• University of California Agriculture and Natural Resources. California’s Working Landscape https://www.ucop.edu/innovation-transfer-operations/_files/Econ%20Impact%20Rpts/anr-ca-working-landscape-2019.pdf (2019).

  • Peterson, C., Pittelkow, C. & Lundy, M. Exploring the Potential for Water—Limited Agriculture in the San Joaquin Valley (PPIC, 2022).

  • California Agricultural Exports. California Agricultural Exports 2022–2023 https://www.cdfa.ca.gov/Statistics/PDFs/2022-2023_california_agricultural_exports.pdf (2022).

  • California Natural Resources Agency. California’s Water Supply Strategy: Adapting to a Hotter, Drier Future. https://resources.ca.gov/-/media/CNRA-Website/Files/Initiatives/Water-Resilience/CA-Water-Supply-Strategy.pdf (2022).

  • Hanak, E. et al. Water and the California Economy (PPIC, 2012).

  • Sunding, D., Browne, O. & Zhu, Z. J. The Economy of the State Water Project: Clean, Reliable, and Affordable Water for California https://water.ca.gov/-/media/DWR-Website/Web-Pages/News/Files/SWP-Economics-Brochure_FINAL.pdf (2023).

  • Liu, P.-W. et al. Groundwater depletion in California’s central valley accelerates during megadrought. Nat. Commun. 13, 7825 (2022).

    Article 

    Google Scholar
     

  • Williams, A. P. et al. Large contribution from anthropogenic warming to an emerging North American megadrought. Science 368, 314–318 (2020).

    Article 

    Google Scholar
     

  • Swain, D. L., Horton, D. E., Singh, D. & Diffenbaugh, N. S. Trends in atmospheric patterns conducive to seasonal precipitation and temperature extremes in California. Sci. Adv. 2, e1501344 (2016).

    Article 

    Google Scholar
     

  • Swain, D. L. et al. Hydroclimate volatility on a warming Earth. Nat. Rev. Earth Environ. 6, 35–50 (2025).

    Article 

    Google Scholar
     

  • Healey, R. W. et al. Water Budgets: Foundations for Effective Water-Resources and Environmental Management (2007).

  • California Department of Water Resources. California Water Plan Update 2023 Water Balances Supporting Document https://water.ca.gov/-/media/DWR-Website/Web-Pages/Programs/California-Water-Plan/Docs/Update2023/Supporting-Documents/Water-Portfolios-and-Balances.pdf (2023).

  • Ghiat, I., Mackey, H. R. & Al-Ansari, T. A review of evapotranspiration measurement models, techniques and methods for open and closed agricultural field applications. Water 13, 2523 (2021).

    Article 

    Google Scholar
     

  • Miralles, D. G., Brutsaert, W., Dolman, A. J. & Gash, J. H. On the use of the term “Evapotranspiration”. Water Resour. Res. 56, e2020WR028055 (2020).

    Article 

    Google Scholar
     

  • Novák, V. Evapotranspiration. In Encyclopedia of Agrophysics (eds Gliński, J., Horabik, J. & Lipiec, J.) 280–283 (Springer Netherlands, Dordrecht, 2011)

  • Wanniarachchi, S. & Sarukkalige, R. A review on evapotranspiration estimation in agricultural water management: past, present, and future. Hydrology 9, 123 (2022).

    Article 

    Google Scholar
     

  • Ward, R. C. Measuring evapotranspiration; a review. J. Hydrol. 13, 1–21 (1971).

    Article 

    Google Scholar
     

  • Pascolini-Campbell, M., Lee, C., Stavros, N. & Fisher, J. B. ECOSTRESS reveals pre-fire vegetation controls on burn severity for Southern California wildfires of 2020. Glob. Ecol. Biogeogr. 31, 1976–1989 (2022).

    Article 

    Google Scholar
     

  • Zhu, Y., Murugesan, S. B., Masara, I. K., Myint, S. W. & Fisher, J. B. Examining wildfire dynamics using ECOSTRESS data with machine learning approaches: the case of South-Eastern Australia’s black summer. Remote Sens. Ecol. Conserv. 11, 266–281 (2024).

