025).

    Article 
    CAS 

    Google Scholar
     

  • Ji, M. et al. Atmospheric trace gases support primary production in Antarctic desert surface soil. Nature 552, 400–403 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Ortiz, M. et al. Multiple energy sources and metabolic strategies sustain microbial diversity in Antarctic desert soils. Proc. Natl Acad. Sci. USA 118, e2025322118 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Mikucki, J. A. et al. Field-based planetary protection operations for melt probes: validation of clean access into the Blood Falls, Antarctica, englacial ecosystem. Astrobiology 23, 1165–1178 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Terauds, A. et al. Conservation biogeography of the Antarctic. Divers. Distrib. 18, 726–741 (2012).

    Article 

    Google Scholar
     

  • Dehling, D. M. & Chown, S. L. Global increase in the endemism of birds from north to south. Nat. Commun. 16, 6251 (2025).

    Article 
    CAS 

    Google Scholar
     

  • Turner, J. et al. The dominant role of extreme precipitation events in Antarctic snowfall variability. Geophys. Res. Lett. 46, 3502–3511 (2019).

    Article 

    Google Scholar
     

  • Wille, J. D. et al. The extraordinary March 2022 East Antarctica ‘Heat’ wave. Part I: observations and meteorological drivers. J. Clim. 37, 757–778 (2024).

    Article 

    Google Scholar
     

  • Neme, J., England, M. H. & Hogg, A. M. Projected changes of surface winds over the Antarctic continental margin. Geophys. Res. Lett. 49, e2022GL098820.

  • Robinson, S. A., Revell, L. E., Mackenzie, R. & Ossola, R. Extended ozone depletion and reduced snow and ice cover — consequences for Antarctic biota. Glob. Change Biol. 30, e17283 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Cannone, N., Malfasi, F., Favero-Longo, S. E., Convey, P. & Guglielmin, M. Acceleration of climate warming and plant dynamics in Antarctica. Curr. Biol. 32, 1599–1606.e2 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Roland, T. P. et al. Sustained greening of the Antarctic Peninsula observed from satellites. Nat. Geosci. 17, 1121–1126 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Câmara, P. E. A. S. et al. Fairy ring disease affects epiphytic algal assemblages associated with the moss Sanionia uncinata (Hedw.) Loeske (Bryophyta) on King George Island, Antarctica. Extremophiles 25, 501–512 (2021).

    Article 

    Google Scholar
     

  • Robinson, S. A. et al. Rapid change in East Antarctic terrestrial vegetation in response to regional drying. Nat. Clim. Change 8, 879–884 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Colesie, C. et al. Is Antarctica greening? Glob. Change Biol. 31, e70294 (2025).

    Article 
    CAS 

    Google Scholar
     

  • Folgar-Cameán, Y. & Barták, M. Evaluation of photosynthetic processes in Antarctic mosses and lichens exposed to controlled rate cooling: species-specific responses. Czech Polar Rep. 9, 114–124 (2019).

    Article 

    Google Scholar
     

  • Prather, H. M. et al. Species-specific effects of passive warming in an Antarctic moss system. R. Soc. Open Sci. 6, 190744 (2019).

    Article 

    Google Scholar
     

  • Vellend, M. Conceptual synthesis in community ecology. Q. Rev. Biol. 85, 183–206 (2010).

    Article 

    Google Scholar
     

  • Thompson, P. L. et al. A process-based metacommunity framework linking local and regional scale community ecology. Ecol. Lett. 23, 1314–1329 (2020).

    Article 

    Google Scholar
     

  • Grainger, T. N. et al. An empiricist’s guide to using ecological theory. Am. Nat. 199, 1–20 (2022).

    Article 

    Google Scholar
     

  • Chown, S. L. et al. Antarctic Climate Change and the Environment: A Decadal Synopsis and Recommendations for Action (SCAR, 2022).

  • Chown, S. L. et al. Antarctica and the strategic plan for biodiversity. PLoS Biol. 15, e2001656 (2017).

    Article 

    Google Scholar
     

  • Terauds, A. et al. The biodiversity of ice-free Antarctica database. Ecology 106, e70000 (2025).

    Article 

    Google Scholar
     

  • Tóth, A. B. et al. A dataset of Antarctic ecosystems in ice-free lands: classification, descriptions, and maps. Sci. Data 12, 133 (2025).

    Article 

    Google Scholar
     

  • Singh, C. P. et al. Mapping lichen abundance in ice-free areas of Larsemann Hills, East Antarctica using remote sensing and lichen spectra. Polar Sci. 38, 100976 (2023).