  • Bento, V. A., Gouveia, C. M., DaCamara, C. C. & Trigo, I. F. A climatological assessment of drought impact on vegetation health index. Agric. Forest Meteorol. 259, 286–295 (2018).

    Article 

    Google Scholar
     

  • Fisher, J. B., Tu, K. P. & Baldocchi, D. D. Global estimates of the land–atmosphere water flux based on monthly AVHRR and ISLSCP-II data, validated at 16 FLUXNET sites. Remote Sens. Environ. 112, 901–919 (2008).

    Article 

    Google Scholar
     

  • Joiner, J. et al. Global relationships among traditional reflectance vegetation indices (NDVI and NDII), evapotranspiration (ET), and soil moisture variability on weekly timescales. Remote Sens. Environ. 219, 339–352 (2018).

    Article 

    Google Scholar
     

  • Bhattarai, N. & Wagle, P. Recent advances in remote sensing of evapotranspiration. Remote Sens. 13, 4260 (2021).

    Article 

    Google Scholar
     

  • Brown, S. M., Petrone, R. M., Mendoza, C. & Devito, K. J. Surface vegetation controls on evapotranspiration from a sub-humid Western Boreal Plain wetland. Hydrol. Process. 24, 1072–1085 (2010).

    Article 

    Google Scholar
     

  • Detto, M., Montaldo, N., Albertson, J. D., Mancini, M. & Katul, G. Soil moisture and vegetation controls on evapotranspiration in a heterogeneous Mediterranean ecosystem on Sardinia, Italy. Water Resour. Res. https://doi.org/10.1029/2005WR004693 (2006).

  • Boser, A. et al. Field-scale crop water consumption estimates reveal potential water savings in California agriculture. Nat. Commun. 15, 2366 (2024).

    Article 

    Google Scholar
     

  • Pascolini-Campbell, M., Fisher, J. B. & Reager, J. T. GRACE-FO and ECOSTRESS synergies constrain fine-scale impacts on the water balance. Geophys. Res. Lett. 48, e2021GL093984 (2021).

    Article 

    Google Scholar
     

  • Falkenmark, M. & Rockström, J. The new blue and green water paradigm: breaking new ground for water resources planning and management. J. Water Resour. Plan. Manag. 132, 129–132 (2006).

    Article 

    Google Scholar
     

  • Mao, G. et al. Assessing the interlinkage of green and blue water in an arid catchment in Northwest China. Environ. Geochem Health 42, 933–953 (2020).

    Article 

    Google Scholar
     

  • Allan, R. P. Amplified seasonal range in precipitation minus evaporation. Environ. Res. Lett. 18, 094004 (2023).

    Article 

    Google Scholar
     

  • Rodell, M. & Li, B. Changing intensity of hydroclimatic extreme events revealed by GRACE and GRACE-FO. Nat. Water 1, 241–248 (2023).

    Article 

    Google Scholar
     

  • Nie, W. et al. Irrigation water demand sensitivity to climate variability across the contiguous united states. Water Resour. Res. 57, 2020WR027738 (2021).

    Article 

    Google Scholar
     

  • Zhao, M., Geruo, A., Liu, Y. & Konings, A. G. Evapotranspiration frequently increases during droughts. Nat. Clim. Chang. 12, 1024–1030 (2022).

    Article 

    Google Scholar
     

  • Velpuri, N. M. & Senay, G. B. Partitioning evapotranspiration into green and blue water sources in the conterminous United States. Sci. Rep. 7, 6191 (2017).

  • Wang, T., Mallick, K., Verfaille, J., Szutu, D. & Baldocchi, D. Water scarcity in semi-arid California compromises perennial alfalfa’s high yield and carbon sinking potentials. Agric. Water Manag. 308, 109284 (2025).

    Article 

    Google Scholar
     

  • He, Q.-L., Xiao, J.-L. & Shi, W.-Y. Responses of terrestrial evapotranspiration to extreme drought: a review. Water 14, 3847 (2022).

    Article 

    Google Scholar
     

  • Seneviratne, S. I. et al. Investigating soil moisture–climate interactions in a changing climate: a review. Earth-Sci. Rev. 99, 125–161 (2010).

    Article 

    Google Scholar
     

  • Sankey, T. & Tatum, J. Thinning increases forest resiliency during unprecedented drought. Sci. Rep. 12, 9041 (2022).

    Article 

    Google Scholar
     

  • del Campo, A. D. et al. A global synthesis on the effects of thinning on hydrological processes: implications for forest management. For. Ecol. Manag. 519, 120324 (2022).

    Article 

    Google Scholar
     

  • Roche, J. W., Goulden, M. L. & Bales, R. C. Estimating evapotranspiration change due to forest treatment and fire at the basin scale in the Sierra Nevada, California. Ecohydrology 11, e1978–e1978 (2018).

    Article 

    Google Scholar
     

  • del Campo, A. D., González-Sanchis, M., García-Prats, A., Ceacero, C. J. & Lull, C. The impact of adaptive forest management on water fluxes and growth dynamics in a water-limited low-biomass oak coppice. Agric. Forest Meteorol. 264, 266–282 (2019).

    Article 

    Google Scholar
     

  • Liu, X. et al. Drought and thinning have limited impacts on evapotranspiration in a managed pine plantation on the southeastern United States coastal plain. Agric. Forest Meteorol. 262, 14–23 (2018).

    Article 

    Google Scholar
     

  • Simonin, K., Kolb, T. E., Montes-Helu, M. & Koch, G. W. The influence of thinning on components of stand water balance in a ponderosa pine forest stand during and after extreme drought. Agric. Forest Meteorol. 143, 266–276 (2007).

    Article 

    Google Scholar
     

  • Au, J. et al. Forest productivity recovery or collapse? Model-data integration insights on drought-induced tipping points. Glob. Change Biol. 29, 5652–5665 (2023).

    Article 

    Google Scholar
     

  • Barnard, D. M. et al. Wildfire and climate change amplify knowledge gaps linking mountain source-water systems and agricultural water supply in the western United States. Agric. Water Manag. 286, 108377 (2023).

    Article 

    Google Scholar
     

  • Ma, Q. et al. Wildfire controls on evapotranspiration in California’s Sierra Nevada. J. Hydrol. 590, 125364 (2020).

    Article 

    Google Scholar
     

  • Swain, D. L. A shorter, sharper rainy season amplifies California wildfire risk. Geophys. Res. Lett. 48, e2021GL092843 (2021).

    Article 

    Google Scholar
     

  • DeFlorio, M. J. et al. From California’s extreme drought to major flooding: evaluating and synthesizing experimental seasonal and subseasonal forecasts of landfalling atmospheric rivers and extreme precipitation during winter 2022/23. Am. Meteorol. Soc. https://doi.org/10.1175/BAMS-D-22-0208.1 (2024)

  • Melton, F. S. et al. OpenET: filling a critical data gap in water management for the western United States. JAWRA J. Am. Water Resour. Assoc. 58, 971–994 (2022).

    Article 

    Google Scholar
     

  • Xia, Y. et al. Continental-scale water and energy flux analysis and validation for North American Land Data Assimilation System project phase 2 (NLDAS-2): 2. Validation of model-simulated streamflow. J. Geophys. Res. Atmos. https://doi.org/10.1029/2011JD016048 (2012).

  • Xia, Y., Hobbins, M. T., Mu, Q. & Ek, M. B. Evaluation of NLDAS-2 evapotranspiration against tower flux site observations. Hydrol. Process. 29, 1757–1771 (2015).

    Article 

    Google Scholar
     

  • Volk, J. M. et al. Assessing the accuracy of OpenET satellite-based evapotranspiration data to support water resource and land management applications. Nat. Water 2, 193–205 (2024).

    Article 

    Google Scholar
     

  • Zhang, B. et al. Evaluation and comparison of multiple evapotranspiration data models over the contiguous United States: implications for the next phase of NLDAS (NLDAS-Testbed) development. Agric. Forest Meteorol. 280, 107810 (2020).