    Article 

    Google Scholar
     

  • Patterson, C. R., Helmstedt, K. J., Terauds, A. & Shaw, J. D. A multidimensional assessment of Antarctic terrestrial biological data. Divers. Distrib. 31, e13909 (2025).

    Article 

    Google Scholar
     

  • Anderson, R. O., Chown, S. L. & Leihy, R. I. Continent-wide analysis of moss diversity in Antarctica. Ecography 2025, e07353 (2025).

    Article 

    Google Scholar
     

  • Walshaw, C. V. et al. A satellite-derived baseline of photosynthetic life across Antarctica. Nat. Geosci. 17, 755–762 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Thomson, A. I. et al. Surface darkening by abundant and diverse algae on an Antarctic ice cap. Nat. Commun. 16, 2647 (2025).

    Article 
    CAS 

    Google Scholar
     

  • Varliero, G. et al. Biogeographic survey of soil bacterial communities across Antarctica. Microbiome 12, 9 (2024).

    Article 

    Google Scholar
     

  • Lambrechts, S., Willems, A. & Tahon, G. Uncovering the uncultivated majority in Antarctic soils: toward a synergistic approach. Front. Microbiol. 10, 242 (2019).

    Article 

    Google Scholar
     

  • Albanese, D. et al. Pre-Cambrian roots of novel Antarctic cryptoendolithic bacterial lineages. Microbiome 9, 63 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Nowak, A. et al. Antarctic Blue Ice Areas are hydrologically active, nutrient rich and contain microbially diverse cryoconite holes. Commun. Earth Environ. 5, 345 (2024).

    Article 

    Google Scholar
     

  • Fraser, C. I., Terauds, A., Smellie, J., Convey, P. & Chown, S. L. Geothermal activity helps life survive glacial cycles. Proc. Natl Acad. Sci. USA 111, 5634–5639 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Chown, S. L. et al. The changing form of Antarctic biodiversity. Nature 522, 431–438 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Lee, J. R. et al. Islands in the ice: potential impacts of habitat transformation on Antarctic biodiversity. Glob. Change Biol. 28, 5865–5880 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Bottos, E. M. et al. Abiotic factors influence patterns of bacterial diversity and community composition in the Dry Valleys of Antarctica. FEMS Microbiol. Ecol. 96, fiaa042 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Siegert, M. J. et al. Antarctic extreme events. Front. Environ. Sci. 11, 1229283 (2023).

    Article 

    Google Scholar
     

  • Bracegirdle, T. J. et al. Antarctic extreme seasons under 20th and 21st century climate change. npj Clim. Atmos. Sci. 7, 276 (2024).

    Article 

    Google Scholar
     

  • Xu, M., Pithan, F. & Yang, Q. Antarctic warm extremes across seasons and their response to advection. J. Geophys. Res. D Atmos. 129, e2024JD040884.

  • Saunderson, D., Mackintosh, A. N., McCormack, F. S., Jones, R. S. & Van Dalum, C. T. How does the Southern Annular Mode control surface melt in East Antarctica? Geophys. Res. Lett. 51, e2023GL105475 (2024).

    Article 

    Google Scholar
     

  • Brooks, S. T., Jabour, J., Van Den Hoff, J. & Bergstrom, D. M. Our footprint on Antarctica competes with nature for rare ice-free land. Nat. Sustain. 2, 185–190 (2019).

    Article 

    Google Scholar
     

  • Coetzee, B. W. T. & Chown, S. L. A meta-analysis of human disturbance impacts on Antarctic wildlife. Biol. Rev. 91, 578–596 (2016).

    Article 

    Google Scholar
     

  • Flynn, C. M., Hart, T., Clucas, G. V. & Lynch, H. J. Penguins in the anthropause: COVID-19 closures drive gentoo penguin movement among breeding colonies. Biol. Conserv. 286, 110318 (2023).

    Article 

    Google Scholar
     

  • Bokhorst, S., Convey, P. & Aerts, R. Nitrogen inputs by marine vertebrates drive abundance and richness in Antarctic terrestrial ecosystems. Curr. Biol. 29, 1721–1727.e3 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Leihy, R. I. et al. Antarctica’s wilderness fails to capture continent’s biodiversity. Nature 583, 567–571 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Clark, P. U., Shakun, J. D., Rosenthal, Y., Köhler, P. & Bartlein, P. J. Global and regional temperature change over the past 4.5 million years. Science 383, 884–890 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Bargagli, R. & Rota, E. Environmental contamination and climate change in Antarctic ecosystems: an updated overview. Environ. Sci. Adv. 3, 543–560 (2024).

    Article 

    Google Scholar
     

  • Suaria, G. et al. Floating macro- and microplastics around the Southern Ocean: results from the Antarctic Circumnavigation Expedition. Environ. Int. 136, 105494 (2020).

    Article 

    Google Scholar
     

  • Aves, A. R. et al. First evidence of microplastics in Antarctic snow. Cryosphere 16, 2127–2145 (2022).

    Article 

    Google Scholar
     

  • Santamans, A. C. et al. Soil features in rookeries of Antarctic penguins reveal sea to land biotransport of chemical pollutants. PLoS ONE 12, e0181901 (2017).

    Article 

    Google Scholar
     

  • Potapowicz, J., Szumińska, D., Szopińska, M. & Polkowska, Ż The influence of global climate change on the environmental fate of anthropogenic pollution released from the permafrost. Sci. Total Environ. 651, 1534–1548 (2019).

    Article 
    CAS 

    Google Scholar
     

  • McCarthy, A. H., Peck, L. S. & Aldridge, D. C. Ship traffic connects Antarctica’s fragile coasts to worldwide ecosystems. Proc. Natl Acad. Sci. USA 119, e2110303118 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Pertierra, L. R., Escribano-Álvarez, P. & Olalla-Tárraga, M. Á Cold tolerance is similar but heat tolerance is higher in the alien insect Trichocera maculipennis than in the native Parochlus steinenii in Antarctica. Polar Biol. 44, 1203–1208 (2021).

    Article 

    Google Scholar
     

  • Chown, S. L. et al. Invasive species impacts on sub-Antarctic Collembola support the Antarctic climate-diversity-invasion hypothesis. Soil Biol. Biochem. 166, 108579 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Leihy, R. I., Peake, L., Clarke, D. A., Chown, S. L. & McGeoch, M. A. Introduced and invasive alien species of Antarctica and the Southern Ocean Islands. Sci. Data 10, 200 (2023).

    Article 

    Google Scholar
     

  • Hughes, K. A. et al. Invasive non-native species likely to threaten biodiversity and ecosystems in the Antarctic Peninsula region. Glob. Change Biol. 26, 2702–2716 (2020).

    Article 

    Google Scholar
     

  • Duffy, G. A. et al. Barriers to globally invasive species are weakening across the Antarctic. Divers. Distrib. 23, 982–996 (2017).

    Article 

    Google Scholar
     

  • Pertierra, L. R. et al. Global thermal niche models of two European grasses show high invasion risks in Antarctica. Glob. Change Biol. 23, 2863–2873 (2017).

    Article 

    Google Scholar
     

  • Onley, I. R. et al. Assessing ongoing risks and managing detections of non-native invertebrates in the Antarctic region. NeoBiota 95, 133–147 (2024).

    Article 

    Google Scholar
     

  • Hughes, K. A., Pertierra, L. R., Molina-Montenegro, M. A. & Convey, P. Biological invasions in terrestrial Antarctica: what is the current status and can we respond? Biodivers. Conserv. 24, 1031–1055 (2015).

    Article 

    Google Scholar
     

  • Kerry, K. R. & Riddle, M. J. Health of Antarctic Wildlife: A Challenge for Science and Policy (Springer, 2009).

  • Kuiken, T. et al. Emergence, spread, and impact of high-pathogenicity avian influenza H5 in wild birds and mammals of South America and Antarctica. Conserv. Biol. 39, e70052 (2025).

    Article 

    Google Scholar
     

  • Leihy, R. I. et al. Antarctic biosecurity policy effectively manages the rates of alien introductions. Earth’s Future 13, e2024EF005405 (2025).

    Article 

    Google Scholar
     

  • Convey, P. et al. The spatial structure of Antarctic biodiversity. Ecol. Monogr. 84, 203–244 (2014).

    Article 

    Google Scholar
     

  • Contador, T. et al. Assessing distribution shifts and ecophysiological characteristics of the only Antarctic winged midge under climate change scenarios. Sci. Rep. 10, 9087 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Potts, L. J. et al. Environmental factors influencing fine-scale distribution of Antarctica’s only endemic insect. Oecologia 194, 529–539 (2020).