    Article 

    Google Scholar
     

  • Hanasaki, N., Inuzuka, T., Kanae, S. & Oki, T. An estimation of global virtual water flow and sources of water withdrawal for major crops and livestock products using a global hydrological model. J. Hydrol. 384, 232–244 (2010).

    Article 

    Google Scholar
     

  • Liu, J. & Yang, H. Spatially explicit assessment of global consumptive water uses in cropland: green and blue water. J. Hydrol. 384, 187–197 (2010).

    Article 

    Google Scholar
     

  • Mekonnen, M. M. & Hoekstra, A. Y. The green, blue and grey water footprint of crops and derived crop products. Hydrol. Earth Syst. Sci. 15, 1577–1600 (2011).

    Article 

    Google Scholar
     

  • Siebert, S. & Döll, P. Quantifying blue and green virtual water contents in global crop production as well as potential production losses without irrigation. J. Hydrol. 384, 198–217 (2010).

    Article 

    Google Scholar
     

  • Governor Gavin Newsom. California is now the 4th Largest Economy in the World (Governor of California, 2025)

  • US National Park Service. Water Year 2023: Review of a Historic Year in California and Nevada (U.S. National Park Service, 2023)

  • Goulden, M. L. & Bales, R. C. Mountain runoff vulnerability to increased evapotranspiration with vegetation expansion. Proc. Natl. Acad. Sci. USA 111, 14071–14075 (2014).

    Article 

    Google Scholar
     

  • Szilagyi, J. & Jozsa, J. Evapotranspiration trends (1979–2015) in the Central Valley of California, USA: Contrasting Tendencies During 1981–2007. Water Resour. Res. 54, 5620–5635 (2018).

    Article 

    Google Scholar
     

  • Goulden, M. L. & Bales, R. C. California forest die-off linked to multi-year deep soil drying in 2012–2015 drought. Nat. Geosci. 12, 632–637 (2019).

    Article 

    Google Scholar
     

  • Zhang, K. et al. A global dataset of terrestrial evapotranspiration and soil moisture dynamics from 1982 to 2020. Sci. Data 11, 445 (2024).

    Article 

    Google Scholar
     

  • Zhang, T., Lin, X., Rogers, D. H. & Lamm, F. R. Adaptation of irrigation infrastructure on irrigation demands under future drought in the United States. Am. Meteorol. Soc. https://doi.org/10.1175/EI-D-14-0035.1 (2015).

  • California Department of Water Resources, California Natural Resources Agency & State of California. Water Year 2023: Weather Whiplash, From Drought to Deluge. https://water.ca.gov/-/media/DWR-Website/Web-Pages/Water-Basics/Drought/Files/Publications-And-Reports/Water-Year-2023-wrap-up-brochure_01.pdf (2023).

  • McDonald, R. I. & Girvetz, E. H. Two challenges for U.S. irrigation due to climate change: increasing irrigated area in wet states and increasing irrigation rates in dry states. PLoS One 8, e65589 (2013).

    Article 

    Google Scholar
     

  • Rajagopalan, K. et al. Impacts of near-term climate change on irrigation demands and crop yields in the Columbia River basin. Water Resour. Res. 54, 2152–2182 (2018).

    Article 

    Google Scholar
     

  • Cook, B. I. et al. Divergent regional climate consequences of maintaining current irrigation rates in the 21st century. J. Geophys. Res. Atmos. 125, e2019JD031814 (2020).

    Article 

    Google Scholar
     

  • Döll, P. & Siebert, S. Global modeling of irrigation water requirements. Water Resour. Res. 38, 8-1–8-10 (2002).

  • Janes, M. California’s Groundwater Conditions: Semi-Annual Update May 2024 (2024).

  • Luković, J., Chiang, J. C. H., Blagojević, D. & Sekulić, A. A later onset of the rainy season in California. Geophys. Res. Lett. 48, e2020GL090350 (2021).

    Article 

    Google Scholar
     

  • Hill, J. E., Williams, J. F., Mutters, R. G. & Greer, C. A. The California rice cropping system: agronomic and natural resource issues for long-term sustainability. Paddy Water Environ. 4, 13–19 (2006).

    Article 

    Google Scholar
     

  • Pathak, T. B. & Stoddard, C. S. Climate change effects on the processing tomato growing season in California using growing degree day model. Model. Earth Syst. Environ. 4, 765–775 (2018).

    Article 

    Google Scholar
     

  • Zhang, Z., Jin, Y., Chen, B. & Brown, P. California almond yield prediction at the orchard level with a machine learning approach. Front. Plant Sci. https://doi.org/10.3389/fpls.2019.00809 (2019).

  • Fader, M., Shi, S., von Bloh, W., Bondeau, A. & Cramer, W. Mediterranean irrigation under climate change: more efficient irrigation needed to compensate for increases in irrigation water requirements. Hydrol. Earth Syst. Sci. 20, 953–973 (2016).

    Article 

    Google Scholar
     

  • United States Department of Agriculture Natural Resources Conservation Service. CA Water Supply Outlook Report—May 2023 https://www.nrcs.usda.gov/sites/default/files/2023-02/CA-Water%20Supply%20Outlook%20Report-Feb%202023.pdf (2023).

  • Gebremichael, M., Krishnamurthy, P. K., Ghebremichael, L. T. & Alam, S. What drives crop land use change during multi-year droughts in California’s central valley? Prices or concern for water? Remote Sens. 13, 650 (2021).

    Article 

    Google Scholar
     

  • Nelson, K. S. & Burchfield, E. K. Effects of the structure of water rights on agricultural production during drought: a spatiotemporal analysis of California’s central valley. Water Resour. Res. 53, 8293–8309 (2017).

    Article 

    Google Scholar
     

  • Ruess, P. J., Konar, M., Wanders, N. & Bierkens, M. F. P. Total irrigation by crop in the Continental United States from 2008 to 2020. Sci. Data 11, 395 (2024).

    Article 

    Google Scholar
     

  • Agrawal, T., Hirons, M. & Gathorne-Hardy, A. Understanding farmers’ cropping decisions and implications for crop diversity conservation: Insights from Central India. Curr. Res. Environ. Sustainability 3, 100068 (2021).

    Article 

    Google Scholar
     

  • Escriva-Bou, A., Medellín-Azuara, J., Hanak, E., Abatzoglou, J. & Viers, J. Drought and California’s Agriculture (Escriva-Bou Research Group, 2022).

  • Guido, Z. et al. Farmer forecasts: Impacts of seasonal rainfall expectations on agricultural decision-making in Sub-Saharan Africa. Clim. Risk Manag. 30, 100247 (2020).

    Article 

    Google Scholar
     

  • Peterson, C., Escriva-Bou, A., Medellín-Azuara, J. & Cole, S. Water Use in California’s Agriculture (PPIC, 2023).

  • Cheng, R., Novak, L. & Schneider, T. Predicting the interannual variability of California’s total annual precipitation. Geophys. Res. Lett. 48, e2020GL091465 (2021).

    Article 

    Google Scholar
     

  • Pierrat, Z. A. et al. The biological basis for using optical signals to track evergreen needleleaf photosynthesis. BioScience 74, 130–145 (2024).

    Article 

    Google Scholar
     

  • Hernández Ayala, J. J., Mann, J. & Grosvenor, E. Antecedent rainfall, excessive vegetation growth and its relation to wildfire burned areas in California. Earth Space Sci. 8, e2020EA001624 (2021).

    Article 

    Google Scholar
     

  • Farahmand, A., Stavros, E. N., Reager, J. T. & Behrangi, A. Introducing spatially distributed fire danger from earth observations (FDEO) using satellite-based data in the contiguous United States. Remote Sens. 12, 1252 (2020).

    Article 

    Google Scholar
     

  • Farahmand, A. et al. Satellite hydrology observations as operational indicators of forecasted fire danger across the contiguous United States. Nat. Hazards Earth Syst. Sci. 20, 1097–1106 (2020).