    Article 

    Google Scholar
     

  • Devlin, J. J. et al. Simulated winter warming negatively impacts survival of Antarctica’s only endemic insect. Funct. Ecol. 36, 1949–1960 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Wasley, J., Robinson, S. A., Lovelock, C. E. & Popp, M. Climate change manipulations show Antarctic flora is more strongly affected by elevated nutrients than water. Glob. Change Biol. 12, 1800–1812 (2006).

    Article 

    Google Scholar
     

  • Zhang, E. et al. Effects of increasing soil moisture on Antarctic desert microbial ecosystems. Conserv. Biol. 38, e14268 (2024).

    Article 

    Google Scholar
     

  • Dragone, N. B. et al. Elevational constraints on the composition and genomic attributes of microbial communities in Antarctic soils. mSystems 7, e01330-21 (2022).

    Article 

    Google Scholar
     

  • Dragone, N. B. et al. Exploring the boundaries of microbial habitability in soil. J. Geophys. Res. G Biogeosci, 126, e2020JG006052 (2021).

    Article 

    Google Scholar
     

  • Colesie, C. et al. The longest baseline record of vegetation dynamics in Antarctica reveals acute sensitivity to water availability. Earth’s Future 10, e2022EF002823.

  • Amesbury, M. J. et al. Widespread biological response to rapid warming on the Antarctic Peninsula. Curr. Biol. 27, 1616–1622.e2 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Purcell, A. M. et al. Rapid growth rate responses of terrestrial bacteria to field warming on the Antarctic Peninsula. ISME J. 17, 2290–2302 (2023).

    Article 
    CAS 

    Google Scholar
     

  • De Jonge, I. K., Convey, P., Klarenberg, I. J., Cornelissen, J. H. C. & Bokhorst, S. Flexible or fortified? How lichens balance defence strategies across climatic harshness gradients. N. Phytol. 246, 406–415 (2025).

    Article 

    Google Scholar
     

  • Gray, A. et al. Remote sensing reveals Antarctic green snow algae as important terrestrial carbon sink. Nat. Commun. 11, 2527 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Ray, A. E. et al. Atmospheric chemosynthesis is phylogenetically and geographically widespread and contributes significantly to carbon fixation throughout cold deserts. ISME J. 16, 2547–2560 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Snyder, M. D. et al. Soil biota sensitivity to hydroclimate variability in a polar desert ecosystem. Arct. Antarct. Alp. Res. https://doi.org/10.1080/15230430.2025.2485283 (2025).

    Article 

    Google Scholar
     

  • Newsham, K. K. et al. Experimental warming increases fungal alpha diversity in an oligotrophic maritime Antarctic soil. Front. Microbiol. 13, 1050372 (2022).

    Article 

    Google Scholar
     

  • Hopkins, D. W. et al. Carbon, nitrogen and temperature controls on microbial activity in soils from an Antarctic dry valley. Soil Biol. Biochem. 38, 3130–3140 (2006).

    Article 
    CAS 

    Google Scholar
     

  • Newsham, K. K. et al. Bacterial community composition and diversity respond to nutrient amendment but not warming in a maritime Antarctic soil. Microb. Ecol. 78, 974–984 (2019).

    Article 

    Google Scholar
     

  • Chown, S. L. & Convey, P. Spatial and temporal variability across life’s hierarchies in the terrestrial Antarctic. Phil. Trans. R. Soc. B Biol. Sci. 362, 2307–2331 (2007).

    Article 

    Google Scholar
     

  • Matos, P. et al. Microscale is key to model current and future maritime Antarctic vegetation. Sci. Total Environ. 946, 174171 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Renault, D. et al. The rising threat of climate change for arthropods from Earth’s cold regions: taxonomic rather than native status drives species sensitivity. Glob. Change Biol. 28, 5914–5927 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Cuba-Diaz, M., Fuentes-Lillo, E., Navarrete-Campos, D. & Chwedorzewska, K. J. Effects of climate change conditions on the individual response and biotic interactions of the native and non-native plants of Antarctica. Polar Biol. 46, 849–863 (2023).

    Article 

    Google Scholar
     

  • Knox, M. A. et al. Decoupled responses of soil bacteria and their invertebrate consumer to warming, but not freeze–thaw cycles, in the Antarctic dry valleys. Ecol. Lett. 20, 1242–1249 (2017).

    Article 

    Google Scholar
     

  • Andriuzzi, W. S., Adams, B. J., Barrett, J. E., Virginia, R. A. & Wall, D. H. Observed trends of soil fauna in the Antarctic Dry valleys: early signs of shifts predicted under climate change. Ecology 99, 312–321 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Yergeau, E. & Kowalchuk, G. A. Responses of Antarctic soil microbial communities and associated functions to temperature and freeze–thaw cycle frequency. Environ. Microbiol. 10, 2223–2235 (2008).

    Article 

    Google Scholar
     

  • Laudicina, V. A. et al. Responses to increases in temperature of heterotrophic micro-organisms in soils from the maritime Antarctic. Polar Biol. 38, 1153–1160 (2015).

    Article 

    Google Scholar
     

  • de Souza Carvalho, J. V. et al. Impact of expected global warming on C mineralization in maritime Antarctic soils: results of laboratory experiments. Antarct. Sci. 22, 485–493 (2010).

    Article 

    Google Scholar
     

  • Aislabie, J. M., Balks, M. R., Foght, J. M. & Waterhouse, E. J. Hydrocarbon spills on Antarctic soils: effects and management. Environ. Sci. Technol. 38, 1265–1274 (2004).

    Article 
    CAS 

    Google Scholar
     

  • Baird, H. P., Janion-Scheepers, C., Stevens, M. I., Leihy, R. I. & Chown, S. L. The ecological biogeography of indigenous and introduced Antarctic springtails. J. Biogeogr. 46, 1959–1973 (2019).

    Article 

    Google Scholar
     

  • Tytgat, B. et al. Polar lake microbiomes have distinct evolutionary histories. Sci. Adv. 9, eade7130 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Saługa, M., Ochyra, R. & Ronikier, M. Phylogeographical breaks and limited connectivity among multiple refugia in a pan-Antarctic moss species. J. Biogeogr. 49, 1991–2004 (2022).

    Article 

    Google Scholar
     

  • Ross, G. M., Rymer, P. D., Cook, J. M. & Nielsen, U. N. Phylogeography of Antarctic soil invertebrate fauna reveals ancient origins, repeated colonization and recent evolution. Antarct. Sci. 37, 13–30 (2025).

    Article 

    Google Scholar
     

  • Sokol, E. R., Herbold, C. W., Lee, C. K., Cary, S. C. & Barrett, J. E. Local and regional influences over soil microbial metacommunities in the Transantarctic Mountains. Ecosphere 4, 136 (2013).

    Article 

    Google Scholar
     

  • Diaz, M. A. et al. Aeolian material transport and its role in landscape connectivity in the McMurdo Dry Valleys, Antarctica. J. Geophys. Res. F Earth Surf. 123, 3323–3337 (2018).

    Article 

    Google Scholar
     

  • Lagostina, E. et al. Effects of dispersal strategy and migration history on genetic diversity and population structure of Antarctic lichens. J. Biogeogr. 48, 1635–1653 (2021).

    Article 

    Google Scholar
     

  • Colesie, C., Walshaw, C. V., Sancho, L. G., Davey, M. P. & Gray, A. Antarctica’s vegetation in a changing climate. WIREs Clim. Change 14, e810 (2022).

    Article 

    Google Scholar
     

  • Hawes, T. C., Worland, M. R., Convey, P. & Bale, J. S. Aerial dispersal of springtails on the Antarctic Peninsula: implications for local distribution and demography. Antarct. Sci. 19, 3–10 (2007).

    Article 

    Google Scholar
     

  • Bottos, E. M., Scarrow, J. W., Archer, S. D. J., McDonald, I. R. & Cary, S. C. Antarctic Terrestrial Microbiology: Physical and Biological Properties of Antarctic Soils (Springer, 2014).

  • Vega, G. C., Convey, P., Hughes, K. A. & Olalla-Tárraga, M. Á Humans and wind, shaping Antarctic soil arthropod biodiversity. Insect Conserv. Divers. 13, 63–76 (2020).

    Article 

    Google Scholar
     

  • Morelli, T. L. et al. Does habitat or climate change drive species range shifts? Ecography 2025, e07560 (2025).

    Article 

    Google Scholar
     

  • Wong, S. Y., Machado-de-Lima, N. M., Wilkins, D., Zhang, E. & Ferrari, B. C. Fine-scale landscape heterogeneity drives microbial community structure at Robinson ridge, East Antarctica. Sci. Total Environ. 958, 177964 (2025).

    Article 
    CAS 

    Google Scholar
     

  • Hrbáček, F. et al. Active layer and permafrost thermal regimes in the ice-free areas of Antarctica. Earth-Sci. Rev. 242, 104458 (2023).