    Article 

    Google Scholar
     

  • Jensen, D. et al. The sensitivity of US wildfire occurrence to pre-season soil moisture conditions across ecosystems. Environ. Res. Lett. 13, 014021 (2018).

    Article 

    Google Scholar
     

  • Guirguis, K. et al. Winter wet–dry weather patterns driving atmospheric rivers and Santa Ana winds provide evidence for increasing wildfire hazard in California. Clim. Dyn. 60, 1729–1749 (2023).

    Article 

    Google Scholar
     

  • Keeley, J. E. & Syphard, A. D. Large California wildfires: 2020 fires in historical context. Fire Ecol. 17, 22 (2021).

    Article 

    Google Scholar
     

  • Safford, H. D. et al. The 2020 California fire season: A year like no other, a return to the past or a harbinger of the future? Glob. Ecol. Biogeogr. 31, 2005–2025 (2022).

    Article 

    Google Scholar
     

  • Toohey. California Wildfires have Already Burned 90,000 Acres, and Summer is Just Beginning (Los Angeles Times, 2024).

  • Mehta, P. et al. Half of twenty-first century global irrigation expansion has been in water-stressed regions. Nat. Water 2, 254–261 (2024).

    Article 

    Google Scholar
     

  • McDermid, S. et al. Irrigation in the Earth system. Nat. Rev. Earth Environ. 4, 435–453 (2023).

    Article 

    Google Scholar
     

  • Wada, Y. et al. Global monthly water stress: II. Water demand and severity of water stress. Water Resour. Res. https://doi.org/10.1029/2010WR009792 (2011).

  • Volk, J. M. et al. Development of a Benchmark Eddy flux evapotranspiration dataset for evaluation of satellite-driven evapotranspiration models over the CONUS. Agric. For. Meteorol. 331, 109307 (2023).

    Article 

    Google Scholar
     

  • Ek, M. B. et al. Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta model. J. Geophys. Res. Atmos. https://doi.org/10.1029/2002JD003296 (2003).

  • Koster, R. D. & Suarez, M. J. The components of a ‘SVAT’ scheme and their effects on a GCM’s hydrological cycle. Adv. Water Resour. 17, 61–78 (1994).

    Article 

    Google Scholar
     

  • Liang, X., Lettenmaier, D. P., Wood, E. F. & Burges, S. J. A simple hydrologically based model of land surface water and energy fluxes for general circulation models. J. Geophys. Res. Atmos. 99, 14415–14428 (1994).

    Article 

    Google Scholar
     

  • Obata, K., Miura, T., Yoshioka, H. & Huete, A. R. Derivation of a MODIS-compatible enhanced vegetation index from visible infrared imaging radiometer suite spectral reflectances using vegetation isoline equations. JARS. 7, 073467 (2013).


    Google Scholar
     

  • Vermote, E. VIIRS/NPP Vegetation Indices Monthly L3 Global 0.05Deg CMG V002. [Monthly EVI, NDVI, EVI2] (NASA EOSDIS Land Processes Distributed Active Archive Center, accessed 01 Mar 2024); https://doi.org/10.5067/VIIRS/VNP13C2.002. (2023).

  • NLDAS Project. NLDAS Secondary Forcing Data L4 Hourly 0.125 × 0.125 degree V2.0. NASA Goddard Earth Sciences Data and Information Services Center. https://doi.org/10.5067/96S0R3LFOBTU (2020).

  • Allen, R. G., Tasumi, M. & Trezza, R. Satellite-based energy balance for mapping evapotranspiration with internalized calibration (METRIC)—model. J. Irrig. Drain. Eng. 133, 380–394 (2007).

    Article 

    Google Scholar
     

  • Pierrat, Z. A. et al. Evaluation of ECOSTRESS collection 2 evapotranspiration products: strengths and uncertainties for evapotranspiration modeling. Water Resour. Res. 61, e2024WR039404 (2025).

    Article 

    Google Scholar