    Article 

    Google Scholar
     

  • Kopp, M. et al. South polar skuas from a single breeding population overwinter in different oceans though show similar migration patterns. Mar. Ecol. Prog. Ser. 435, 263–267 (2011).

    Article 

    Google Scholar
     

  • Printzen, C., Domaschke, S., Fernández-Mendoza, F. & Pérez-Ortega, S. Biogeography and ecology of Cetraria aculeata, a widely distributed lichen with a bipolar distribution. MycoKeys 6, 33–53 (2013).

    Article 

    Google Scholar
     

  • Jorquera, J. et al. Genomic introgression and adaptation of southern seabird species facilitate recent polar colonization. Mol. Biol. Evol. 42, msaf053 (2025).

    Article 
    CAS 

    Google Scholar
     

  • Yin, H. et al. Basking in the sun: how mosses photosynthesise and survive in Antarctica. Photosynth. Res. 158, 151–169 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Ramírez, C. F. et al. Ecophysiology of Antarctic vascular plants: an update on the extreme environment resistance mechanisms and their importance in facing climate change. Plants 13, 449 (2024).

    Article 

    Google Scholar
     

  • Teets, N. M. & Denlinger, D. L. Surviving in a frozen desert: environmental stress physiology of terrestrial Antarctic arthropods. J. Exp. Biol. 217, 84–93 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Bahrndorff, S., Lauritzen, J. M. S., Sørensen, M. H., Noer, N. K. & Kristensen, T. N. Responses of terrestrial polar arthropods to high and increasing temperatures. J. Exp. Biol. 224, jeb230797 (2021).

    Article 

    Google Scholar
     

  • Bahrndorff, S., Convey, P., Chown, S. L. & Sørensen, J. G. Polar ectotherms more vulnerable to warming than expected. Trends Ecol. Evol. 40, 619–621 (2025).

    Article 

    Google Scholar
     

  • Escribano-Álvarez, P., Martinez, P. A., Janion-Scheepers, C., Pertierra, L. R. & Olalla-Tárraga, M. Á Colonizing polar environments: thermal niche evolution in Collembola. Ecography 2024, e06884 (2024).

    Article 

    Google Scholar
     

  • Spacht, D. E. et al. Fine-scale variation in microhabitat conditions influences physiology and metabolism in an Antarctic insect. Oecologia 197, 373–385 (2021).

    Article 

    Google Scholar
     

  • Beltrán-Sanz, N., Raggio, J., Pintado, A., Dal Grande, F. & García Sancho, L. Physiological plasticity as a strategy to cope with harsh climatic conditions: ecophysiological meta-analysis of the cosmopolitan moss Ceratodon purpureus in the Southern Hemisphere. Plants 12, 499 (2023).

    Article 

    Google Scholar
     

  • Colesie, C., Büdel, B., Hurry, V. & Green, T. G. A. Can Antarctic lichens acclimatize to changes in temperature? Glob. Change Biol. 24, 1123–1135 (2018).

    Article 

    Google Scholar
     

  • Wouw, M. V. D., Dijk, P. V. & Huiskes, A. H. L. Regional genetic diversity patterns in Antarctic hairgrass (Deschampsia antarctica Desv.). J. Biogeogr. 35, 365–376 (2008).

    Article 

    Google Scholar
     

  • Casanova-Katny, M. A. & Cavieres, L. A. Antarctic moss carpets facilitate growth of Deschampsia antarctica but not its survival. Polar Biol. 35, 1869–1878 (2012).

    Article 

    Google Scholar
     

  • Buelow, H. N. et al. Microbial community responses to increased water and organic matter in the arid soils of the McMurdo Dry Valleys, Antarctica. Front. Microbiol. 7, 1040 (2016).

    Article 

    Google Scholar
     

  • Nicolas, A. M. et al. A subset of viruses thrives following microbial resuscitation during rewetting of a seasonally dry California grassland soil. Nat. Commun. 14, 5835 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Collins, G. E. & Hogg, I. D. Temperature-related activity of Gomphiocephalus hodgsoni (Collembola) mitochondrial DNA (COI) haplotypes in Taylor Valley, Antarctica. Polar Biol. 39, 379–389 (2016).

    Article 

    Google Scholar
     

  • Amaral, C. et al. Abrupt greening observed since 2020 at Admiralty Bay, King George Island, Antarctica. Polar Biol. 48, 40 (2025).

    Article 

    Google Scholar
     

  • Bokhorst, S., Convey, P., Casanova-Katny, A. & Aerts, R. Warming impacts potential germination of non-native plants on the Antarctic Peninsula. Commun. Biol. 4, 403 (2021).

    Article 
    CAS 

    Google Scholar
     

  • McGeoch, M. A., Clarke, D. A., Mungi, N. A. & Ordonez, A. A nature-positive future with biological invasions: theory, decision support and research needs. Phil. Trans. R. Soc. B Biol. Sci. 379, 20230014 (2024).

    Article 

    Google Scholar
     

  • Hogg, I. D. et al. Biotic interactions in Antarctic terrestrial ecosystems: are they a factor? Soil Biol. Biochem. 38, 3035–3040 (2006).

    Article 
    CAS 

    Google Scholar
     

  • Cavieres, L. A. et al. The importance of facilitative interactions on the performance of Colobanthus quitensis in an Antarctic tundra. J. Veg. Sci. 29, 236–244 (2018).

    Article 

    Google Scholar
     

  • Rocha, B. et al. Incorporating biotic interactions to better model current and future vegetation of the maritime Antarctic. Curr. Biol. 34, 4884–4893.e4 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Znój, A., Gawor, J., Gromadka, R., Chwedorzewska, K. J. & Grzesiak, J. Root-associated bacteria community characteristics of Antarctic plants: Deschampsia antarctica and Colobanthus quitensis — a comparison. Microb. Ecol. 84, 808–820 (2022).

    Article 

    Google Scholar
     

  • Naz, B. et al. Dominant plant species play an important role in regulating bacterial antagonism in terrestrial Antarctica. Front. Microbiol. 14, 1130321 (2023).

    Article 

    Google Scholar
     

  • Hill, P. W. et al. Angiosperm symbioses with non-mycorrhizal fungal partners enhance N acquisition from ancient organic matter in a warming maritime Antarctic. Ecol. Lett. 22, 2111–2119 (2019).

    Article 

    Google Scholar
     

  • Acuña-Rodríguez, I. S. et al. Fungal endophyte symbionts enhance plant adaptation in Antarctic habitats. Physiol. Plant. 176, e14589 (2024).

    Article 

    Google Scholar
     

  • Bokhorst, S., Huiskes, A., Convey, P., Van Bodegom, P. M. & Aerts, R. Climate change effects on soil arthropod communities from the Falkland Islands and the Maritime Antarctic. Soil Biol. Biochem. 40, 1547–1556 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Ball, B. A., Convey, P., Feeser, K. L., Nielsen, U. N. & Van Horn, D. J. Environmental harshness mediates the relationship between aboveground and belowground communities in Antarctica. Soil Biol. Biochem. 164, 108493 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Krna, M. A., Day, T. A. & Ruhland, C. T. Effects of neighboring plants on the growth and reproduction of Deschampsia antarctica in Antarctic tundra. Polar Biol. 32, 1487–1494 (2009).

    Article 

    Google Scholar
     

  • Shaw, E. A. & Wall, D. H. Biotic interactions in experimental Antarctic soil microcosms vary with abiotic stress. Soil Syst. 3, 57 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Kenarova, A. et al. Physiological diversity of bacterial communities from different soil locations on Livingston Island, South Shetland archipelago, Antarctica. Polar Biol. 36, 223–233 (2013).

    Article 

    Google Scholar
     

  • Almela, P., Velázquez, D., Rico, E., Justel, A. & Quesada, A. Marine vertebrates impact the bacterial community composition and food webs of Antarctic microbial mats. Front. Microbiol. 13, 841175 (2022).

    Article 

    Google Scholar
     

  • Molina-Montenegro, M. A., Bergstrom, D. M., Chwedorzewska, K. J., Convey, P. & Chown, S. L. Increasing impacts by Antarctica’s most widespread invasive plant species as result of direct competition with native vascular plants. NeoBiota 51, 19–40 (2019).

    Article 

    Google Scholar
     

  • Cavieres, L. A., Sanhueza, A. K., Torres-Mellado, G. & Casanova-Katny, A. Competition between native Antarctic vascular plants and invasive Poa annua changes with temperature and soil nitrogen availability. Biol. Invasions 20, 1597–1610 (2017).

    Article 

    Google Scholar
     

  • Bartlett, J. C., Convey, P., Newsham, K. K. & Hayward, S. A. L. Ecological consequences of a single introduced species to the Antarctic: terrestrial impacts of the invasive midge Eretmoptera murphyi on Signy Island. Soil Biol. Biochem. 180, 108965 (2023).

    Article 
    CAS 

    Google Scholar
     

  • da Silva, T. H. et al. Does maritime Antarctic permafrost harbor environmental fungi with pathogenic potential? Fungal Biol. 126, 488–497 (2022).

    Article 

    Google Scholar
     

  • Rosa, L. H. et al. Opportunistic fungi found in fairy rings are present on different moss species in the Antarctic Peninsula. Polar Biol. 43, 587–596 (2020).

    Article 

    Google Scholar
     

  • Gomes, E. C. Q. et al. Pathogenicity of psychrotolerant strains of Antarctic Pseudogmynoascus fungi reveals potential opportunistic profiles. Microbe 5, 100186 (2024).

    Article 

    Google Scholar
     

  • Dickson, C. R. et al. Widespread dieback in a foundation species on a sub-Antarctic World Heritage Island: fine-scale patterns and likely drivers. Austral Ecol. 46, 52–64 (2021).

    Article 

    Google Scholar
     

  • Banyard, A. C. et al. Detection and spread of high pathogenicity avian influenza virus H5N1 in the Antarctic region. Nat. Commun. 15, 7433 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Ohlopkova, O. V. et al. First detection of influenza A virus subtypes H1N1 and H3N8 in the Antarctic region: King George Island, 2023. Probl. Virol. 69, 377–389 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Fountain, A. G. et al. The impact of a large-scale climate event on antarctic ecosystem processes. BioScience 66, 848–863 (2016).

    Article 

    Google Scholar
     

  • Benoit, J. B. et al. Reduced male fertility of an Antarctic mite following extreme heat stress could prompt localized population declines. Cell Stress Chaperones 28, 541–549 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Ropert-Coudert, Y. et al. Two recent massive breeding failures in an Adélie penguin colony call for the creation of a marine protected area in D’Urville Sea/Mertz. Front. Mar. Sci. 5, 264 (2018).

    Article 

    Google Scholar
     

  • Descamps, S. et al. Extreme snowstorms lead to large-scale seabird breeding failures in Antarctica. Curr. Biol. 33, R176–R177 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Selbmann, L. et al. Effect of environmental parameters on biodiversity of the fungal component in lithic Antarctic communities. Extremophiles 21, 1069–1080 (2017).

    Article 

    Google Scholar
     

  • Gooseff, M. N. et al. Decadal ecosystem response to an anomalous melt season in a polar desert in Antarctica. Nat. Ecol. Evol. 1, 1334–1338 (2017).

    Article 

    Google Scholar
     

  • Barrett, J. E. et al. Persistent effects of a discrete warming event on a polar desert ecosystem. Glob. Change Biol. 14, 2249–2261 (2008).

    Article 

    Google Scholar
     

  • Courtright, E. M., Wall, D. H. & Virginia, R. A. Determining habitat suitability for soil invertebrates in an extreme environment: the McMurdo Dry Valleys, Antarctica. Antartic Sci. 13, 9–17 (2001).

    Article 

    Google Scholar
     

  • Barrett, J. E. et al. Response of a terrestrial polar ecosystem to the March 2022 Antarctic weather anomaly. Earth’s Future 12, e2023EF004306 (2024).

    Article 

    Google Scholar
     

  • Convey, P. & Peck, L. S. Antarctic environmental change and biological responses. Sci. Adv. 5, eaaz0888 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Terauds, A. & Lee, J. R. Antarctic biogeography revisited: updating the Antarctic conservation biogeographic regions. Divers. Distrib. 22, 836–840 (2016).

    Article 

    Google Scholar
     

  • Lee, J. R. et al. Threat management priorities for conserving Antarctic biodiversity. PLoS Biol. 20, e3001921 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Zaccara, S., Patiño, J., Convey, P., Vanetti, I. & Cannone, N. Multiple colonization and dispersal events hide the early origin and induce a lack of genetic structure of the moss Bryum argenteum in Antarctica. Ecol. Evol. 10, 8959–8975 (2020).

    Article 

    Google Scholar
     

  • Bohuslavová, O. et al. Dispersal of lichens along a successional gradient after deglaciation of volcanic mesas on northern James Ross Island, Antarctic Peninsula. Polar Biol. 41, 2221–2232 (2018).

    Article 

    Google Scholar
     

  • Parada-Pozo, G. et al. Vegetation drives the response of the active fraction of the rhizosphere microbial communities to soil warming in Antarctic vascular plants. FEMS Microbiol. Ecol. 98, fiac099 (2022).

    Article 

    Google Scholar